共查询到20条相似文献,搜索用时 12 毫秒
1.
Nutritional regulation and role of peroxisome proliferator-activated receptor delta in fatty acid catabolism in skeletal muscle 总被引:7,自引:0,他引:7
Holst D Luquet S Nogueira V Kristiansen K Leverve X Grimaldi PA 《Biochimica et biophysica acta》2003,1633(1):43-50
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors primarily involved in lipid homeostasis. PPARdelta displays strong expression in tissues with high lipid metabolism, such as adipose, intestine and muscle. Its role in skeletal muscle remains largely unknown. After a 24-h starvation period, PPARdelta mRNA levels are dramatically up-regulated in gastrocnemius muscle of mice and restored to control level upon refeeding. The rise of PPARdelta is accompanied by parallel up-regulations of fatty acid translocase/CD36 (FAT/CD36) and heart fatty acid binding protein (H-FABP), while refeeding promotes down-regulation of both genes. To directly access the role of PPARdelta in muscle cells, we forced its expression and that of a dominant-negative PPARdelta mutant in C2C12 myogenic cells. Differentiated C2C12 cells responds to 2-bromopalmitate or synthetic PPARdelta agonist by induction of genes involved in lipid metabolism and increment of fatty acid oxidation. Overexpression of PPARdelta enhanced these cellular responses, whereas expression of the dominant-negative mutant exerts opposite effects. These data strongly support a role for PPARdelta in the regulation of fatty acid oxidation in skeletal muscle and in adaptive response of this tissue to lipid catabolism. 相似文献
2.
The mechanisms by which elevated levels of free fatty acids cause insulin resistance are not well understood, but there is a strong correlation between insulin resistance and intramyocellular lipid accumulation in skeletal muscle. In addition, accumulating evidence suggests a link between inflammation and type 2 diabetes. The aim of this work was to study whether the exposure of skeletal muscle cells to palmitate affected peroxisome proliferator-activated receptor (PPAR) beta/delta activity. Here, we report that exposure of C2C12 skeletal muscle cells to 0.75 mM palmitate reduced (74%, P<0.01) the mRNA levels of the PPARbeta/delta-target gene pyruvatedehydrogenase kinase 4 (PDK-4), which is involved in fatty acid utilization. This reduction was not observed in the presence of the PPARbeta/delta agonist L-165041. This drug prevented palmitate-induced nuclear factor (NF)-kappaB activation. Increased NF-kappaB activity after palmitate exposure was associated with enhanced protein-protein interaction between PPARbeta/delta and p65. Interestingly, treatment with the PPARbeta/delta agonist L-165041 completely abolished this interaction. These results indicate that palmitate may reduce fatty acid utilization in skeletal muscle cells by reducing PPARbeta/delta signaling through increased NF-kappaB activity. 相似文献
3.
Chevillotte E Rieusset J Roques M Desage M Vidal H 《The Journal of biological chemistry》2001,276(14):10853-10860
4.
5.
The nuclear hormone receptor peroxisome proliferator-activated receptor beta/delta potentiates cell chemotactism, polarization, and migration 下载免费PDF全文
Tan NS Icre G Montagner A Bordier-ten-Heggeler B Wahli W Michalik L 《Molecular and cellular biology》2007,27(20):7161-7175
After an injury, keratinocytes acquire the plasticity necessary for the reepithelialization of the wound. Here, we identify a novel pathway by which a nuclear hormone receptor, until now better known for its metabolic functions, potentiates cell migration. We show that peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) enhances two phosphatidylinositol 3-kinase-dependent pathways, namely, the Akt and the Rho-GTPase pathways. This PPARbeta/delta activity amplifies the response of keratinocytes to a chemotactic signal, promotes integrin recycling and remodeling of the actin cytoskeleton, and thereby favors cell migration. Using three-dimensional wound reconstructions, we demonstrate that these defects have a strong impact on in vivo skin healing, since PPARbeta/delta-/- mice show an unexpected and rare epithelialization phenotype. Our findings demonstrate that nuclear hormone receptors not only regulate intercellular communication at the organism level but also participate in cell responses to a chemotactic signal. The implications of our findings may be far-reaching, considering that the mechanisms described here are important in many physiological and pathological situations. 相似文献
6.
Cloning and function of rabbit peroxisome proliferator-activated receptor delta/beta in mature osteoclasts 总被引:2,自引:0,他引:2
Mano H Kimura C Fujisawa Y Kameda T Watanabe-Mano M Kaneko H Kaneda T Hakeda Y Kumegawa M 《The Journal of biological chemistry》2000,275(11):8126-8132
Osteoclasts modulate bone resorption under physiological and pathological conditions. Previously, we showed that both estrogens and retinoids regulated osteoclastic bone resorption and postulated that such regulation was directly mediated through their cognate receptors expressed in mature osteoclasts. In this study, we searched for expression of other members of the nuclear hormone receptor superfamily in osteoclasts. Using the low stringency homologous hybridization method, we isolated the peroxisome proliferator-activated receptor delta/beta (PPARdelta/beta) cDNA from mature rabbit osteoclasts. Northern blot analysis showed that PPARdelta/beta mRNA was highly expressed in highly enriched rabbit osteoclasts. Carbaprostacyclin, a prostacyclin analogue known to be a ligand for PPARdelta/beta, significantly induced both bone-resorbing activities of isolated mature rabbit osteoclasts and mRNA expression of the cathepsin K, carbonic anhydrase type II, and tartrate-resistant acid phosphatase genes in these cells. Moreover, the carbaprostacyclin-induced bone resorption was completely blocked by an antisense phosphothiorate oligodeoxynucleotide of PPARdelta/beta but not by the sense phosphothiorate oligodeoxynucleotide of the same DNA sequence. Our results suggest that PPARdelta/beta may be involved in direct modulation of osteoclastic bone resorption. 相似文献
7.
Peroxisome proliferator-activated receptor beta/delta regulates very low density lipoprotein production and catabolism in mice on a Western diet 总被引:5,自引:0,他引:5
Akiyama TE Lambert G Nicol CJ Matsusue K Peters JM Brewer HB Gonzalez FJ 《The Journal of biological chemistry》2004,279(20):20874-20881
The results of recent studies using selective agonists for peroxisome proliferator-activated receptor beta (PPARbeta) suggest that this receptor may have a role in regulating levels of serum lipids in animal models of obesity and insulin resistance. To further examine this possibility, serum lipid profiles of mice lacking a functional PPARbeta receptor were determined. PPARbeta-null mice maintained on either normal chow or a 10-week high fat (HF) diet, a condition that has been shown to induce insulin resistance and obesity in mice, have elevated levels of serum triglycerides primarily associated with very low density lipoprotein (VLDL) with no difference in either total cholesterol or phospholipids. Consistent with this finding, PPARbeta-null mice on a HF-diet were shown to have an increased rate of hepatic VLDL production as well as lowered lipoprotein lipase activity in serum compared with wild-type controls. The latter parallels an increase in the hepatic expression of the genes encoding angiopoietin-like proteins 3 and 4 in PPARbeta-null mice on a HF diet, both proteins of which have recently been shown to inhibit lipoprotein lipase (LPL) activity in vivo. Consistent with elevated VLDL production, a marked increase in plasma VLDL apoB48, -E, -AI, and -AII, as well as a sharp depletion of the hepatic lipid stores was also found in PPARbeta-null mice. In addition, PPARbeta-null mice on a HF diet were shown to have increased adiposity, despite lower total body weight. Together, these results indicate a clear role for PPARbeta in regulating levels of serum triglycerides in mice on a high fat Western diet by modulating both VLDL production and LPL-mediated catabolism of VLDL-triglycerides and also suggest a potential therapeutic role for PPARbeta in the improvement of serum lipids in the setting of metabolic syndrome. 相似文献
8.
9.
Differentiation of trophoblast giant cells and their metabolic functions are dependent on peroxisome proliferator-activated receptor beta/delta 下载免费PDF全文
Nadra K Anghel SI Joye E Tan NS Basu-Modak S Trono D Wahli W Desvergne B 《Molecular and cellular biology》2006,26(8):3266-3281
Mutation of the nuclear receptor peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) severely affects placenta development, leading to embryonic death at embryonic day 9.5 (E9.5) to E10.5 of most, but not all, PPARbeta/delta-null mutant embryos. While very little is known at present about the pathway governed by PPARbeta/delta in the developing placenta, this paper demonstrates that the main alteration of the placenta of PPARbeta/delta-null embryos is found in the giant cell layer. PPARbeta/delta activity is in fact essential for the differentiation of the Rcho-1 cells in giant cells, as shown by the severe inhibition of differentiation once PPARbeta/delta is silenced. Conversely, exposure of Rcho-1 cells to a PPARbeta/delta agonist triggers a massive differentiation via increased expression of 3-phosphoinositide-dependent kinase 1 and integrin-linked kinase and subsequent phosphorylation of Akt. The links between PPARbeta/delta activity in giant cells and its role on Akt activity are further strengthened by the remarkable pattern of phospho-Akt expression in vivo at E9.5, specifically in the nucleus of the giant cells. In addition to this phosphatidylinositol 3-kinase/Akt main pathway, PPARbeta/delta also induced giant cell differentiation via increased expression of I-mfa, an inhibitor of Mash-2 activity. Finally, giant cell differentiation at E9.5 is accompanied by a PPARbeta/delta-dependent accumulation of lipid droplets and an increased expression of the adipose differentiation-related protein (also called adipophilin), which may participate to lipid metabolism and/or steroidogenesis. Altogether, this important role of PPARbeta/delta in placenta development and giant cell differentiation should be considered when contemplating the potency of PPARbeta/delta agonist as therapeutic agents of broad application. 相似文献
10.
The peroxisome proliferator-activated receptor gamma regulates expression of the perilipin gene in adipocytes 总被引:3,自引:0,他引:3
Arimura N Horiba T Imagawa M Shimizu M Sato R 《The Journal of biological chemistry》2004,279(11):10070-10076
Recent studies have shown that lipid droplets are covered with a proteinaceous coat, although the functions and identities of the component proteins have not yet been well elucidated. The first identified lipid droplet-specific proteins are the perilipins, a family of proteins coating the surfaces of lipid droplets of adipocytes. The generation of perilipin-null mice has revealed that although they consume more food than control mice, they have normal body weight and are resistant to diet-induced obesity. In one study (Martinez-Botas, J., Anderson, J. B., Tessier, D., Lapillonne, A., Chang, B. H. J., Quast, M. J., Gorenstein, D., Chen, K. H., and Chan, L. (2000) Nat. Genet. 26, 474-479) it was reported that in an animal model obesity was reversible by breeding perilipin -/- alleles into Lepr db/db obese mice, ostensibly by increasing the metabolic rate of the mice. To understand the exact mechanisms that drive the exclusive expression of the perilipin gene in adipocytes, we analyzed the 5'-flanking region of the mouse gene. Treatment of differentiating 3T3-L1 adipocytes with an agonist of proliferator-activated receptor (PPAR) gamma, the putative "master regulator" of adipocyte differentiation, significantly augmented perilipin gene expression. Reporter assays using the -2.0-kb promoter revealed that this region contains a functional PPARgamma-responsive element. Gel mobility shift and chromatin immunoprecipitation assays showed that endogenous PPARgamma protein binds to the perilipin promoter. PPARgamma2, an isoform exclusively expressed in adipocytes, was found to be the most potent regulator from among the PPAR family members including PPARalpha and PPARgamma1. These results make evident the fact that perilipin gene expression in differentiating adipocytes is crucially regulated by PPARgamma2, providing new insights into the adipogenic action of PPARgamma2 and adipose-specific gene expression, as well as potential anti-obesity pharmaceutical agents targeted to a reduction of the perilipin gene product. 相似文献
11.
Anderson SP Howroyd P Liu J Qian X Bahnemann R Swanson C Kwak MK Kensler TW Corton JC 《The Journal of biological chemistry》2004,279(50):52390-52398
12.
Epithelium-mesenchyme interactions control the activity of peroxisome proliferator-activated receptor beta/delta during hair follicle development 总被引:3,自引:0,他引:3 下载免费PDF全文
Di-Poï N Ng CY Tan NS Yang Z Hemmings BA Desvergne B Michalik L Wahli W 《Molecular and cellular biology》2005,25(5):1696-1712
Hair follicle morphogenesis depends on a delicate balance between cell proliferation and apoptosis, which involves epithelium-mesenchyme interactions. We show that peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) and Akt1 are highly expressed in follicular keratinocytes throughout hair follicle development. Interestingly, PPARbeta/delta- and Akt1-deficient mice exhibit similar retardation of postnatal hair follicle morphogenesis, particularly at the hair peg stage, revealing a new important function for both factors in the growth of early hair follicles. We demonstrate that a time-regulated activation of the PPARbeta/delta protein in follicular keratinocytes involves the up-regulation of the cyclooxygenase 2 enzyme by a mesenchymal paracrine factor, the hepatocyte growth factor. Subsequent PPARbeta/delta-mediated temporal activation of the antiapoptotic Akt1 pathway in vivo protects keratinocytes from hair pegs against apoptosis, which is required for normal hair follicle development. Together, these results demonstrate that epithelium-mesenchyme interactions in the skin regulate the activity of PPARbeta/delta during hair follicle development via the control of ligand production and provide important new insights into the molecular biology of hair growth. 相似文献
13.
14.
15.
16.
17.
Spangenburg Espen E. Brown David A. Johnson Micah S. Moore Russell L. 《Molecular and cellular biochemistry》2009,331(1-2):225-230
Molecular and Cellular Biochemistry - Reticulon3 (RTN3), as a member of the reticulon family, is generally regarded as a novel human apoptosis-inducing protein. But the extensional role of RTN3... 相似文献
18.
19.
Ramakrishnan SN Lau P Burke LJ Muscat GE 《The Journal of biological chemistry》2005,280(10):8651-8659
Rev-erbbeta is an orphan nuclear receptor that selectively blocks trans-activation mediated by the retinoic acid-related orphan receptor-alpha (RORalpha). RORalpha has been implicated in the regulation of high density lipoprotein cholesterol, lipid homeostasis, and inflammation. Reverbbeta and RORalpha are expressed in similar tissues, including skeletal muscle; however, the pathophysiological function of Rev-erbbeta has remained obscure. We hypothesize from the similar expression patterns, target genes, and overlapping cognate sequences of these nuclear receptors that Rev-erbbeta regulates lipid metabolism in skeletal muscle. This lean tissue accounts for >30% of total body weight and 50% of energy expenditure. Moreover, this metabolically demanding tissue is a primary site of glucose disposal, fatty acid oxidation, and cholesterol efflux. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. We utilize ectopic expression in skeletal muscle cells to understand the regulatory role of Rev-erbbeta in this major mass peripheral tissue. Exogenous expression of a dominant negative version of mouse Rev-erbbeta decreases the expression of many genes involved in fatty acid/lipid absorption (including Cd36, and Fabp-3 and -4). Interestingly, we observed a robust induction (>15-fold) in mRNA expression of interleukin-6, an "exercise-induced myokine" that regulates energy expenditure and inflammation. Furthermore, we observed the dramatic repression (>20-fold) of myostatin mRNA, another myokine that is a negative regulator of muscle hypertrophy and hyperplasia that impacts on body fat accumulation. This study implicates Rev-erbbeta in the control of lipid and energy homoeostasis in skeletal muscle. In conclusion, we speculate that selective modulators of Rev-erbbeta may have therapeutic utility in the treatment of dyslipidemia and regulation of muscle growth. 相似文献
20.
Chung SS Kim M Youn BS Lee NS Park JW Lee IK Lee YS Kim JB Cho YM Lee HK Park KS 《Molecular and cellular biology》2009,29(1):20-30
Oxidative stress plays an important role in the pathogenesis of insulin resistance and type 2 diabetes mellitus and in diabetic vascular complications. Thiazolidinediones (TZDs), a class of peroxisome proliferator-activated receptor gamma (PPARgamma) agonists, improve insulin sensitivity and are currently used for the treatment of type 2 diabetes mellitus. Here, we show that TZD prevents oxidative stress-induced insulin resistance in human skeletal muscle cells, as indicated by the increase in insulin-stimulated glucose uptake and insulin signaling. Importantly, TZD-mediated activation of PPARgamma induces gene expression of glutathione peroxidase 3 (GPx3), which reduces extracellular H(2)O(2) levels causing insulin resistance in skeletal muscle cells. Inhibition of GPx3 expression prevents the antioxidant effects of TZDs on insulin action in oxidative stress-induced insulin-resistant cells, suggesting that GPx3 is required for the regulation of PPARgamma-mediated antioxidant effects. Furthermore, reduced plasma GPx3 levels were found in patients with type 2 diabetes mellitus and in db/db/DIO mice. Collectively, these results suggest that the antioxidant effect of PPARgamma is exclusively mediated by GPx3 and further imply that GPx3 may be a therapeutic target for insulin resistance and diabetes mellitus. 相似文献