首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
M T Subbiah 《Steroids》1979,33(3):305-315
This study for the first time has simultaneously assayed three cholesteryl ester hydrolase activities located in the various subcellular fractions (lysosomal, microsomal, and soluble) of the aorta and their significance in aortic cholesteryl ester accumulation during genetic and cholesterol-fed atherosclerosis is assessed. When the enzyme activities in the aorta of age-matched atherosclerosis-susceptible White Carneau and atherosclerosis-resistant Show Racer pigeons were compared, a decrease in microsomal cholesteryl ester hydrolase activity was found during the period of cholesteryl ester accumulation. However, under cholesterol-fed conditions (which further increase cholesteryl ester accumulation), an increase in lysosomal cholesteryl ester hydrolase activity and a decrease in soluble cholesteryl ester hydrolase activity was found. These studies have documented differences in response in specific cholesteryl ester hydrosases of the aorta to genetic and cholesterol-fed atherogenesis and warrant further studies to investigate the effect of hormonal and dietary factors on the activities of these enzymes.  相似文献   

2.
p-Nitrophenyl N-butyl, N-octyl, and N-dodecyl carbamates and a newly synthesized diethyl phosphate compound were studied as potential inhibitors of the cholesteryl ester hydrolases of Fu5AH rat hepatoma cells. Whole homogenates of Fu5AH cells were used as an enzyme source for the assay of cholesteryl ester hydrolase activity. All four compounds led to marked inhibition (70-80%) of neutral cholesteryl ester hydrolase activity (assayed at pH 7) at concentrations where the activity of acid cholesteryl ester hydrolase (assayed at pH 4) was unaffected. Cholesteryl ester hydrolysis was also evaluated in intact cultured cells induced to accumulate cholesteryl esters in cytoplasmic lipid droplets by exposure to cholesterol-rich phospholipid dispersions. Hydrolysis was then assessed during subsequent incubations in the presence of an inhibitor of cholesterol esterification. All compounds caused significant inhibition of cholesterol ester hydrolysis with the diethyl phosphate being the most effective. At a concentration that caused greater than 90% inhibition of the hydrolysis of cytoplasmic cholesteryl esters, the compound had only a minimal effect on lysosomal hydrolysis of cholesteryl esters. These results suggest that diethyl phosphates and N-alkylcarbamates may be of value in future studies on the substrate specificities, regulation, and physiological role(s) of cholesteryl ester hydrolases.  相似文献   

3.
Cholesteryl ester laden foam cells in atherosclerotic lesions derive, in part, from macrophages. Mobilization of stored cholesteryl esters involves hydrolysis by a neutral cholesteryl ester hydrolase. Incubation of intact P388D1 macrophages with dibutyryl cAMP in the presence of 1-methyl-3-isobutylxanthine resulted in a dose-dependent increase in neutral cholesteryl ester hydrolase activity of up to 50% (ED50 = 0.1 mM). Incubation with prostaglandin E1 in the presence of 1-methyl-3-isobutylxanthine also increased neutral cholesterol ester hydrolase activity by about 50%. In cell-free preparation, cAMP-dependent protein kinase caused about a 2-fold activation of the neutral cholesteryl ester hydrolase. Activation was blocked by protein kinase inhibitor. These data suggest that the P388D1 macrophage may be a useful model for studying the hormonal regulation of cholesteryl ester mobilization in macrophage-derived foam cells.  相似文献   

4.
Radiolabeled cholesteryl oleate was incorporated into vesicles prepared from egg yolk lecithin and utilized as a substrate for studies of sterol ester hydrolases present in rat liver homogenates. The cholesteryl oleate was shown to be associated with vesicles (unilamellar liposomes) using Sepharose 4B chromatography. With this substrate, two different cholesteryl ester hydrolytic enzymes were demonstrated in subcellular fractions from the liver homogenates. In the lysosome-rich fraction an acid hydrolase was present, while in the cytosol fraction (150,000 g supernatant), hydrolytic activity was shown to occur with an optimum pH between 8 and 8.5. The substrate was characterized by Sepharose chromatography both before and after incubation with the liver fraction and was not dramatically altered even by rigorous incubation conditions. The lysosomal enzyme preparation was capable of hydrolyzing almost all the cholesteryl oleate in the vesicles. Hydrolysis of the phospholipid was proportionately much less than that of the cholesteryl oleate. Comparisons were performed between the vesicle preparation and an alternate substrate preparation involving the direct addition of cholesteryl oleate in acetone solution. The vesicles appeared to be a better substrate for the lysosomal enzyme whereas the activity in the cytosol fraction did not distinguish between the two substrate preparations. Unsonicated suspensions of cholesteryl oleate and lecithin did not serve as suitable substrates for the enzymes. These studies demonstrate the applicability of cholesteryl ester-containing vesicles as a useful substrate for studying cholesteryl ester hydrolysis in vitro.  相似文献   

5.
The lysosomal enzyme responsible for cholesteryl ester hydrolysis, acid cholesteryl ester hydrolase, or acid lipase (E.C.3.1.1.13) plays an important role in cellular cholesterol metabolism. Loss of the activity of this enzyme in tissues of individuals with both Wolman disease and cholesteryl ester storage disease is believed to play a causal role in these conditions. The objectives of our studies were not only to directly compare and contrast the clinical features of Wolman disease and cholesteryl ester storage disease but also to determine the reasons(s) for the varied phenotype expression of acid cholesteryl ester hydrolase deficiency. Although both diseases manifest a type II hyperlipoproteinemic phenotype and hepatomegaly secondary to lipid accumulation, a more malignant clinical course with more significant hepatic and adrenal manifestations was observed in the patient with Wolman disease. However, the acid cholesteryl ester hydrolase activity in cultured fibroblasts in both diseases was virtually absent. In addition, fibroblasts from both Wolman disease and cholesteryl ester storage disease were able to utilize exogenously supplied enzyme, suggesting that neither disease was due to defective enzyme delivery by the mannose-6-phosphate receptor pathway. Coculture and cell fusion of fibroblasts from Wolman disease and cholesteryl ester storage disease subjects did not lead to correction of the enzyme deficiency, indicating that these disorders are allelic. However, the activities of the hepatic acid and neutral lipase in these two clinical variants were quite different. Hepatic acid lipase activity was only 4% normal in Wolman disease, but the activity was 23% normal in cholesteryl ester storage disease. The hepatic neutral lipase activity was normal in Wolman disease but increased more than twofold in cholesteryl ester storage disease. These combined results indicate that the clinical heterogeneity in acid cholesteryl ester hydrolase deficiency can be explained by a varied hepatic metabolic response to an allelic mutation.  相似文献   

6.
Plasma cholesteryl esters, synthesized within high density lipoproteins (HDL), may be transferred from HDL particles to other lipoproteins by plasma cholesteryl ester transfer protein (CETP). Alcohol consumption is associated with increased HDL cholesterol concentration and reduced plasma CETP activity. The alcohol-induced decrease in CETP activity may be due to a low concentration of CETP in plasma or the inhibition of CETP by specific inhibitor proteins or alterations in the composition of plasma lipoproteins. The first two possibilities are studied further in this paper using data on 47 alcohol abusers and 31 control subjects. The activity of CETP was measured as the rate of cholesteryl ester transfer between radio-labeled low density lipoproteins and unlabeled HDL using an in vitro method independent of endogenous plasma lipoproteins. Plasma CETP concentration was determined by a Triton-based radioimmunoassay. The alcohol abusers consuming alcohol (on average 154 g/day) had 28% higher HDL cholesterol (P less than 0.01), 27% lower plasma CETP concentration (P less than 0.001), and 22% lower plasma CETP activity (P less than 0.001) than the controls. Plasma CETP concentration showed a negative correlation with HDL cholesterol among all the subjects (r = -0.317, P less than 0.01) but not among the alcohol abusers alone (r = -0.102, N. S.). During 2 weeks of alcohol withdrawal, plasma CETP concentration and activity of 8 subjects increased, whereas HDL cholesterol decreased by 42% (P less than 0.02).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Rabbit aortic smooth muscle cells in culture were incubated with 0.04-500 M esterastin. Acid cholesteryl ester hydrolase (ACEH) and neutral cholesteryl ester hydrolase (NCEH) activities were inhibited to a comparable degree, with 50% inhibition occurring in the range of 0.4 M esterastin. Cells incubated with cholesteryl oleyl ether showed 50% inhibition of NCEH at 5.0 M, but no inhibition of ACEH over a concentration range of 0.2-20 M. This relative specificity of cholesteryl oleyl ether for NCEH can be employed to study the relative roles of ACEH vs. NCEH in preventing cellular cholesteryl ester accumulation.  相似文献   

8.
Cholesterol ester hydrolase (EC 3.1.1.13) activity from the 104,000 X g supernatant of rat testis was fractionated into 28-kDa, 72-kDa, and 420-kDa molecular mass forms by high performance size exclusion chromatography. The 72-kDa and 420-kDa forms (temperature-labile) were completely inactivated by elevation of temperature from 32 to 37 degrees C. Apparent disaggregation of the 420-kDa form suggested that the 72-kDa and 420-kDa enzymes are monomeric and multimeric forms of the same enzyme. The 28-kDa form was shown to be a different enzyme (temperature-stable) which retained activity at 37 degrees C. In contrast, cholesteryl ester hydrolase activities from 104,000 X g supernatants of liver or adrenal gland were unaffected and increased 4-fold, respectively, by elevation of temperature from 32 to 37 degrees C. Both testicular enzymes exhibited pH optima at about 7.3, and were activated by sodium cholate at concentrations near the critical micellar concentration (0.03-0.07%), but inhibited by higher concentrations. The temperature-labile cholesteryl ester hydrolase exhibited a high specificity for cholesteryl esters of monoenoic fatty acids of 18-24 carbons, especially nervonate (24:1), whereas the temperature-stable cholesteryl ester hydrolase exhibited highest specificity for cholesteryl oleate and arachidonate. Neither enzyme hydrolyzed cholesteryl acetate, myristate, palmitate, linoleate, or docosahexaenoate . Both enzymes reached maximum rates of hydrolysis at 150 microM substrates, with each substrate and at both reaction temperatures. Substrate inhibition was observed at higher concentrations (200 microM). The temperature-labile cholesteryl ester hydrolase was induced 20-fold in hypophysectomized rats by injection of follicle-stimulating hormone (FSH) and was localized in Sertoli cells, the target cells for FSH, but was not induced by luteinizing hormone. The temperature-stable cholesteryl ester hydrolase was induced by both FSH and LH and was found in both Sertoli cells and Leydig cells, the respective target cells for FSH and luteinizing hormone. Neither form of the enzyme was present at detectable levels in the germinal cells. The unique properties, localization, and hormonal regulation of both temperature-labile and temperature-stable cholesterol ester hydrolases suggest important roles for these enzymes in the testis.  相似文献   

9.
Cholesterol exists within the hepatocyte as free cholesterol and cholesteryl ester. The proportion of intrahepatic cholesterol in the free or ester forms is governed in part by the rate of cholesteryl ester formation by acyl-coenzyme A:cholesterol acyltransferase (ACAT) and cholesteryl ester hydrolysis by neutral cholesterol ester (CE) hydrolase. In other cell types both ACAT and CE hydrolase activities are regulated in response to changes in the need for cellular free cholesterol. In rats, we performed a variety of experimental manipulations in order to vary the need for hepatic free cholesterol and to examine what effect, if any, this had on the enzymes that govern cholesteryl ester metabolism. Administration of a 20-mg bolus of lipoprotein cholesterol or a diet supplemented with 2% cholesterol resulted in an increase in microsomal cholesteryl ester content with little change in microsomal free cholesterol. This was accomplished by an increase in cholesteryl esterification as measured by ACAT but no change in CE hydrolase activity. An increased need for hepatic free cholesterol was experimentally induced by intravenous bile salt infusion or cholestyramine (3%) added to the diet. ACAT activity was decreased with both experimental manipulations compared to controls, while CE hydrolase activity did not change. Microsomal cholesteryl ester content decreased significantly with little change in microsomal free cholesterol content. Addition of exogenous liposomal cholesterol to liver microsomes from cholestyramine-fed and control rats resulted in a 784 +/- 38% increase in ACAT activity. Nevertheless, the decrease in ACAT activity with cholestyramine feeding was maintained. These studies allowed us to conclude that changes in hepatic free cholesterol needs are met in part by regulation of the rate of cholesterol esterification by ACAT without a change in the rate of cholesteryl ester hydrolysis by CE hydrolase.  相似文献   

10.
We recently reported the presence of a neutral, bile salt-independent retinyl ester hydrolase (REH) activity in rat liver microsomes and showed that it was distinct from the previously studied bile salt-dependent REH and from nonspecific carboxylesterases (Harrison, E. H., and M. Z. Gad. 1989. J. Biol. Chem. 264: 17142-17147). We have now further characterized the hydrolysis of retinyl esters by liver microsomes and have compared the observed activities with those catalyzing the hydrolysis of cholesteryl esters. Microsomes and microsomal subfractions enriched in plasma membranes and endosomes catalyze the hydrolysis of retinyl esters at both neutral and acid pH. The acid and neutral REH enzyme activities can be distinguished from one another on the basis of selective inhibition by metal ions and by irreversible, active site-directed serine esterase inhibitors. The same preparations also catalyze the hydrolysis of cholesteryl esters at both acid and neutral pH. However, the enzyme(s) responsible for the neutral REH activity can be clearly responsible for the neutral REH activity can be clearly differentiated from the neutral cholesteryl ester hydrolase(s) on the basis of differential stability, sensitivity to proteolysis, and sensitivity to active site-directed reagents. These results suggest that the neutral, bile salt-independent REH is relatively specific for the hydrolysis of retinyl esters and thus may play an important physiological role in hepatic vitamin A metabolism. In contrast to the neutral hydrolases, the activities responsible for hydrolysis of retinyl esters and cholesterol esters at acid pH are similar in their responses to the treatments mentioned above. Thus, a single microsomal acid hydrolase may catalyze the hydrolysis of both types of ester.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The properties and subcellular distribution of the enzymes involved with the synthesis and hydrolysis of cholesteryl esters were investigated in skin of normal and essential fatty acid-deficient rats. Most of the activity of the cholesterol-esterifying enzyme(s) is associated with the 12000g and 105000g particulate fractions. The dependence of the enzyme reaction on ATP and CoA suggests that the esterification of cholesterol by rat skin is mediated by a fatty acyl-CoA-cholesterol acyltransferase (EC 2.3.1.-). On the other hand, most of the activity of the cholesteryl ester hydrolase (EC 3.1.1.13) is localized in the 105000g supernatant fraction. Although the activity of the cholesterol-esterifying enzyme(s) was elevated in skin preparations from essential fatty acid-deficient rats, the activity of the hydrolase was significantly decreased. These observations may explain in part the elevated concentrations of sterol esters in the skin of these animals. Prostaglandin E(2) at low concentrations exerted marked inhibitory effect on the activity of the cholesterol-esterifying enzyme(s), whereas no effect was observed on the activity of the hydrolase at similar concentrations. However, at high concentrations prostaglandin E(2) exerted moderate stimulatory effect on the activity of the hydrolase. These results suggest a possible physiological role of this substance in regulating the production of sterol esters in this tissue.  相似文献   

12.
Cells acquire cholesterol in part by endocytosis of cholesteryl ester containing lipoproteins. In endosomes and lysosomes cholesteryl ester is hydrolyzed by acidic cholesteryl ester hydrolase producing cholesterol and fatty acids. Under certain pathological conditions, however, such as in atherosclerosis, excessive levels of cholesteryl ester accumulate in lysosomes for reasons that are poorly understood. Here, we have studied endosomal and lysosomal cholesteryl ester metabolism in cultured mouse macrophages and with cell-free extracts. We show that net hydrolysis of cholesteryl ester is coupled to the transfer of cholesterol to membranes. When membrane cholesterol levels are low, absorption of cholesterol effectively drives cholesteryl ester hydrolysis. When cholesterol levels in acceptor membranes approach saturation or when cholesterol export is blocked, cholesterol is re-esterified in endosomes. These results reveal a new facet of cellular cholesterol homeostasis and provide a potential explanation for cholesteryl ester accumulation in lysosomes of atherosclerotic cells.  相似文献   

13.
The effects of the substrate properties on the catalytic activity of lysosomal cholesteryl ester hydrolase from rat liver have been examined with three standard substrate types: vesicle, micelle and emulsion. The pH optimum of the enzyme coincided to 4.5--5.0 with the substrate types employed. The apparent Km values were 15.3, 14.3 and 7.3 microM for vesicle, micelle and emulsion substrates, respectively. In the systems used in this study reaction products, cholesterol and oleic acid, and the nonionic surfactant Tween 80 and Triton X-100 Had an inhibitory effect. The emulsifier phosphatidylcholine and the charged phospholipid phosphatidic acid stimulated the activity. The mixed micelle of sodium taurocholate and phosphatidylcholine was the most potent substrate vehicle. With dipalmitoyl phosphatidylcholine vesicles the enzyme showed maximal activity at the gel-liquid-crystalline transition temperature of the phospholipid. The possible physiological significance of the lysosomal cholesteryl ester hydrolase is discussed with special reference to the form of the substrate.  相似文献   

14.
Cholesteryl ester transfer protein may play a role in the cholesteryl ester metabolism between high density lipoproteins (HDL) and apolipoprotein B-containing lipoproteins. To investigate relationship between HDL and cholesteryl ester transfer protein (CETP) activity in the development of atherosclerosis, the present study has focused on CETP activity in the patients with familial hypercholesterolemia (GH). HDL-C and HDL-C/apo A-I mass ratio in heterozygous FH were lower than those in normolipidemic controls. There was a 2-fold increase in total CETP activity in incubated FH serum compared with normolipidemic controls. Assays for CETP activity in the lipoprotein deficient serum (d greater than 1.215 g/ml) were carried out by measuring the transfer of radioactive cholesteryl ester from HDL (1.125 less than d less than 1.21 g/ml) to LDL (1.019 less than d less than 1.060 g/ml). CETP activities in heterozygous FH (79 +/- 4 nmol/ml/h) was significantly higher than those in normolipidemic controls (54 +/- 6 nmol/ml/h). The increased total cholesteryl ester transfer mainly results from increased CETP activity in the d greater than 1.215 g/ml, possibly reflecting an increase in CETP mass in serum. Increased CETP activity in the d greater than 1.215 g/ml was correlated positively with IDL-cholesterol/triglyceride mass ratio (r = 0.496, p less than 0.01), and negatively with HDL-cholesterol/apo A-I mass ratio (r = -0.334, p less than 0.05). These results indicate that the enhanced CETP activities may contribute to increase risk for developing atherosclerosis in FH by changing the distribution of cholesteryl ester in serum lipoproteins.  相似文献   

15.
A simple and reliable method was developed to determine the neutral cholesteryl ester hydrolase (CEH) activity in rat testes, using cholesteryl-[1-14C]-oleate as substrate. The activity was due to a soluble enzyme present in the cytoplasm of predominantly Sertoli cells, which could be shown after depleting the testes of Leydig cells with ethane dimethyl sulphonate. This treatment also revealed that the loss of CEH activity in abdominal testes of experimentally cryptorchid rats takes place in the Sertoli cells. In prepubertal rats made unilaterally cryptorchid at birth, the CEH activity was significantly higher in the abdominal than in the scrotal testes at 16 days of age. This is earlier than any previously described biochemical change and coincides with, or may even precede, the earliest morphological changes which are accumulation of lipid droplets in the Sertoli cells. The testicular CEH activity then decreased to 30 days of age in the abdominal testes, whereas the activity increased in the contralateral, scrotal testes. When adult rats were made unilaterally cryptorchid for 24 h, the CEH activity decreased rapidly in the abdominal testes. These results suggest that a derangement in cholesteryl ester metabolism is an early event in the pathogenesis of testicular degeneration in cryptorchidism.  相似文献   

16.
The role of human plasma cholesteryl ester transfer protein (CETP) in the cellular uptake of high density lipoprotein (HDL) cholesteryl ester (CE) was studied in a liver tumor cell line (HepG2). When HepG2 cells were incubated with [3H]cholesteryl ester-labeled HDL3 in the presence of increasing concentrations of CETP there was a progressive increase in cell-associated radioactivity to levels that were 2.8 times control. The CETP-dependent uptake of HDL-CE was found to be saturated by increasing concentrations of both CETP and HDL. The CETP-dependent uptake of CE radioactivity increased continuously during an 18-h incubation. In contrast to the effect on cholesteryl ester, CETP failed to enhance HDL protein cell association or degradation. Enhanced uptake of HDL cholesteryl ester was shown for the d greater than 1.21 g/ml fraction of human plasma, partially purified CETP, and CETP purified to homogeneity, but not for the d greater than 1.21 g/ml fraction of rat plasma which lacks cholesteryl ester transfer activity. HDL cholesteryl ester entering the cell under the influence of CETP was largely degraded to free cholesterol by a process inhibitable by chloroquine. CETP enhanced uptake of HDL [3H]CE in cultured smooth muscle cells and to a lesser extent in fibroblasts but did not significantly influence uptake in endothelial cells or J774 macrophages. These experiments show that, in addition to its known role in enhancing the exchange of CE between lipoproteins, plasma CETP can facilitate the in vitro selective transfer of CE from HDL into certain cells.  相似文献   

17.
Storage of cholesteryl esters in the cytoplasm of macrophages is one of the earliest and most ubiquitous event observed in the development of arteriosclerosis. Macrophages have an enormous capacity to uptake and store cholesterol in the form of cytosolic cholesteryl ester droplets. These stores are mobilized by the action of a neutral cholesteryl ester hydrolase (NCEH), producing free cholesterol that is either secreted to extracellular acceptors or reesterified. It has been proposed that hormone-sensitive lipase (HSL) is responsible for the NCEH activity in macrophages. The present work shows, however, that peritoneal macrophages from HSL null mice hydrolyze cytosolic stores of cholesteryl esters at a comparable rate to that of peritoneal macrophages from wild-type mice, therefore demonstrating that HSL is not the main NCEH in macrophages.  相似文献   

18.
The characteristics of neutral cholesteryl ester hydrolase activities found in the microsomal and cytosolic subcellular fractions of rat lactating mammary tissue were investigated. The enzymes were assayed using cholesteryl oleate dispersed as a mixed micelle with phosphatidylcholine and sodium taurocholate (molar ratio 1:4:2) as substrate. This method gave activities approx. 20-fold higher than those seen when cholesteryl oleate was added in ethanol. Addition of phosphatidylcholine and sodium taurocholate to the assays using the ethanol-dissolved substrate did not increase the activities observed. When the cholesteryl oleate was dispersed with phosphatidylcholine only (molar ratio, 1:4) the activity of the two neutral cholesteryl ester hydrolases was also decreased considerably compared to that found with mixed micelles. In this case, however, approx. 60% of the cytosolic, but only 10% of the microsomal activity, was restored by separate addition of sodium taurocholate. The activities of both the microsomal and the cytosolic neutral cholesteryl ester hydrolases were inhibited by MgCl2, and this inhibition was almost completely reversed by the addition of an equimolar concentration of ATP. At a fixed concentration of MgCl2 increasing concentrations of ATP increased the enzyme activities in a dose-dependent way. The activity of the microsomal, but not the cytosolic enzyme was enhanced by a cyclic AMP-dependent protein kinase and both activities were inhibited by alkaline phosphatase (bovine milk). These results provide evidence for the regulation of neutral cholesteryl ester hydrolases in the rat lactating mammary gland by mechanisms involving phosphorylation-dephosphorylation and therefore suggest that these enzymes may be under hormonal control.  相似文献   

19.
Previous studies have demonstrated that homogenates of the livers of rats contain a neutral retinyl ester hydrolase activity that requires millimolar concentrations of bile salts for maximal in vitro activity. The enzymatic properties of this neutral, bile salt-dependent retinyl ester hydrolase activity in liver homogenates are nearly identical to those observed in the present report for the in vitro hydrolysis of retinyl palmitate by purified rat pancreatic cholesteryl ester hydrolase (EC 3.1.1.13). Moreover, anti-rat pancreatic cholesteryl ester hydrolase IgG completely inhibits the bile salt-dependent retinyl ester hydrolase activity of rat liver homogenates whereas normal rabbit IgG does not. We also show that liver homogenates contain a neutral, bile salt-independent retinyl ester hydrolase activity that differs from the bile salt-dependent activity in that 1) its absolute activity does not vary markedly among individual rats, 2) it is not inhibited by antibodies to pancreatic cholesteryl ester hydrolase, and 3) it is localized in the microsomal fraction of liver homogenates. Subfractionation of microsomes demonstrates that the neutral, bile salt-independent retinyl ester hydrolase activity is associated with liver cell plasma membranes and thus may play a role in the hydrolysis of retinyl esters delivered to the liver by chylomicron remnants.  相似文献   

20.
Hydrolysis of intracellular cholesteryl esters (CEs) represents the first step in the removal of cholesterol from lipid-laden foam cells associated with atherosclerotic lesions. Neutral cholesteryl ester hydrolase (CEH) catalyzes this reaction, and we recently cloned the cDNA for the human macrophage CEH and demonstrated increased mobilization of intracellular CE droplets by CEH overexpression. The present study was undertaken to test the hypothesis that for CE hydrolysis, CEH must become associated with the surface of the cytoplasmic lipid droplets. Our data show the redistribution of CEH from cytosol to lipid droplets upon lipid loading of human THP-1 macrophages. Depletion of triacylglycerol (TG) by incubation with the acyl-CoA synthetase inhibitor Triacsin D had no effect on CEH association with the lipid droplets, suggesting that CEH associates with mixed (CE + TG) as well as TG-depleted CE droplets. However, CEH had 2.5-fold higher activity when mixed droplets were used as substrate in an in vitro assay, consistent with the reported higher cholesterol efflux from cells containing mixed isotropic droplets. Perilipin as well as adipophilin, two lipid droplet-associated proteins, were also present on the lipid droplets in THP-1 macrophages. In conclusion, CEH associates with its intracellular substrate (lipid droplets) and hydrolyzes CE more efficiently from mixed droplets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号