首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In the present study, the effect of two particular reactive oxygen species (ROS), superoxide anion (O(2)(-)) and hydrogen peroxide (H(2)O(2)) on buffalo (Bubalus bubalis) sperm capacitation and associated protein tyrosine phosphorylation was studied. Ejaculated buffalo spermatozoa were suspended in sp-TALP medium at 50 x 10(6)/mL and incubated at 38.5 degrees C for 6h with or without heparin (10(g/mL; a positive control), or xanthine (X; 0.5mM)-xanthine oxidase (XO; 0.05 U/mL)-catalase (C; 2100 U/mL) system that generates O(2)(-) or NADPH (5mM) that stimulates the endogenous O(2)(-) production or H(2)O(2) (50 microM). The specific effect of O(2)(-), H(2)O(2) and NADPH on buffalo sperm capacitation and protein tyrosine phosphorylation was assessed by the addition of superoxide dismutase (SOD), catalase and diphenylene iodonium (DPI), respectively, to the incubation medium. Each of X+XO+C system, NADPH and H(2)O(2) induced a significantly higher percentage (P<0.05) of capacitation in buffalo spermatozoa compared to control. However, DPI inhibited this NADPH-induced capacitation and protein tyrosine phosphorylation and suggested for existence of an oxidase in buffalo spermatozoa. Using immunoblotting technique, at least seven tyrosine-phosphorylated proteins (20, 32, 38, 45, 49, 78 and 95 kDa) were detected in capacitated buffalo spermatozoa. Out of these, the tyrosine phosphorylation of p95 was induced extensively by both O(2)(-) as well as exogenous source of H(2)O(2) and using specific activators and inhibitors of signaling pathways, it was found this induction was regulated through a cAMP-dependent PKA pathway. Further, immunofluorescent localization study revealed that these ROS-induced tyrosine-phosphorylated proteins are mostly distributed in the midpiece and principal piece regions of the flagellum of capacitated spermatozoa and suggested for increased molecular activity in flagellum during capacitation. Thus, the study revealed that both O(2)(-) and H(2)O(2) promote capacitation and associated protein tyrosine phosphorylation in buffalo spermatozoa and unlike human and bovine, a different subset of sperm proteins were tyrosine-phosphorylated during heparin- and ROS-induced capacitation and regulation of these ROS-induced processes were mediated through a cAMP/PKA signaling pathway.  相似文献   

2.
Progressively motile, washed buffalo spermatozoa (50 x 10(6) cells in 0.5 ml) were in vitro capacitated in HEPES containing Bovine Gamete Medium 3 (BGM3) in presence of heparin (10 microg/ml), and different concentrations of hydrogen peroxide (10 to 100 microM). Spermatozoa (60%) were capacitated in presence of heparin compared to 56% in presence of 25 microM H2O2 (optimally found suitable for capacitation). The extent of capacitation was measured in terms of acrosome reaction (AR) induced by lysophosphatidyl choline (100 microg/ml). The acrosome reacted cells were counted after triple staining. Catalase (100 microg/ml) significantly reduced the sperm capacitation to 16-18% when added with H2O2, or alone in the capacitation medium. Phospholipase A2 activity of spermatozoa increased linearly up to 50 microM H2O2 concentration included in the assay system. Moreover, significant increase in phospholipase A2 activity was observed after capacitation by both, the heparin and 25 microM H2O2. The activity was always higher in acrosome reacted cells.  相似文献   

3.
Heparin (a glycosaminoglycan) and quercetin (a calcium-ATPase plasma membrane specific inhibitor) induce bovine sperm capacitation. Mitochondria from frozen semen are capable of generating oxidative energy. The aim of the study was to determine oxygen uptake variation and the participation of diphenileneiodonium (DPI)-sensitive oxidases from spermatozoa capacitated with heparin or quercetin. Oxygen uptake was measured polarographically and 2 microM diphenileneiodonium (DPI) was used as a specific inhibitor of NAD(P)H-oxidases. Sperm capacitation was determined by the chlorotetracycline technique. Heparin produced a respiratory burst (17.0+/-3.2 microL O2/h/10(8) spermatozoa; mean+/-S.D.) versus control (11.3+/-0.9 microL O2/h/10(8) spermatozoa; P<0.05). Oxygen uptake and sperm hypermotility were inhibited by cyanide. Treatment with DPI blocked heparin capacitation and oxygen uptake (cyanide-sensitive) decreased to control levels. Respiration of quercetin-treated samples (cyanide-sensitive; 9.7+/-0.7 microL O2/h/10(8) spermatozoa) was not significantly different from the controls; oxygen uptake was not modified by DPI, but quercetin capacitation was inhibited (P<0.05). The effect of DPI with heparin confirmed that oxidases participate in capacitation induction. The addition of superoxide dismutase and/or catalase to heparin- or quercetin-treated samples, failed to modify oxygen uptake and blocked capacitation (P<0.05), suggesting that the superoxide anion (O2*-) participates in the capacitation induction. High mitochondrial activity from heparin-treated samples indicated that energy requirements, especially for hypermotility, were supported by the respiratory chain. Although a respiratory burst was not produced by quercetin, DPI-sensitive-oxidases (O2*- source) were necessary for capacitation. In cryopreserved bovine spermatozoa, heparin- or quercetin-induced capacitation required different levels of mitochondrial energy and DPI-sensitive oxidase activity.  相似文献   

4.
It has been reported that a large amount of reactive oxygen species (ROS) is produced during seed imbibition and this ROS is related to seed vigor. To make this physiological mechanism clear, we have used 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo(1,2-alpha)pyrazin-3-one (MCLA) as a sensitive and physiologically compatible probe for the determination of superoxide anion (O(2)(*-)) production in vivo. Our results showed that dry rice (Oryzae sativa L.) seed embryo cells possessed the capacity to generate O(2)(*-). Conversely, the O(2)(*-) production of seed embryo cells was inhibited by quinacrine (QA) and diphenylene iodonium (DPI), two specific inhibitors of NADPH oxidase, and O(2)(*-) induced MCLA-mediated chemiluminescence was also blocked by superoxide dismutase (SOD). Additionally, O(2)(*-) -production ability increased dramatically in a NADPH-dependent way in the plasma membrane protein abstract from rice seed embryo cells, whereas SOD and the inhibitors mentioned above suppressed O(2)(*-) production. These preliminary results suggested that rice seeds contained intrinsic NADPH oxidase activity. To validate this conclusion, dichlorofluorescein (DCF) fluorescence staining was used (observed under a laser scanning microscope, LSM) to reflect the in situ assessment of O(2)(*-) -generation. The position of O(2)(*-) production located at the plasma membrane. Additionally the ability to synthesize O(2)(*-) was activated directly by calcium ions. These observations are in accord with the character of NADPH oxidase catalyzed O(2)(*-) -generation. All these results indicated that NADPH oxidase contribute to O(2)(*-) production and release to the outside. We concluded that NADPH oxidase plays an intrinsic role as an NADPH sensor, so, measuring the O(2)(*-) one can monitor the NADPH concentration, which is an index of seed vigor. Therefore the O(2)(*-) generation during early imbibition can serve as a rapid measurement of seed vigor.  相似文献   

5.
6.
Sperm capacitation is necessary for the fertilization of oocytes. During capacitation intracellular and membrane changes occur, that culminate with an exocytotic event called the acrosome reaction. The aim of this work was to study the participation of the superoxide anion (O2-.) and of hydrogen peroxide (H2O2) in the capacitation process and acrosome reaction in spermatozoa from cryopreserved bovine semen. Samples were capacitated with heparin or treated with the xanthine-xanthine oxidase-catalase system (X-XO-C) for the production of O2-. The percentage of capacitated spermatozoa was determined using the chlortetracycline (CTC) technique, by means of epifluorescence microscopy. Addition of X-XO-C to the incubation medium significantly induced capacitation (P < 0.05), but there were no differences with samples incubated with heparin. When the medium contained heparin or the X-XO-C, addition of superoxide dismutase (SOD, 0.5 mg/mL) significantly inhibited capacitation (P < 0.05). In samples treated with heparin and with diverse concentrations of H2O2 (10, 25, 50 and 250 microM) in the incubation medium, the percentage of capacitated spermatozoa was significantly reduced (P < 0.05); however, acrosome reaction was produced at concentrations of 10 and 25 microM H2O2. At concentrations greater than 25 microM H2O2 a deleterious effect was observed on sperm motility. From these results it may be inferred that O2-. is required in the capacitation process and that H2O2 may participate as an inductor of the acrosome reaction in spermatozoa from cryopreserved bovine semen.  相似文献   

7.
An improved understanding of reproductive physiology in nondomestic bovids is necessary for the development of assisted reproductive technologies (ARTs) for use in the conservation of endangered bovids. In this study, epididymal spermatozoa were recovered from blesbok (Damaliscus dorcas phillipsi), African buffalo (Syncerus caffer), springbok (Antidorcas marsupialis), and black wildebeest (Connochaetes gnou) following organized culls in South Africa. Our objectives were 1) to characterize the quality of epididymal spermatozoa, 2) evaluate the effectiveness of a cryopreservation protocol, and 3) compare postthaw sperm longevity (motility, viability, and acrosomal integrity) and functionality in two culture media with two capacitation reagents (caffeine and heparin). Following recovery, spermatozoa were diluted in EQ extender, slow-cooled, and frozen in the presence of 5% glycerol. Thawed spermatozoa were separated on a Percoll gradient and diluted in fertilization media (SOF for fertilization [SOFfert]; 0.6% BSA, 0.0 mM glucose, 25.0 mM NaHCO(3)) or modified SOFfert (1.2% BSA, 1.5 mM glucose, 37.0 mM NaHCO(3)) and either heparin or caffeine, and incubated for 6 h. Spermatozoa from these species maintained an average of 64% initial motility after thawing. Incubation medium and capacitation reagent had species-specific effects on the motility, viability, and acrosomal integrity of spermatozoa, suggesting ART procedures need to be optimized for each species. Springbok spermatozoa were also shown to be competent for in vitro fertilization. Information from this study concerning sperm physiology in blesbok, African buffalo, springbok, and black wildebeest will be useful in the development of ART for the conservation of these and other species of bovids.  相似文献   

8.
Our previous results have shown that oxidative stress may reduce the regeneration potential of protoplasts, but only protoplasts that are able to supply extracellularly H(2)O(2) can actually divide (C.I. Siminis, A.K. Kanellis, K.A. Roubelakis-Angelakis [1993] Physiol Plant 87: 263-270; C.I. Siminis, A.K. Kanellis, K.A. Roubelakis-Angelakis [1994] Plant Physiol 1105: 1375-1383; A. de Marco, K.A. Roubelakis-Angelakis [1996a] Plant Physiol 110: 137-145; A. de Marco, K.A. Roubelakis-Angelakis [1996b] J Plant Physiol 149: 109-114). In the present study we have attempted to break down the oxidative burst response into the individual active oxygen species (AOS) superoxide (O(2)(*-)) and H(2)O(2), and into individual AOS-generating systems during the isolation of regenerating tobacco (Nicotiana tabacum L.) and non-regenerating grape (Vitis vinifera L. ) mesophyll protoplasts. Wounding leaf tissue or applying purified cellulase did not elicit AOS production. However, the application of non-purified cellulase during maceration induced a burst of O(2)(*-) and H(2)O(2) accumulation in tobacco leaf, while in grape significantly lower levels of both AOS accumulated. AOS were also generated when protoplasts isolated with purified cellulase were treated with non-purified cellulase. The response was rapid: after 5 min, AOS began to accumulate in the culture medium, with significant quantitative differences between the two species. In tobacco protoplasts and plasma membrane vesicles, two different AOS synthase activities were revealed, one that showed specificity to NADPH and sensitivity to diphenyleneiodonium (DPI) and was responsible for O(2)(*-) production, and a second NAD(P)H activity that was sensitive to KCN and NaN(3), contributing to the production of both AOS. The first activity probably corresponds to a mammalian-like NADPH oxidase and the second to a NAD(P)H oxidase-peroxidase. In grape, only one AOS-generating activity was detected, which corresponded to a NAD(P)H oxidase-peroxidase responsible for the generation of both AOS.  相似文献   

9.
Endothelium produces oxygen-derived free radicals (nitric oxide, NO&z.rad;; superoxide anion, O(2)(*-)) which play a major role in physiology and pathology of the vessel wall. However, little is known about endothelium-derived O(2)(*-) production, particularly due to the difficulty in assessing O(2)(*-) when its production is low and to controversies recently raised about the use of lucigenin-enhanced chemiluminescence. We compared four techniques of O(2)(*-) assessment when its production is low. In the present study, we have compared ferricytochrome c reduction, electron spin resonance (ESR) spectroscopy using DMPO as spin trap, hydroethidine fluorescence, and lucigenin-enhanced chemiluminescence to assess O(2)(*-) production in cultured bovine aortic endothelial cells (BAEC). We focused our study on extracellular O(2)(*-) production because the specificity of the signal is provided by the use of superoxide dismutase, and this control cannot be obtained intracellularly. We found that the calcium ionophore A23187 dose-dependently stimulated O(2)(*-) production, with a good correlation between all four techniques. The signals evoked by postconfluent BAEC were increased 2- to 7-fold in comparison to just-confluent BAEC, according to the technique used. Ferricytochrome c 20 microm rather than at 100 microm appears more suitable to detect O(2)(*-). However, in the presence of electron donors such as NADH or NADPH, lucigenin-enhanced chemiluminescence generated high amounts of O(2)(*-). Thus, ferricytochrome c reduction, electron spin resonance (ESR), and hydroethidine fluorescence appear as adequate tools for the detection of extracellular endothelium-derived O(2)(*-) production, whereas lucigenin may be artifactual, even when a low concentration of lucigenin is employed.  相似文献   

10.
Early determinants of H2O2-induced endothelial dysfunction   总被引:4,自引:0,他引:4  
Reactive oxygen species (ROS) can stimulate nitric oxide (NO(*)) production from the endothelium by transient activation of endothelial nitric oxide synthase (eNOS). With continued or repeated exposure, NO(*) production is reduced, however. We investigated the early determinants of this decrease in NO(*) production. Following an initial H(2)O(2) exposure, endothelial cells responded by increasing NO(*) production measured electrochemically. NO(*) concentrations peaked by 10 min with a slow reduction over 30 min. The decrease in NO(*) at 30 min was associated with a 2.7-fold increase in O(2)(*-) production (p < 0.05) and a 14-fold reduction of the eNOS cofactor, tetrahydrobiopterin (BH(4), p < 0.05). Used as a probe for endothelial dysfunction, the integrated NO(*) production over 30 min upon repeated H(2)O(2) exposure was attenuated by 2.1-fold (p = 0.03). Endothelial dysfunction could be prevented by BH(4) cofactor supplementation, by scavenging O(2)(*-) or peroxynitrite (ONOO(-)), or by inhibiting the NADPH oxidase. Hydroxyl radical (()OH) scavenging did not have an effect. In summary, early H(2)O(2)-induced endothelial dysfunction was associated with a decreased BH(4) level and increased O(2)(*-) production. Dysfunction required O(2)(*-), ONOO(-), or a functional NADPH oxidase. Repeated activation of the NADPH oxidase by ROS may act as a feed forward system to promote endothelial dysfunction.  相似文献   

11.
The present study tested the hypothesis that membrane-bound NAD(P)H oxidase in coronary arterial myocytes (CAMs) is capable of producing superoxide (O(2)(*-)) toward extracellular space to exert an autocrine- or paracrine-like action in these cells. Using a high-speed wavelength-switching fluorescent microscopic imaging technique, we simultaneously monitored the binding of dihydroethidium-oxidizing product to exogenous salmon testes DNA trapped outside CAMs and to nuclear DNA as indicators of extra- and intracellular O(2)(*-) production. It was found that a muscarinic agonist oxotremorine (OXO; 80 microM) increased O(2)(*-) levels more rapidly outside than inside CAMs. In the presence of superoxide dismutase (500 U/ml) plus catalase (400 U/ml) and NAD(P)H oxidase inhibitor diphenylene iodonium (50 microM) or apocynin (100 microM), these increases in extra- and intracellular O(2)(*-) levels were substantially abolished or attenuated. The O(2)(*-) increase outside CAMs was also confirmed by detecting oxidation of nitro blue tetrazolium and confocal microscopic localization of Matrigel-trapped OxyBURST H(2)HFF Green BSA staining around these cells. By electron spin resonance spectrometry, the extracellular accumulation of O(2)(*-) was demonstrated as a superoxide dismutase-sensitive component outside CAMs. Furthermore, RNA interference of NAD(P)H oxidase subunits Nox1 or p47 markedly blocked OXO-induced increases in both extra- and intracellular O(2)(*-) levels, whereas small inhibitory RNA of Nox4 only attenuated intracellular O(2)(*-) accumulation. These results suggest that Nox1 represents a major NAD(P)H oxidase isoform responsible for extracellular O(2)(*-) production. This rapid extracellular production of O(2)(*-) seems to be unique to OXO-induced M(1)-receptor activation, since ANG II-induced intra- and extracellular O(2)(*-) increases in parallel. It is concluded that the outward production of O(2)(*-) via NAD(P)H oxidase in CAMs may represent an important producing pattern for its autocrine or paracrine actions.  相似文献   

12.
Role of hydrogen peroxide in sperm capacitation and acrosome reaction   总被引:12,自引:0,他引:12  
The generation of reactive oxygen species (ROS) has been implicated in the regulation of sperm capacitation and acrosome reaction; however, the mechanisms underlying this regulation remain unclear. To examine the cellular processes involved, we studied the effect of different concentrations of hydrogen peroxide (H(2)O(2)) on protein tyrosine phosphorylation under various conditions. Treatment of spermatozoa with H(2)O(2) in medium without heparin caused a time- and dose-dependent increase in protein tyrosine phosphorylation of at least six proteins in which maximal effect was seen after 2 h of incubation with 50 microM H(2)O(2). At much higher concentrations of H(2)O(2) (0.5 mM), there is significant reduction in the phosphorylation level, and no protein tyrosine phosphorylation is observed at 5 mM H(2)O(2) after 4 h of incubation. Exogenous NADPH enhanced protein tyrosine phosphorylation similarly to H(2)O(2). These two agents, but not heparin, induced Ca(2+)-dependent tyrosine phosphorylation of an 80-kDa protein. Treatment with H(2)O(2) (50 microM) caused approximately a twofold increase in cAMP, which is comparable to the effect of bicarbonate, a known activator of soluble adenylyl cyclase in sperm. This report suggests that relatively low concentrations of H(2)O(2) are beneficial for sperm capacitation, but that too high a concentration inhibits this process. We also conclude that H(2)O(2) activates adenylyl cyclase to produce cAMP, leading to protein kinase A-dependent protein tyrosine phosphorylation.  相似文献   

13.
A comparative study was conducted on protein tyrosine phosphorylation events of capacitating sperm of two ruminant species, cattle and buffalo. Ejaculated cattle and buffalo bull spermatozoa were suspended separately in sp-TALP medium at 50 × 106 mL−1 and incubated at 38.5 °C with 5% CO2 in air in the absence or presence of heparin for a period of 6 h. The extent of sperm capacitation after various periods of incubations was assessed by lysophosphatidyl choline-induced acrosome reaction followed by a triple-staining technique and capacitation-associated tyrosine-phosphorylated proteins were detected by immunoblotting technique using a monoclonal antiphosphotyrosine antibody. In the same media, over a time-period, a significant increase in capacitation percentage was observed even in control group of buffalo spermatozoa as compared to a non-significant increase in that of cattle sperm. In both cattle and buffalo spermatozoa, at 6 h, four proteins of molecular weight 49, 45, 32, and 20 kDa (designated as p49, p45, p32, and p20) were tyrosine phosphorylated. However, in buffalo, two additional proteins of 38 and 30 kDa were also tyrosine phosphorylated. In a time-course study, p20 appeared as early as at 0 h in capacitated buffalo spermatozoa as compared to 4 h in cattle. Further, in heparin-treated buffalo spermatozoa, with a time-dependent increase in tyrosine phosphorylation of some proteins, there was time-dependent dephosphorylation of some other proteins that was never seen in heparin-treated cattle sperm. Thus, the present findings revealed that though buffalo sperm takes more time than cattle for capacitation but its associated protein tyrosine phosphorylation event starts very early as compared to cattle.  相似文献   

14.
The rapid generation of H(2)O(2) by Cd(2+)-treated plant cells was investigated in cultured tobacco (Nicotiana tabacum L.) BY-2 cells. The starting point for the generation of H(2)O(2) has been located at the cell plasma membrane using cytochemical methods. Treatment of the cells with diphenyleneiodonium (DPI) and imidazol, both inhibitors of the neutrophil NADPH oxidase, prevented the generation of H(2)O(2) induced by Cd(2+). These data suggest the involvement of an NADPH oxidase-like enzyme leading to H(2)O(2) production through O(2)(*-) dismutation by superoxide dismutase enzymes. To investigate the implication of Ca(2+) channels in a Cd(2+)-induced oxidative burst, different inhibitors of Ca(2+) channels were used. Only La(3+) totally inhibited the generation of H(2)O(2) induced by Cd(2+). However, verapamil and nifedipine, inhibitors of Ca(2+) channels, were not effective. Calmodulin or a Ca(2+)-dependent protein kinase is also implicated in the signal transduction sequence, based on the results obtained with two types of calmodulin antagonists, fluphenazine and N-(-6-amino-hexyl)-5-chloro-1-naphthalenesulphonamide (W-7) and staurosporine, an inhibitor of protein kinases. However, neomycin, an inhibitor of the phosphoinositide cycle, did not inhibit the generation of H(2)O(2) induced by Cd(2+), suggesting mainly an induction of the oxidative burst mediated by calmodulin and/or calmodulin-dependent proteins.  相似文献   

15.
Capacitation is part of an oxidative process necessary for bovine spermatozoa to acquire fertilizing capacity. This process includes the generation of reactive oxygen species (ROS) and the participation of protein kinases such as A (PKA), C (PKC) and tyrosine kinase (PTK). A redox status is required to support both sperm motility and capacitation. Our aim was to determine the requirement of lactate dehydrogenase C4 (LDH-C4) and isocitrate dehydrogenase (NADP-ICDH) and of protein kinases in cryopreserved bovine sperm capacitation. The presence of inhibitors of both LDH-C4 and NADP-ICDH prevented the heparin-induced capacitation. H89, GF109203X or genistein blocked capacitation triggered by heparin or the superoxide (O(-*)(2))generator system xanthine-xanthine oxidase-catalase (XXOC) suggesting the requirement of PKA, PKC and PTK in this process. Taken together these results suggest that LDH-C4 and NADP-ICDH contribute with the redox status to support bovine sperm capacitation and that PKA, PKC and PTK are involved in different mechanisms induced by different inducers that lead bovine spermatozoa to be capacitated.  相似文献   

16.
Yang Y  Xu S  An L  Chen N 《Journal of plant physiology》2007,164(11):1429-1435
Hydrogen peroxide (H(2)O(2)) is often generated by cells and tissues under environmental stress. In this work, we provide evidence that plasma membrane (PM) NADPH oxidase-dependent H(2)O(2) production might act as an intermediate step in the NaCl-induced elevation of calcium (Ca) in roots of wheat. Remarkable increases in the content of total Ca were observed not only in roots exposed to NaCl but also in roots of seedlings exposed to exogenous H(2)O(2). In roots, H(2)O(2) production increased upon exposure to salt stress. PM vesicles were isolated from roots, and NADPH oxidase activity was determined by measuring superoxide anion (O(2)(-)) production. NADPH oxidase-dependent O(2)(-) production was 11.6nmolmg(-1)proteinmin(-1) in control vesicles, but 19.6nmol after NaCl treatment (24h), indicating that salt stress resulted in the activation of the PM NADPH oxidase. Furthermore, the NaCl-induced increase in total Ca was partially abolished by the addition of 150U/mL catalase (CAT), a H(2)O(2) scavenger, and also by 10microM diphenylane iodonium (DPI), a NADPH oxidase inhibitor. This data suggest that NADPH oxidase-dependent H(2)O(2) production might be involved in the modulation of the Ca content in wheat roots. In conclusion, our results show that salinity stress increases the total Ca content of wheat roots, which is partly due to PM NADPH oxidase-dependent H(2)O(2) generation.  相似文献   

17.
The production and role of reactive oxygen species (ROS) in the expanding zone of maize (Zea mays) leaf blades were investigated. ROS release along the leaf blade was evaluated by embedding intact seedlings in 2',7'-dichlorofluorescein-containing agar and examining the distribution of 2',7'-dichlorofluorescein fluorescence along leaf 4, which was exposed by removing the outer leaves before embedding the seedling. Fluorescence was high in the expanding region, becoming practically non-detectable beyond 65 mm from the ligule, indicating high ROS production in the expansion zone. Segments obtained from the elongation zone of leaf 4 were used to assess the role of ROS in leaf elongation. The distribution of cerium perhydroxide deposits in electron micrographs indicated hydrogen peroxide (H(2)O(2)) presence in the apoplast. 2',7'-Dichlorofluorescein fluorescence and apoplastic H(2)O(2) accumulation were inhibited with diphenyleneiodonium (DPI), which also inhibited O*(2)(-) generation, suggesting a flavin-containing enzyme activity such as NADPH oxidase was involved in ROS production. Segments from the elongation zone incubated in water grew 8% in 2 h. KI treatments, which scavenged H(2)O(2) but did not inhibit O*(2)(-) production, did not modify growth. DPI significantly inhibited segment elongation, and the addition of H(2)O(2) (50 or 500 microM) to the incubation medium partially reverted the inhibition caused by DPI. These results indicate that a certain concentration of H(2)O(2) is necessary for leaf elongation, but it could not be distinguished whether H(2)O(2), or other ROS, are the actual active agents.  相似文献   

18.
A study was undertaken to assess the ability of spermatozoa from 6 buffalo bulls, at different levels of heparin and sperm concentrations, to achieve an acceptable level of fertilization in vitro. Frozen-thawed spermatozoa, 3 dosages of heparin (0, 10 and 100 ug/ml) in the presence and absence of penicillamine, hypotaurine and epinephrine (PHE), and 4 sperm concentrations (1 x 10(6), 2 x 10(6), 3 x 10(6) and 4 x 10(6) /ml) were studied using 3202 buffalo oocytes. The mean proportions of fertilized oocytes in the group treated with 10 ug/ml of heparin were significantly higher (P<0.05) with the semen of Bulls A, B and C (44.7 to 64.3%) than in medium devoid of heparin. An increase in the dosage of heparin from 10 ug/ml to 100 ug/ml reduced the overall fertilization rate. However, optimal fertilization (30.9%) at 100 ug/ml heparin was observed for semen from Bull D. Bulls E and F yielded the lowest fertilization rate (9.6 and 14.2%, respectively) at the above mentioned heparin dosage. Analysis of sperm density revealed that a concentration of 2 x 10(6) spermatozoa yielded optimal fertilization rates in vitro. Higher sperm concentrations (3 x 10(6) or 4 x 10(6)) resulted in higher oocyte penetration rates but gave rise to polyspermy.  相似文献   

19.
Low-level production of the superoxide anion (O2*-) is an important signal transduction event in sperm function including capacitation; however, excessive production of O2*- can be detrimental to sperm function. The objective of this study was to assess dihydroethidium (DHE) as a probe for O2*- in equine spermatozoa. Ejaculated spermatozoa were separated by centrifugation over a Percoll gradient (40:80), and loaded with DHE (2.0 microM) as well as with calcein-acetoxymethylester (CAM, 7.8 nM) to determine cell viability. In Experiment 1, cells were incubated with the xanthine-xanthine oxidase (X, 0.1 mM; XO, 0.01 U/mL) generating system for the production of O2*-, with or without the addition of superoxide dismutase (SOD, 150 U/mL) or the SOD mimetic, Tiron (0.1, 1.0 or 5.0 mM) for 1h. Changes in fluorescence of DHE were determined for the live cell population (calcein-positive cells) by flow cytometry. The DHE fluorescence increased with the X-XO incubation; this increase was inhibited by SOD or Tiron, indicating that DHE is specific for O2*- detection. In Experiment 2, spermatozoa were loaded with DHE/CAM, treated with calcium ionophore A23187 (0, 0.8, or 8.0 microM), and incubated for 15 min. Cell fluorescence was again determined by flow cytometry. Calcium ionophore A23187 increased O2*- production in a dose-dependent manner. In Experiment 3, cells were loaded with DHE/CAM, treated with NADPH (0.0, 0.25, 0.5, or 1 mM) with or without 0.5% Triton X-100, and incubated for 15 min prior to flow cytometry. Cells treated with NADPH with or without 0.5% Triton X-100 did not have O2*- levels that were significantly different from the control. In Experiment 4, spermatozoa loaded with DHE/CAM were incubated under capacitating conditions (1.2 mM dibutryl-cAMP+1.0 mM caffeine) or in control media for 3h. Although O2*- generation increased over time in control and capacitated treatments, spermatozoa incubated under capacitating conditions had higher O2*- production than those incubated in control media. Therefore, DHE was a useful probe for the detection of O2*- in equine spermatozoa and elevation in intracellular calcium as well as capacitation in vitro were associated with increased generation of O2*-.  相似文献   

20.
The effect of peroxynitrite (ONOO(-)) on the capacitation rates of cryopreserved bull spermatozoa and the participation of protein kinases in the capacitation process were evaluated. A pool of spermatozoa from five bulls was incubated in Tyrode's albumin lactate pyruvate (TALP) medium in the presence of heparin (10 IU/ml), sodium nitroprusside (SNP, 50 nM), a nitric oxide donor or 3-morpholinosydnonimine (SIN-1, 1-20 microM), a ONOO(-) donor. The participation of ONOO(-) was evaluated at 15, 30 and 45 min and confirmed by using a specific scavenger, uric acid (2-20 mM). Spermatozoa capacitated with SIN-1 were incubated with ovarian follicular fluid of cattle to evaluate their ability to undergo acrosome reaction. The role of ONOO(-) during capacitation induced by heparin or nitric oxide was evaluated by the addition of uric acid. The participation of protein kinase A (PKA), protein kinase C (PKC) and protein tyrosine kinase (PTK) in capacitation induced by ONOO(-) was evaluated by incubation with specific inhibitors (50 microM H-89, 0.1 microM bisindolylmaleimide I, and 3 microM genistein, respectively). Capacitation percentages were determined by the fluorescence technique with chlortetracycline (CTC) and true acrosome reaction was determined by trypan blue and Differential-Interferential Contrast (DIC). SIN-1 concentrations employed had no effect on progressive motility or sperm viability. Capacitation values of 10 microM SIN-1 treatment (23+/-2%) were significantly greater with respect to the control (4.6+/-1.62%). At 15 min of incubation the greatest capacitation was observed (P<0.05), reaching a plateau between 15 and 45 min. Follicular fluid induced acrosome reaction in spermatozoa previously capacitated with 10 microM SIN-1 (P<0.05). Uric acid prevented SIN-1-induced capacitation and significantly diminished capacitation induced by heparin or SNP. The addition of PKA and PKC inhibitors failed to modify the capacitation induced by SIN-1 (27.4+/-3.85 and 24.8+/-4.75, respectively). Genistein, a PTK inhibitor, produced a significant capacitation decrease (8.6+/-5.5%). These results indicate that endogenous ONOO(-) may be generated during heparin- or SNP-induced capacitation. Exogenous ONOO(-) acts as a capacitation inducer and involves the participation of PTK, as part of the intracellular mechanisms that lead to capacitation in cryopreserved bovine spermatozoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号