首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examines and compares DNA cleavage modes by several esperamicin derivatives and calicheamicin. We found that the deoxyfucose-anthranilate moiety is a key factor to determine their DNA cutting modes. Probably, the bulky moiety hinders the abstraction of hydrogen atom from deoxyribose by the C-1 carbon radical of phenylene diradical. On the basis of the experimental results, detailed DNA cleaving modes in DNA minor groove by esperamicin and calicheamicin have been discussed.  相似文献   

2.
Ultraviolet radiation of the enediyne drugs is effective in causing nicks in supercoiled DNA. Of special interest is the fact that the observed nucleotide cleaving specificity for the UV light- and thiol-activated antibiotics was the same with esperamicin A1, but was different with neocarzinostatin. In addition to the preferred cutting of T and A bases, the light-activated neocarzinostatin attacked certain G bases which were rarely cleaved by the thiol-activated neocarzinostatin. It should be noted that these enediyne antibiotics lose the DNA breakage activity after light-exposure for 30 min.  相似文献   

3.
A Ichikawa  T Kuboya  T Aoyama  Y Sugiura 《Biochemistry》1992,31(29):6784-6787
We report here that the DNA strand scission by dynemicin A is not only sequence-specific but also conformation-specific. The salt-induced B----Z conformational transition dramatically enhanced the cleavage by dynemicin A in a B-Z junction region. By contrast, the bleomycin-Fe(II) complex, the elsamicin A-Fe(II) complex, and esperamicin A1 did not induce any preferential DNA cutting in such a DNA structure. The characteristic hyperreactivity of dynemicin A is observed in (dC-dG)8- and (dC-dG)12-inserted DNAs, but not in (dC-dG)5-inserted DNA. These results suggest value in the use of dynemicin A as proof of the existence of a B-Z junction in vivo and also may aid in understanding the structure of B-Z junctions.  相似文献   

4.
T Shiraki  Y Sugiura 《Biochemistry》1990,29(42):9795-9798
Dynemicin A, which is a hybrid antitumor antibiotic containing anthraquinone and enediyne cores, effectively breaks DNA strands upon irradiation with visible light of long wavelength. The preferential cutting sites of visible light induced DNA cleavage with dynemicin A are on the 3'-side of purine bases such as in 5'-AT and 5'-GT sequences. The observed nucleotide cutting specificity is remarkably similar to that of NADPH- (or thiol) induced DNA breakage with dynemicin A, suggesting the presence of the same DNA-cleaving intermediate. Indeed, the photoproduct of dynemicin A is chromatographically identical with the reaction product (dynemicin H) of the thiol-activated dynemicin A. On the basis of the present results, a reasonable mechanism for the visible light induced DNA cleavage of dynemicin A has been proposed.  相似文献   

5.
The esperamicins are members of a class of potent antitumor antibiotics that contain stained diacetylenic ring systems capable of forming DNA-cleaving diradicals upon reaction with thiols. Here we show that the diacetylenic ring core itself determines the sequence specificity for scission of duplex DNA): esperamicin A1, and three products of hydrolysis of the glycon, esperamicins C, D, and E, are found to retain a common sequence preference. The sugar residues exert a strong influence on the cleavage efficiency, presumably by interacting nonspecifically with DNA. The presence of a branch in the DNA is found locally to inhibit scission by esperamicins, and this effect is shown to be due to the core also.  相似文献   

6.
The cancer chemotherapeutic agent, bleomycin, cleaves DNA at specific sites. For the first time, the genome-wide DNA sequence specificity of bleomycin breakage was determined in human cells. Utilising Illumina next-generation DNA sequencing techniques, over 200 million bleomycin cleavage sites were examined to elucidate the bleomycin genome-wide DNA selectivity. The genome-wide bleomycin cleavage data were analysed by four different methods to determine the cellular DNA sequence specificity of bleomycin strand breakage. For the most highly cleaved DNA sequences, the preferred site of bleomycin breakage was at 5′-GT* dinucleotide sequences (where the asterisk indicates the bleomycin cleavage site), with lesser cleavage at 5′-GC* dinucleotides. This investigation also determined longer bleomycin cleavage sequences, with preferred cleavage at 5′-GT*A and 5′- TGT* trinucleotide sequences, and 5′-TGT*A tetranucleotides. For cellular DNA, the hexanucleotide DNA sequence 5′-RTGT*AY (where R is a purine and Y is a pyrimidine) was the most highly cleaved DNA sequence. It was striking that alternating purine–pyrimidine sequences were highly cleaved by bleomycin. The highest intensity cleavage sites in cellular and purified DNA were very similar although there were some minor differences. Statistical nucleotide frequency analysis indicated a G nucleotide was present at the ?3 position (relative to the cleavage site) in cellular DNA but was absent in purified DNA.  相似文献   

7.
Antibacterial fluoroquinolones trap a cleavage complex of gyrase and topoisomerase (topo) IV inducing site-specific DNA breakage within a bent DNA gate engaged in DNA transport. Despite its importance for drug action and in revealing potential sites of topoisomerase catalysis, the mechanism of DNA selectivity is poorly understood. To explore its functional basis, we generated mutant versions of the strongly cleaved E-site and used a novel competitive assay to examine their gemifloxacin-mediated DNA breakage by Streptococcus pneumoniae topo IV and gyrase. Parallel studies of Ca2+-induced cleavage distinguished ‘intrinsic recognition’ of DNA cleavage sites by topo IV from drug-induced preferences. Analysis revealed strong enzyme-determined requirements for −4G, −2A and −1T bases preceding the breakage site (between −1 and +1) and enzyme-unique or degenerate determinants at −3, plus drug-specific preferences at +2/+3 and for +1 purines associated with drug intercalation. Similar cleavage rules were seen additionally at the novel V-site identified here in ColE1-derived plasmids. In concert with DNA binding data, our results provide functional evidence for DNA, enzyme and drug contributions to DNA cleavage at the gate, suggest a mechanism for DNA discrimination involving enzyme-induced DNA bending/helix distortion and cleavage complex stabilization and advance understanding of fluoroquinolones as important cleavage-enhancing therapeutics.  相似文献   

8.
Summary Addition of cerulenin (0.25–1.0 mM) to cultures ofActinomadura verrucosospora before the onset of esperamicin synthesis inhibited the production of esperamicin A1 by the microorganism. This result indicates that esperamicin A1 is biosynthesized in part by the polyketide pathway. Addition of cerulenin to the cultures during the active production phase led to a net decrease in esperamicin A1 production. The14C-acetate labeling pattern of esperamicin A1 in the cultures with or without addition of cerulenin at the active production phase also demonstrated the instability of esperamicin A1 in the fermentation. This suggests that esperamicin A1 is unstable and degradation occurs during the active production phase. Addition of the neutral resin Diaion HP-20 (1%) to the fermentation enhanced the production of esperamicin A1 by 53%.  相似文献   

9.
We have designed and synthesized a series of novel DNA photocleaving agents which break DNA with high sequence specificity. These compounds contain the non-diffusible photoactive p-nitrobenzoyl group covalently linked via a dimethylene (or tetramethylene) spacer to thiazole analogues of the DNA binding portion of the antibiotic bleomycin A2. By using a variety of 5' or 3' 32P-end labeled restriction fragments from plasmid pBR322 as substrate, we have shown that photoactive bithiazole compounds bind DNA at the consensus sequence 5'-AAAT-3' and induce DNA cleavage 3' of the site. Analysis of cleavage sites on the complementary DNA strand and inhibition of DNA breakage by distamycin A indicates these bithiazole derivatives bind and attack the minor groove of DNA. A photoactive unithiazole compound was less specific inducing DNA breakage at the degenerate site 5'-(A/T)(AA/TT)TPu(A/T)-3'. DNA sequence recognition of these derivatives appears to be determined by the thiazole moiety rather than the p-nitrobenzoyl group: use of a tetramethylene group in place of a dimethylene spacer shifted the position of DNA breakage by one base pair. Moreover, much less specific DNA photocleavage was observed for a compound in which p-nitrobenzoyl was linked to the intercalator acridine via a sequence-neutral hexamethylene spacer. The 5'-AAAT-3' specificity of photoactive bithiazole derivatives contrasts with that of bleomycin A2 which cleaves DNA most frequently at 5'-GPy-3' sequences. These results suggest that the cleavage specificity exhibited by bleomycin is not simply determined by its bithiazole/sulphonium terminus, and the contributions from other features, e.g. its metal-chelating domain, must be considered. The novel thiazole-based DNA cleavage agents described here should prove useful as reagents for probing DNA structure and for elucidating the molecular basis of DNA recognition by bleomycin and other ligands.  相似文献   

10.
11.
The sequence specificity of bleomycin A5 and of its light-activated cobalt complex were compared by examining the relative cleavage of each strand of two DNA fragments by either species. Significant differences between the two metallobleomycins were observed. The iron-bleomycin (Fe-BLM) complex cleaved the DNA molecules preferentially at dinucleotides GpT and GpC, whereas the light-activated cobalt-bleomycin complex (Co-BLM) showed a preference for cutting at the dinucleotide GpA in addition to cleavage at every GpT dinucleotide. Further, new sites of preferential cleavage were noted for Co-BLM in regions of the DNA where enhanced reaction with DNAaseI can be observed in the presence of the antibiotic. No differences in the cutting behaviour of the Fe-BLM were evident upon irradiation of the reaction mixture. A reduction in the relative efficiency of cutting at GpC sequences by Co-BLM is responsible for the previously observed diminution of double-strand breaks under conditions of photoactivated cleavage. The results are discussed in terms of the likely production of highly reactive, diffusible cutting elements in the light activated reaction which cause cleavage of the DNA in regions where the antibiotic is not bound.  相似文献   

12.
Topoisomerase (topo) IV and gyrase are bacterial type IIA DNA topoisomerases essential for DNA replication and chromosome segregation that act via a transient double-stranded DNA break involving a covalent enzyme-DNA "cleavage complex." Despite their mechanistic importance, the DNA breakage determinants are not understood for any bacterial type II enzyme. We investigated DNA cleavage by Streptococcus pneumoniae topo IV and gyrase stabilized by gemifloxacin and other antipneumococcal fluoroquinolones. Topo IV and gyrase induce distinct but overlapping repertoires of double-strand DNA breakage sites that were essentially identical for seven different quinolones and were augmented (in intensity) by positive or negative supercoiling. Sequence analysis of 180 topo IV and 126 gyrase sites promoted by gemifloxacin on pneumococcal DNA revealed the respective consensus sequences: G(G/c)(A/t)A*GNNCt(T/a)N(C/a) and GN4G(G/c)(A/c)G*GNNCtTN(C/a) (preferred bases are underlined; disfavored bases are in small capitals; N indicates no preference; and asterisk indicates DNA scission between -1 and +1 positions). Both enzymes show strong preferences for bases clustered symmetrically around the DNA scission site, i.e. +1G/+4C, -4G/+8C, and particularly the novel -2A/+6T, but with no preference at +2/+3 within the staggered 4-bp overhang. Asymmetric elements include -3G and several unfavored bases. These cleavage preferences, the first for Gram-positive type IIA topoisomerases, differ markedly from those reported for Escherichia coli topo IV (consensus (A/G)*T/A) and gyrase, which are based on fewer sites. However, both pneumococcal enzymes cleaved an E. coli gyrase site suggesting overlap in gyrase determinants. We propose a model for the cleavage complex of topo IV/gyrase that accommodates the unique -2A/+6T and other preferences.  相似文献   

13.
L F Povirk  C W Houlgrave 《Biochemistry》1988,27(10):3850-3857
Bleomycin and neocarzinostatin induce modified apurinic/apyrimidinic (AP) sites by oxidation of the sugar moiety in DNA. In order to quantitatively assess the susceptibility of these lesions to repair endonucleases, drug-treated 3H-labeled colE1 DNA was mixed with 14C-labeled heat-depurinated DNA, and endonuclease-susceptible sites in the mixture were titrated with various AP endonucleases or with polyamines. Single- and double-strand breaks were quantitated by determining the fractions of supercoiled, nicked circular, and linear molecules. Exonuclease III and endonucleases III and IV of Escherichia coli, as well as putrescine, produced a nearly 2-fold increase in single-strand breaks in bleomycin-treated DNA, indicating cleavage of drug-induced AP sites. The bleomycin-induced AP sites were comparable to heat-induced sites in their sensitivity to E. coli endonucleases III and IV but were cleaved by exonuclease III only at high concentrations. Bleomycin-induced AP sites were much more sensitive to cleavage by putrescine than heat-induced sites. Treatment with putrescine or very high concentrations of endonuclease III also increased the number of double-strand breaks in bleomycin-treated DNA, suggesting a minor class of lesion consisting of an AP site accompanied by a closely opposed break in the complementary strand. These complex lesions were resistant to cleavage by endonuclease IV. However, when colE1 DNA was treated with neocarzinostatin, subsequent treatment with putrescine, endonuclease IV, or very high concentrations of endonuclease III produced a dramatic increase in double-strand breaks but no detectable increase in single-strand breaks. These results suggest that virtually all neocarzinostatin-induced AP sites are accompanied by a closely opposed strand break.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The specific nucleotide recognition and sequence-specific cleavage of DNA by bleomycin (BLM) antibiotics are a typical example of macromolecular receptor-drug interaction in the field of chemotherapy. The present results demonstrate that ethidium bromide, distamycin A, and actinomycin D evidently altered the nucleotide sequence-specific mode of DNA breakage by the iron-BLM system, which cleaves isolated DNA preferentially at G-C (5' leads to 3') and G-T (5' leads to 3') sequences. In the presence of ethidium bromide, the most preferred cleavage site was the sequence G-T at position 52 to 53. Of special interest is marked alteration of the nucleotide sequence-specific mode by distamycin A. This intercalator masked the cleavages at G-T and G-A sequences, and produced higher specificity for G-C sequences than that of iron-BLM only. In the case of actinomycin D, the preferred sequence groups of DNA breakage were shifted from G-C sequences to G-A (43 to 44) and G-T (52 to 53) sequences. Certain intercalating agents are very available for the investigations of site-specific recognition and cleavage of DNA by DNA-cleaving drugs such as BLM.  相似文献   

15.
DNA cleavage specificity of a group of cationic metalloporphyrins   总被引:9,自引:0,他引:9  
The ability of a group of water-soluble metalloporphyrins to cleave DNA has been investigated. Incubation of Mn3+, Fe3+, or Co3+ complexes of meso-tetrakis(N-methyl-4-pyridiniumyl)porphine (H2T4MPyP) with DNA in the presence of ascorbate, superoxide ion, or iodosobenzene results in DNA breakage. Comparisons between the rates of porphyrin autodestruction with the rates of strand scission of covalently closed circular PM2 DNA indicate that the porphyrins remain intact during the cleavage process. Analysis of the porphyrin-mediated strand scissions on a 139-base-pair restriction fragment of pBR322 DNA using gel electrophoresis/autoradiography/microdensitometry reveals that the minimum porphyrin cleavage site is (A X T)3. The cleavage pattern within a given site was found to be asymmetric, indicating that porphyrin binding and the strand scission process are highly directional in nature. In addition to an analysis of the mechanism of porphyrin-mediated strand breakage in terms of the DNA cleavage mechanism of methidium-propyl-iron-EDTA and Fe-bleomycin, the potential of the cationic metalloporphyrins as footprinting probes and as new "reporter ligands" for DNA is presented and discussed.  相似文献   

16.
The effect of physiological concentrations of KCl and MgCl2 on the chemical stability of double-stranded and single-stranded DNA has been studied at temperatures typical for hyperthermophiles. These two salts protect both double and single-stranded DNA against heat-induced cleavage by inhibiting depurination. High KCl concentrations also protect DNA cleavage at apurinic sites, while high MgCl2 concentrations stimulate this cleavage. It has been previously proposed that salt protects double-stranded DNA against depurination by stabilizing the double helix. However, the inhibition of the depurination of single-stranded DNA by KCl and MgCl2 indicates that this effect is more probably due to a direct interaction of salts with purine nucleotides. These results suggest that the number and nature of heat-induced DNA lesions which have to be repaired might be quite different from one hyperthermophile to another, depending on their intracellular salt concentration. High salt concentrations might be also useful to protect DNA in long polymerase chain reaction (PCR) experiments and for long-term preservation. Received: October 12, 1997 / Accepted: January 29, 1998  相似文献   

17.
Clerocidin (CL), a diterpenoid natural product, alkylates DNA through its epoxide moiety and exhibits both anticancer and antibacterial activities. We have examined CL action in the presence of topoisomerase IV from Streptococcus pneumoniae. CL promoted irreversible enzyme-mediated DNA cleavage leading to single- and double-stranded DNA breaks at specific sites. Reaction required the diterpenoid function: no cleavage was seen using a naphthalene-substituted analogue. Moreover, drug-induced DNA breakage was not observed using a mutant topoisomerase IV (ParC Y118F) unable to form a cleavage complex with DNA. Sequence analysis of 102 single-stranded DNA breaks and 79 double-stranded breaks revealed an overwhelming preference for G at the −1 position, i.e. immediately 5′ of the enzyme DNA scission site. This specificity contrasts with that of topoisomerase IV cleavage with antibacterial quinolones. Indeed, CL stimulated DNA breakage by a quinolone-resistant topoisomerase IV (ParC S79F). Overall, the results indicate that topoisomerase IV facilitates selective irreversible CL attack at guanine and that its cleavage complex differs markedly from that of mammalian topoisomerase II which promotes both irreversible and reversible CL attack at guanine and cytosine, respectively. The unique ability to form exclusively irreversible DNA breaks suggests topoisomerase IV may be a key intracellular target of CL in bacteria.  相似文献   

18.
Clerocidin (CL), a microbial diterpenoid, reacts with DNA via its epoxide group and stimulates DNA cleavage by type II DNA topoisomerases. The molecular basis of CL action is poorly understood. We establish by genetic means that CL targets DNA gyrase in the Gram-positive bacterium Streptococcus pneumoniae, and promotes gyrase-dependent single- and double-stranded DNA cleavage in vitro. CL-stimulated DNA breakage exhibited a strong preference for guanine preceding the scission site (−1 position). Mutagenesis of −1 guanines to A, C or T abrogated CL cleavage at a strong pBR322 site. Surprisingly, for double-strand breaks, scission on one strand consistently involved a modified (piperidine-labile) guanine and was not reversed by heat, salt or EDTA, whereas complementary strand scission occurred at a piperidine-stable −1 nt and was reversed by EDTA. CL did not induce cleavage by a mutant gyrase (GyrA G79A) identified here in CL-resistant pneumococci. Indeed, mutations at G79 and at the neighbouring S81 residue in the GyrA breakage-reunion domain discriminated poisoning by CL from that of antibacterial quinolones. The results suggest a novel mechanism of enzyme inhibition in which the −1 nt at the gyrase-DNA gate exhibit different CL reactivities to produce both irreversible and reversible DNA damage.  相似文献   

19.
Using a combination of DNA and hybrid DNA-RNA substrates, we have analyzed the mechanism of phosphoryl transfer by the Flp site-specific recombinase in three different reactions: DNA strand breakage and joining, and two types of RNA cleavage activities. These reactions were then used to characterize Flp variants altered at His309 and His345, amino acid residues that are in close proximity to two key catalytic residues (Arg308 and Tyr343). These histidine residues are important for strand cutting by Tyr343, the active-site nucleophile of Flp, but neither residue contributes to the type II RNA cleavage activity or to the strand-joining reaction in a pre-cleaved substrate. Strand cleavage reactions using small, diffusible nucleophiles indicate that this histidine pair contributes to the correct positioning and activation of Tyr343 within the shared active site of Flp. The implications of these results are evaluated against the recently solved crystal structure of Flp in association with a Holliday junction.  相似文献   

20.
Bleomycin (BLM) binding and chemistry are apparently sensitive to differences in nucleic acid conformation and could conceivably be developed as a probe for sequence-dependent elements of conformation. We report on the development of a new methodology to synthesize heterogeneous DNA-RNA hybrids of defined sequence and present the results of our comparative studies on the cleavage of DNA and DNA-RNA hybrids by four drugs: BLM, neocarzinostatin and esperamicins A1 and C. In the case of BLM with duplex DNA, purine-pyrimidine steps such as GT and GC, are consistently hit, as previously observed. However, in heterogeneous sequence hybrids, not all GC sites are recognized by the drug, although all GT sites are. Suppressed GC sites are consistently flanked by pyrimidines on both the 3' and 5' sides, suggesting that the BLM binding site in hybrids spans at least four bases. Kinetic isotope studies with specifically deuterated substrates (kH/kD = 1.2-4.0) and the effect of oxygen on the product profile are presented in support of a mechanism consistent with 4'-hydrogen abstraction in hybrids. The powerful double-labeled probe technique was extended to study the mechanism of action of other DNA degrading drugs on DNA-RNA hybrids. For neocarzinostatin, the sequence specificity lies in the AT-rich region for hybrids and is similar to that of DNA, however, the overall cleavage pattern for the hybrid is significantly different from that for the same sequence of DNA. In the hybrid, a stretch of AT residues is essential and the A sites are damaged to a greater extent than they are in DNA. However, no kinetic isotope effects are observed and, based on the product profile, the mechanism of degradation of the DNA strand of hybrids seems to be limited to abstraction of the 5'-hydrogen. For esperamicin A1, damage on the DNA strand of hybrids occurs exclusively via 5'-hydrogen abstraction in a non-rate determining step and primarily at A and T sites. Esperamicin C behaves similarly, exhibiting no isotope effects at 1', 4' and 5' positions. Overall, the differences observed in site-specific cleavage between the two substrates is proposed to be a result of conformational differences between the DNA strand of duplex DNA and DNA-RNA hybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号