首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In adult mammals, the severing of the optic nerve near the eye is followed by a loss of retinal ganglion cells (RGCs) and a failure of axons to regrow into the brain. Experimental manipulations of the non-neuronal environment of injured RGCs enhance neuronal survival and make possible a lengthy axonal regeneration that restores functional connections with the superior colliculus. These effects suggest that injured nerve cells in the mature central nervous system (CNS) are strongly influenced by interactions with components of their immediate environment as well as their targets. Under these conditions, injured CNS neurons can express capacities for growth and differentiation that resemble those of normally developing neurons. An understanding of this regeneration in the context of the cellular and molecular events that influence the interactions of axonal growth cones with their non-neuronal substrates and neuronal targets should help in the further elucidation of the capacities of neuronal systems to recover from injury.  相似文献   

2.
The small heat shock protein 27 (Hsp27) is well documented to promote neuronal survival in neurodegenerative diseases and following nerve injury. It can directly inhibit apoptotic pathways, and as a chaperone it can ameliorate the toxic effects of misfolded proteins. More recently, Hsp27 has been implicated to also play a role in neurite outgrowth. Thus, Hsp27 is situated at the intersection of neuronal survival and differentiation and, as such, it has dual potential as a key therapeutic target for neuroregeneration.  相似文献   

3.
Neurological disabilities following traumatic brain injury (TBI) may be due to excitotoxic neuronal loss. The excitotoxic loss of neurons following TBI occurs largely due to hyperactivation of N-methyl-d-aspartate receptors (NMDARs), leading to toxic levels of intracellular Ca(2+). The axon guidance and outgrowth protein collapsin response mediator protein 2 (CRMP2) has been linked to NMDAR trafficking and may be involved in neuronal survival following excitotoxicity. Lentivirus-mediated CRMP2 knockdown or treatment with a CRMP2 peptide fused to HIV TAT protein (TAT-CBD3) blocked neuronal death following glutamate exposure probably via blunting toxicity from delayed calcium deregulation. Application of TAT-CBD3 attenuated postsynaptic NMDAR-mediated currents in cortical slices. In exploring modulation of NMDARs by TAT-CBD3, we found that TAT-CBD3 induced NR2B internalization in dendritic spines without altering somal NR2B surface expression. Furthermore, TAT-CBD3 reduced NMDA-mediated Ca(2+) influx and currents in cultured neurons. Systemic administration of TAT-CBD3 following a controlled cortical impact model of TBI decreased hippocampal neuronal death. These findings support TAT-CBD3 as a novel neuroprotective agent that may increase neuronal survival following injury by reducing surface expression of dendritic NR2B receptors.  相似文献   

4.
Activation of Ras into the GTP-binding, 'ON' state is a key switch in the neurotrophin-mediated neuronal survival and neurite outgrowth, in vitro as well as in vivo . In the current study we explored changes in GTP-Ras levels following facial nerve injury and the ensuing regeneration and the effects of perturbing these changes in vivo using synapsin-promoter mediated neuronal expression of constitutively active Val12H-Ras (synRas). Quantification of GTP-Ras and total Ras revealed a precipitous drop in the relative GTP-Ras levels in the axotomized facial motor nucleus, to 40% of normal levels at 2 days after cut, followed by a partial recovery to 50–65% at 4–28 days. On western blots, control and axotomized nuclei from synRas mutants showed a 2.2- and 2.5-fold elevation in GTP-Ras, respectively, compared with their wild type littermate controls ( p  < 5%, anova , TUKEY post-hoc ), with the levels in the axotomized synRas nucleus slightly but not significantly above that in the uninjured littermate control ( p  = 9.9%). Similar increase was also observed in the pERK but not pAKT targets of the Ras cascade. This moderate elevation of GTP-Ras strongly curtailed post-traumatic neuronal cell death (−65%), the influx of T-cells (−48%) as well as other parameters of neuroinflammatory response. Although synRas did not affect the speed of axonal regeneration or functional recovery it caused a very pronounced increase in central axonal sprouting. These current data emphasize the role of reduced active Ras, and by extension, the reduced overall level of retrograde neurotrophin signalling after axotomy, in mediating post-traumatic cell death and inflammation and in restricting the sprouting response. Moreover, the neuroprotective and central sprouting-enhancing effects of neuronal Val12H-Ras could help promote recovery in CNS injury.  相似文献   

5.
Abstract: Amyloid β-peptide (Aβ) is the principal component of neuritic plaques in the brain in Alzheimer's disease (AD). Recent studies revealed that Aβ can be neurotoxic by a mechanism involving free radical production and loss of cellular ion homeostasis, thus implicating Aβ as a key factor in the pathogenesis of AD. However, other proteins are present in plaques in AD, including the protease thrombin and protease nexin-1 (PN1), a thrombin inhibitor. We therefore tested the hypothesis that thrombin and PN1 modify neuronal vulnerability to Aβ toxicity. In dissociated rat hippocampal cell cultures the toxicity of Aβ was significantly enhanced by coincubation with thrombin, whereas PN1 protected neurons against Aβ toxicity. Aβ induced an increase in levels of intracellular peroxides and calcium. Thrombin enhanced, and PN1 attenuated, the accumulation of peroxides and calcium induced by Aβ. Taken together, these data demonstrate that thrombin and PN1 have opposing effects on neuronal vulnerability to Aβ and suggest that thrombin and PN1 play roles in the pathogenesis of neuronal injury in AD.  相似文献   

6.
S100B protein is found in brain, has been used as a marker for brain injury and is neurotrophic. Using a well-characterized in vitro model of brain cell trauma, we have previously shown that strain injury causes S100B release from neonatal rat neuronal plus glial cultures and that exogenous S100B reduces delayed post-traumatic neuronal damage even when given at 6 or 24 h post-trauma. The purpose of the current studies was to measure post-traumatic S100B release by specific brain cell types and to examine the effect of an antibody to S100 on post-traumatic delayed (48 h) neuronal injury and the protective effect of exogenous S100B. Neonatal rat cortical cells grown on a deformable elastic membrane were subjected to a strain (stretch) injury produced by a 50 ms displacement of the membrane. S100B was measured with an ELISA kit. Trauma released S100B from pure cultures of astrocytes, microglia, and neurons. Anti-S100 reduced released S100B to below detectable levels, increased delayed neuronal injury in traumatized cells and negated the protective effect of exogenous S100B on injured cells. Heat denatured anti-S100 did not exacerbate injury. These studies provide further evidence for a protective role for S100B following neuronal trauma.  相似文献   

7.
Following the initial acute stage of spinal cord injury, a cascade of cellular and inflammatory responses will lead to progressive secondary damage of the nerve tissue surrounding the primary injury site. The degeneration is manifested by loss of neurons and glial cells, demyelination and cyst formation. Injury to the mammalian spinal cord results in nearly complete failure of the severed axons to regenerate. We have previously demonstrated that the antioxidants N-acetyl-cysteine (NAC) and acetyl-L-carnitine (ALC) can attenuate retrograde neuronal degeneration after peripheral nerve and ventral root injury. The present study evaluates the effects of NAC and ALC on neuronal survival, axonal sprouting and glial cell reactions after spinal cord injury in adult rats. Tibial motoneurons in the spinal cord were pre-labeled with fluorescent tracer Fast Blue one week before lumbar L5 hemisection. Continuous intrathecal infusion of NAC (2.4 mg/day) or ALC (0.9 mg/day) was initiated immediately after spinal injury using Alzet 2002 osmotic minipumps. Neuroprotective effects of treatment were assessed by counting surviving motoneurons and by using quantitative immunohistochemistry and Western blotting for neuronal and glial cell markers 4 weeks after hemisection. Spinal cord injury induced significant loss of tibial motoneurons in L4-L6 segments. Neuronal degeneration was associated with decreased immunostaining for microtubular-associated protein-2 (MAP2) in dendritic branches, synaptophysin in presynaptic boutons and neurofilaments in nerve fibers. Immunostaining for the astroglial marker GFAP and microglial marker OX42 was increased. Treatment with NAC and ALC rescued approximately half of the motoneurons destined to die. In addition, antioxidants restored MAP2 and synaptophysin immunoreactivity. However, the perineuronal synaptophysin labeling was not recovered. Although both treatments promoted axonal sprouting, there was no effect on reactive astrocytes. In contrast, the microglial reaction was significantly attenuated. The results indicate a therapeutic potential for NAC and ALC in the early treatment of traumatic spinal cord injury.  相似文献   

8.
9.
Injury to the optic nerve can lead to axonal degeneration, followed by a gradual death of retinal ganglion cells (RGCs), which results in irreversible vision loss. Examples of such diseases in human include traumatic optic neuropathy and optic nerve degeneration in glaucoma. It is characterized by typical changes in the optic nerve head, progressive optic nerve degeneration, and loss of retinal ganglion cells, if uncontrolled, leading to vision loss and blindness.The optic nerve crush (ONC) injury mouse model is an important experimental disease model for traumatic optic neuropathy, glaucoma, etc. In this model, the crush injury to the optic nerve leads to gradual retinal ganglion cells apoptosis. This disease model can be used to study the general processes and mechanisms of neuronal death and survival, which is essential for the development of therapeutic measures. In addition, pharmacological and molecular approaches can be used in this model to identify and test potential therapeutic reagents to treat different types of optic neuropathy.Here, we provide a step by step demonstration of (I) Baseline retrograde labeling of retinal ganglion cells (RGCs) at day 1, (II) Optic nerve crush injury at day 4, (III) Harvest the retinae and analyze RGC survival at day 11, and (IV) Representative result.Download video file.(53M, mov)  相似文献   

10.
Status epilepticus is a common manifestation of nerve agent toxicity and represents a serious medical emergency with high rates of mortality and neurologic injury in those that survive. The aim of the current study was to determine if targeting oxidative stress with the catalytic antioxidant, AEOL10150, would reduce pilocarpine-induced mortality and attenuate neuronal death and neuroinflammation. We found that treatment with AEOL10150 in conjunction with scopolamine and diazepam following pilocarpine-induced SE was able to significantly reduce mortality compared to treatment with just scopolamine and diazepam. Mortality was further reduced when AEOL10150 was used in conjunction with atropine and diazepam which is considered the standard of care for nerve agent exposures. Both treatment paradigms offered significant protection against SE-induced oxidative stress. Additionally, treatment with scopolamine, AEOL10150 and diazepam attenuated SE-induced neuronal loss and neuroinflammation. Taken together, the data suggest that pharmacological targeting of oxidative stress can improve survival and attenuate secondary neurological damage following SE induced by the nerve agent surrogate pilocarpine.  相似文献   

11.
Traumatic brain injury (TBI) is frequently characterized by neuronal, axonal and myelin loss, reactive gliosis and neuroinflammation, often associated with functional deficits. Endogenous repair mechanisms include production of new neurons from precursor cells, but usually the new neurons fail to integrate and survive more than a few weeks. This is in part mediated by the toxic and inflammatory environment present in the injured brain which activates precursor cells to proliferate and differentiate but limits survival of the newborn progeny. Therefore, an understanding of mechanisms that regulate production and survival of newborn neurons and the neuroinflammatory response after brain injury may lead to therapeutic options to improve outcomes. Suppressor of Cytokine Signaling 2 (SOCS2) promotes hippocampal neurogenesis and survival of newborn neurons in the adult brain and regulates anti-inflammatory responses in the periphery, suggesting it may be a useful candidate to improve outcomes of TBI. In this study the functional and cellular responses of SOCS2 over-expressing transgenic (SOCS2Tg) mice were compared to wildtype littermates following mild or moderately severe TBI. Unlike wildtype controls, SOCS2Tg mice showed functional improvement on a ladder test, with a smaller lesion volume at 7d post injury and increased numbers of proliferative CD11b+ microglia/macrophages at 35d post-injury in the mild injury paradigm. At 7d post-moderately severe injury there was an increase in the area covered by cells expressing an anti-inflammatory M2 phenotype marker (CD206+) but no difference in cells with a pro-inflammatory M1 phenotype marker (CD16/32+). No effect of SOCS2 overexpression was observed in production or survival of newborn neurons, even in the presence of the neuroprotective agent erythropoietin (EPO). Therefore, SOCS2 may improve outcome of TBI in mice by regulating aspects of the neuroinflammatory response, promoting a more anti-inflammatory environment, although this was not sufficient to enhance survival of newborn cortical neurons.  相似文献   

12.
Adult axons in the mammalian central nervous system do not elicit spontaneous regeneration after injury, although many affected neurons have survived the neurotrauma. However, axonal regeneration does occur under certain conditions. These conditions include: (a) modification of regrowth environment, such as supply of peripheral nerve bridges and transplantation of Schwann cells or olfactory ensheathing glia to the injury site; (b) application of neurotrophic factors at the cell soma and axon tips; (c) blockade of growth-inhibitory molecules such as Nogo-A, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein; (d) prevention of chondroitin-sulfate-proteoglycans-related scar tissue formation at the injury site using chondroitinase ABC; and (e) elevation of intrinsic growth potential of injured neurons via increasing intra-cellular cyclic adenosine monophosphate level. A large body of evidence suggests that these conditions achieve enhanced neuronal survival and axonal regeneration through sometimes over-lapping and sometimes distinct signal transduction mechanisms, depending on the targeted neuronal populations and intervention circumstances. This article reviews the available information on signal transduction pathways underlying neurotrophic-factor-mediated neuronal survival and neurite outgrowth/axonal regeneration. Better understanding of signaling transduction is important in helping us develop practical therapeutic approaches for encouraging neuronal survival and axonal regeneration after traumatic injury in clinical context.  相似文献   

13.
Retinal ganglion cells (RGCs) die by apoptosis after optic nerve injury. A number of reports have separately shown changes in pro-apoptotic proteins such as the Bcl-2 family members following optic nerve injury. However, induction time of these apoptotic signals has not been identified due to different treatments of the optic nerve, and insufficient time intervals for measurements. Therefore, the stream of cell death signals is not well understood. In the present study, we systematically reinvestigated a detailed time course of these cell death/survival signals in the rat retina after optic nerve crush, to determine the signal cascade leading to RGC apoptosis. The most conspicuous changes detected in the retina were the rapid inactivation of phospho-Akt and phospho-Bad proteins 2-3 days after optic nerve damage, and the subsequent gradual activation of Bax protein and caspase-3 activity accompanied by cell loss of RGCs 6 days after nerve injury. Cellular localization of these molecular changes was limited to RGCs. Furthermore, amount of insulin-like growth factor-I (IGF-I), an activator of the phosphatidyl inositol-3-kinase (PI3K)/Akt system, was initially decreased from RGCs 1-2 days just prior to the inactivation of phospho-Akt by optic nerve crush. Conversely, supplementation with IGF-I into the rat retina induced upregulation of phospho-Akt expression and cell survival of RGCs both in vitro and in vivo. Thus, injury to the optic nerve might induce early changes in cellular homeostasis with a plausible loss of trophic support for injured RGCs. Actually, IGF-I drastically enhanced neurite outgrowth from adult rat RGCs via a wortmannin-dependent mechanism in a retinal explant culture. Our data strongly indicate that IGF-I is a key molecule that induces RGC apoptosis or RGC survival and regeneration in the retina during the early stage of optic nerve injury.  相似文献   

14.
Traumatic brain injury (TBI) is a widespread cause of death and a major source of adult disability. Subsequent pathological events occurring in the brain after TBI, referred to as secondary injury, continue to damage surrounding tissue resulting in substantial neuronal loss. One of the hallmarks of the secondary injury process is microglial activation resulting in increased cytokine production. Notwithstanding that recent studies demonstrated that caloric restriction (CR) lasting several months prior to an acute TBI exhibits neuroprotective properties, understanding how exactly CR influences secondary injury is still unclear. The goal of the present study was to examine whether CR (50% of daily food intake for 3 months) alleviates the effects of secondary injury on neuronal loss following cortical stab injury (CSI). To this end, we examined the effects of CR on the microglial activation, tumor necrosis factor-α (TNF-α) and caspase-3 expression in the ipsilateral (injured) cortex of the adult rats during the recovery period (from 2 to 28 days) after injury. Our results demonstrate that CR prior to CSI suppresses microglial activation, induction of TNF-α and caspase-3, as well as neurodegeneration following injury. These results indicate that CR strongly attenuates the effects of secondary injury, thus suggesting that CR may increase the successful outcome following TBI.  相似文献   

15.
Abstract: Lateral fluid-percussion brain injury in rats results in cognitive deficits, motor dysfunction, and selective hippocampal cell loss. Neurotrophic factors have been shown to have potential therapeutic applications in neurodegenerative diseases, and nerve growth factor (NGF) has been shown to be neuroprotective in models of excitotoxicity. This study evaluated the neuroprotective efficacy of intracerebral NGF infusion after traumatic brain injury. Male Sprague-Dawley rats received lateral fluid-percussion brain injury of moderate severity (2.1–2.3 atm). A miniosmotic pump was implanted 24 h after injury to infuse NGF (n = 34) or vehicle (n = 16) directly into the region of maximal cortical injury. Infusions of NGF continued until the animal was killed at 72 h, 1 week, or 2 weeks after injury. Animals were evaluated for cognitive dysfunction (Morris Water Maze) and regional neuronal cell loss (Nissl staining) at each of the three time points. Animals surviving for 1 or 2 weeks were also evaluated for neurobehavioral motor function. Although an improvement in memory scores was not observed at 72 h after injury, animals receiving NGF infusions showed significantly improved memory scores when tested at 1 or 2 weeks after injury compared with injured animals receiving vehicle infusions ( p < 0.05). Motor scores and CA3 hippocampal cell loss were not significantly different in any group of NGF-treated animals when compared with controls. These data suggest that NGF administration, in the acute, posttraumatic period following fluid-percussion brain injury, may have potential in improving post-traumatic cognitive deficits.  相似文献   

16.
Neuronal cell death occurs as a programmed, naturally occurring mechanism and is the primary regressive event in central nervous system development. Death of neurons also occurs on an injury-induced basis after trauma and in human neurodegenerative diseases. Classical neurotrophic factors can reverse this phenomenon in experimental models prompting initiation of clinical trials in conditions such as amyotrophic lateral sclerosis and Alzheimer's disease. The glial-derived protease nexin I (PNI), a known promoter of neurite outgrowth in cell culture and a potent inhibitor of serine proteases, also enhances neuronal cell survival. PNI, in nanomolar concentrations, rescues spinal cord motor neurons from both naturally-occurring programmed cell death in the chick embryo as well as following injury in the neonatal mouse. The potent neuromodulator, vasoactive intestinal polypeptide (VIP), influences neuronal survival through glial-mediated factors and also induces secretion of newly synthesized astrocyte PNI. We now report that subnanomolar amounts of PNI enhance neuronal survival in mixed spinal cord cell culture, especially when neuronal cells were made electrically silent by administration of tetrodotoxin. The mediation of this effect is by inhibition of the multifunctional serine protease, thrombin, because hirudin, a thrombin-specific inhibitor, has the same effect. In addition, spinal cord neurons are exquisitely sensitive to thrombin because picomolar and lower levels of the coagulation factor causes neuronal death. Thus, PNI is an astrocyte-derived, thrombin-inhibiting, activity-dependent neurotrophic agent, enhanced secretion of which by VIP may be one approach to treat neurological disorders. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
Pituitary adenylate cyclase-activating polypeptide (PACAP) 38 is a multifunctional anti-inflammatory and anti-apoptotic neuropeptide widely distributed in the nervous system. The objective of this study is to determine whether PACAP38 is neuroprotective against sodium nitroprusside (SNP) and thrombin, two mechanistically distinct neurotoxic agents. Treatment of primary cortical neuronal cultures with 1 mM SNP for 4 h causes neuronal cell death that is significantly reduced by 100 nM PACAP38. PACAP38 down-regulates SNP-induced cell cycle protein (cyclin E) expression and up-regulates p57(KIP2), a cyclin-dependent kinase inhibitor as well as the anti-apoptotic protein Bcl-2. Similarly, neuronal death induced by 100 nM thrombin or the thrombin receptor activating peptide (TRAP 6) is reduced by PACAP38 treatment. Thrombin-stimulated cell cycle protein (cdk4) expression is decreased by PACAP38 while PACAP38 inhibits thrombin-mediated reduction of p57(KIP2). However, the decrease in Bcl-2 evoked by thrombin is not affected by PACAP38. Finally, both SNP and thrombin (or TRAP) increase caspase 3 activity, an effect that is decreased by PACAP38. These data show that PACAP38 supports neuronal survival in vitro suppressing cell cycle progression and enhancing anti-apoptotic proteins. Our results support the possibility that PACAP could be a useful therapeutic agent for reducing neuronal cell death in neurodegenerative diseases.  相似文献   

18.
Transplantation of neural stem cells into the spinal cord after injury   总被引:32,自引:0,他引:32  
Thanks to advances in the stem cell biology of the central nervous system (CNS), the previously inconceivable regeneration of the damaged CNS is approaching reality. The availability of signals to induce the appropriate differentiation of the transplanted and/or endogenous neural stem cells (NSCs) as well as the timing of the transplantation are important for successful functional recovery of the damaged CNS. Because the immediately post-traumatic microenvironment of the spinal cord is in an acute inflammatory stage, it is not favorable for the survival and differentiation of NSC transplants. On the other hand, in the chronic stage after injury, glial scars form in the injured site that inhibit the regeneration of neuronal axons. Thus, we believe that the optimal timing of transplantation is 1-2 weeks after injury.  相似文献   

19.
Superior cervical ganglia of postnatal mice with a targeted disruption of the gene for neurotrophin-3 have 50% fewer neurons than those of wild-type mice. In culture, neurotrophin-3 increases the survival of proliferating sympathetic precursors. Both precursor death (W. ElShamy et al., 1996, Development 122, 491-500) and, more recently, neuronal death (S. Wyatt et al., 1997, EMBO J. 16, 3115-3123) have been described in mice lacking NT-3. Consistent with the second report, we found that, in vivo, neurogenesis and precursor survival were unaffected by the absence of neurotrophin-3 but neuronal survival was compromised so that only 50% of the normal number of neurons survived to birth. At the time of neuron loss, neurotrophin-3 expression, assayed with a lacZ reporter, was detected in sympathetic target tissues and blood vessels, including those along which sympathetic axons grow, suggesting it may act as a retrograde neurotrophic factor, similar to nerve growth factor. To explore this possibility, we compared neuron loss in neurotrophin-3-deficient mice with that in nerve growth factor-deficient mice and found that neuronal losses occurred at approximately the same time in both mutants, but were less severe in mice lacking neurotrophin-3. Eliminating one or both neurotrophin-3 alleles in mice that lack nerve growth factor does not further reduce sympathetic neuron number in the superior cervical ganglion at E17.5 but does alter axon outgrowth and decrease salivary gland innervation. Taken together these results suggest that neurotrophin-3 is required for survival of some sympathetic neurons that also require nerve growth factor.  相似文献   

20.
The relationship between an initial mechanical event causing brain tissue deformation and delayed neurodegeneration in vivo is complex because of the multiplicity of factors involved. We have used a simplified brain surrogate based on rat hippocampal slices grown on deformable silicone membranes to study stretch-induced traumatic brain injury. Traumatic injury was induced by stretching the culture substrate, and the biological response characterized after 4 days. Morphological abnormalities consistent with traumatic injury in humans were widely observed in injured cultures. Synaptic function was significantly reduced after a severe injury. The N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 attenuated neuronal damage, prevented loss of microtubule-associated protein 2 immunoreactivity and attenuated reduction of synaptic function. In contrast, the NMDA receptor antagonists 3-[(R)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP) and GYKI53655, were neuroprotective in a moderate but not a severe injury paradigm. Nifedipine, an L-type voltage-dependent calcium channel antagonist was protective only after a moderate injury, whereas omega-conotoxin attenuated damage following severe injury. These results indicate that the mechanism of damage following stretch injury is complex and varies depending on the severity of the insult. In conclusion, the pharmacological, morphological and electrophysiological responses of organotypic hippocampal slice cultures to stretch injury were similar to those observed in vivo. Our model provides an alternative to animal testing for understanding the mechanisms of post-traumatic delayed cell death and could be used as a high-content screen to discover neuroprotective compounds before advancing to in vivo models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号