首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
To provide quantitative information on arm regeneration in cuttlefish, the regenerating arms of two cuttlefish species, Sepia officinalis and Sepia pharaonis, were observed at regular intervals after surgical amputation. The third right arm of each individual was amputated to ~10–20 % starting length. Arm length, suction cup number, presence of chromatophores, and behavioral measures were collected every 2–3 days over a 39-day period and compared to the contralateral control arm. By day 39, the regenerating arm reached a mean 95.5 ± 0.3 % of the control for S. officinalis and 94.9 ± 1.3 % for S. pharaonis. The process of regeneration was divided into five separate stages based on macroscopic morphological events: Stage I (days 0–3 was marked by a frayed leading edge; Stage II (days 4–15) by a smooth hemispherical leading edge; Stage III (days 16–20) by the appearance of a growth bud; Stage IV (days 21–24) by the emergence of an elongated tip; and Stage V (days 25–39) by a tapering of the elongated tip matching the other intact arms. Behavioral deficiencies in swimming, body postures during social communication, and food manipulation were observed immediately after arm amputation and throughout Stages I and II, returning to normal by Stage III. New chromatophores and suction cups in the regenerating arm were observed as early as Stage II and by Stage IV suction cup number equaled that of control arms. New chromatophores were used in the generation of complex body patterns by Stage V. These results show that both species of cuttlefish are capable of fully regenerating lost arms, that the regeneration process is predictable and consistent within and across species, and provide the first quantified data on the rate of arm lengthening and suction cup addition during regeneration.  相似文献   

4.
5.
6.
A 1H nuclear magnetic resonance study of Sepia melanin, Sepia melanin free acid (Sepia MFA) and human hair melanin was carried out in deuterium oxide solution at pH 10-11. The empirical formula of Sepia MFA was calculated and used to estimate the number of protons in the aromatic region of the Sepia MFA polymeric chain and to suggest a possible monomeric unit profile.  相似文献   

7.
Imprinting provides precocial offspring with an efficient means to optimize their subsequent behaviours. We discovered food imprinting using a sophisticated invertebrate model: the cuttlefish. We showed that early juveniles preferred the prey to which they have been visually familiarized, when the amount of information was sufficient and only if such familiarization occurred during a short sensitive period. We also demonstrated that the effects of visual food imprinting overcame those of the first food ingested. Our study shows that visual imprinting is a critical process in animals, surpassing more direct reward experiences that occur outside the critical exposure period.  相似文献   

8.
9.
Behavioral laterality is widely found among vertebrates, but has been little studied in aquatic invertebrates. We examined behavioral laterality in attacks on prey shrimp by the cuttlefish, Sepia lycidas, and correlated this to their morphological asymmetry. Behavioral tests in the laboratory revealed significant individual bias for turning either clockwise or counterclockwise toward prey, suggesting behavioral dimorphism in foraging behavior. Morphological bias was examined by measuring the curvature of the cuttlebone; in some the cuttlebone was convex to the right (righty), while in others, the cuttlebone was convex to the left (lefty). The frequency distributions of an index of cuttlebone asymmetry were bimodal, indicating that populations were composed of two types of individuals: "righty" and "lefty." Moreover, an individual's laterality in foraging behavior corresponded with the asymmetry of its cuttlebone, with righty individuals tending to turn counterclockwise and lefty ones in the opposite direction. These results indicate that cuttlefish exhibit behavioral dimorphism and morphological antisymmetry in natural populations. The presence of two types of lateral morph in cuttlefish provides new information on the relationship between antisymmetric morphologies and the evolution of individual laterality in behavioral responses in cephalopods. The implications of these findings for the interpretation of ecological meaning and maintenance mechanisms of laterality in cuttlefish are also discussed.  相似文献   

10.
Antje  Marschinke 《Journal of Zoology》1997,242(3):577-595
The neurosecretory system of the vena cava (NSV) of Sepia officinalis contacts the palliovisceral lobe with some axons that run parallel to the visceral nerves. Distal to the palliovisceral lobe the NSV- system widens to form a hitherto unknown extracerebral ganglion containing approximately 4200 perikarya. This is regarded as the primary origin of neurotransmitters. Distal to this nucleus area the volume and the number of cell bodies in the NSV-system is reduced. It contains neurosecretory nerve cells, two glial cell types, large cell accumulations, connective tissue and capillaries. Histochemical, immunohisto- and immunocytochemical examinations show the existence of catecholamines, and the coexistence of serotonin and FMRFamide in the NSV-System. A HPLC analysis differentiated between dopamine, noradrenaline, and adrenaline.  相似文献   

11.
Ohne ZusammenfassungAngenommen als Dissertation von der philosophischen Fakultät II.Abt. Gießen.  相似文献   

12.
《Current biology : CB》2023,33(13):2794-2801.e3
  1. Download : Download high-res image (215KB)
  2. Download : Download full-size image
  相似文献   

13.
应用扫描电镜和透射电镜观察了拟目乌贼(Sepia lycidas)精子的发生过程和超微结构。结果表明,精子发生经历了精原细胞、初级精母细胞、次级精母细胞、精细胞和成熟精子五个阶段,其中精细胞可以分为Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ五个时期,精细胞Ⅱ期又可分为前期和后期。细胞核经历了一个横向收缩、纵向拉长的过程,由圆形或椭圆形,变为不规则的纺锤形、稍弯曲的长柱形;核内染色质由絮状,变为絮块状、致密颗粒状、细纤维状、粗纤维状和片层状,直至高电子密度均质状;顶体由圆形,变为头盔形、圆锥形、倒“U”字形,直至子弹头形;线粒体由空泡状经过融合和迁移,变为内嵴丰富的鸡冠状,形成不完全包围鞭毛的线粒体距。成熟精子全长101.28μm,由头部和尾部组成,头部为稍弯曲的长柱形,长7.73μm,宽1.51μm,由顶体和细胞核组成;尾部细长,为93.18μm,为典型的“9 2”结构,由中段、主段和末段三部分组成。  相似文献   

14.
15.
16.
Sperm nucleomorphogenesis in the cephalopod Sepia officinalis is the product of the interaction between perinuclear microtubules and condensing chromatin. This interaction occurs during spermiogenesis and is established through the nuclear membrane. As in other cephalopod species, the perinuclear microtubules are transient structures. In the case of S. officinalis, they begin to appear in the basal area of the early spermatid and progress from there, establishing contact with the external nuclear membrane and follow a defined, but not symmetric, geometry. Thus, the microtubules accumulate preferentially in one area of the nuclear membrane which we refer to here as the "dorsal zone". Later, the microtubules will be eliminated before the mature spermatid migrates to the epidydimis. The chromatin is condensed within the nucleus following a complex pattern, beginning as fibro-granular structures until forming fibres of approximately 45 nm diameter (patterning phases). From this stage on, an increase in the chemical basicity of DNA-interacting proteins is produced, and chromatin fibres coalesce together, being recruited to the dorsal zone of the membrane, where there is a higher density of microtubules. This last step (condensation phases) allows the chromatin fibres to be arranged parallel to the axis of the elongating nucleus, and more importantly, is deduced to cause a lateral compression of the nucleus. This lateral compression is in fact a recruitment of the ventral zone toward the dorsal zone, which brings about an important reduction in nuclear volume. The detailed observations which comprise this work complement previous studies of spermiogenesis of Sepia and other cephalopods, and will help to better understand the process of cellular morphology implicated in the evolution of sperm nuclear shape in this taxonomic group.  相似文献   

17.
18.
19.
Ohne Zusammenfassung Mit 42 Textabbildungen  相似文献   

20.
Mechanisms that affect thermal tolerance of ectothermic organismshave recently received much interest, mainly due to global warmingand climate-change debates in both the public and in the scientificcommunity. In physiological terms, thermal tolerance of severalmarine ectothermic taxa can be linked to oxygen availability,with capacity limitations in ventilatory and circulatory systemscontributing to oxygen limitation at extreme temperatures. Thepresent review briefly summarizes the processes that definethermal tolerance in a model cephalopod organism, the cuttlefishSepia officinalis, with a focus on the contribution of the cephalopodoxygen-carrying blood pigment, hemocyanin. When acutely exposedto either extremely high or low temperatures, cuttlefish displaya gradual transition to an anaerobic mode of energy productionin key muscle tissues once critical temperatures (Tcrit) arereached. At high temperatures, stagnating metabolic rates anda developing hypoxemia can be correlated with a progressivefailure of the circulatory system, well before Tcrit is reached.However, at low temperatures, declining metabolic rates cannotbe related to ventilatory or circulatory failure. Rather, wepropose a role for hemocyanin functional characteristics asa major limiting factor preventing proper tissue oxygenation.Using information on the oxygen binding characteristics of cephalopodhemocyanins, we argue that high oxygen affinities (= low P50values), as found at low temperatures, allow efficient oxygenshuttling only at very low venous oxygen partial pressures.Low venous PO2s limit rates of oxygen diffusion into cells,thus eventually causing the observed transition to anaerobicmetabolism. On the basis of existing blood physiological, molecular,and crystallographical data, the potential to resolve the roleof hemocyanin isoforms in thermal adaptation by an integratedmolecular physiological approach is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号