首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The present study was carried out to select the different pigeonpea cultivars for resistance against wilt caused by Fusarium udum and to assess the genetic variability among the resistant and susceptible cultivars. These cultivars were screened by root dip inoculation and classified into resistant (ICP 8863 and 9145), moderately resistant (ICP 11681 and Selection-1), susceptible (ICP 7118, TRG-1 and LRG-30) and highly susceptible cultivars (ICP-2376 and LRG-41). The peroxidase activity (PEO) in both leaf and root tissues of four pigeonpea cultivars (ICP 8863, Selection-1, ICP 2376 and LRG-30) were determined at 1st, 4th and 7th day after inoculation (DAI) in healthy and F. udum infected tissues. Higher PEO activity in both leaf and root was observed and at 4th DAI in susceptible cultivars. In native-PAGE analysis of isozymes, the induction of specific leaf peroxidase band (Em=0.17) and two root peroxidase bands (Em=0.24 and 0.55) were observed in ICP 8863 after inoculation. Significant differences were observed in the leaf phosphatase and esterase banding profiles of all the cultivars. The presence of leaf phosphatase band at Em of 0.04 was observed only in ICP 8863 and 11681. The leaf esterase band (Em=0.3) was well expressed in ICP 8863 when compared to other cultivars. The significance of peroxidase in plant defense mechanism and utility of biochemical markers in breeding programmes are discussed. Part of M.Sc. (Ag) thesis of the first author and approved by the Acharya N.G. Ranga Agricultural University during March 2002.  相似文献   

4.
Six pea (Pisum sativum L.) cultivars (Adept, Komet, Lantra, Olivin, Oskar, Tyrkys) were transformed via Agrobacterium tumefaciens strain EHA105 with pBIN19 plasmid carrying reporter uidA (β-glucuronidase, GUS, containing potato ST-LS1 intron) gene under the CaMV 35S promoter, and selectable marker gene nptII (neomycin phosphotransferase II) under the nos promoter. Two regeneration systems were used: continual shoot proliferation from axillary buds of cotyledonary node in vitro, and in vivo plant regeneration from imbibed germinating seed with removed testa and one cotyledon. The penetration of Agrobacterium into explants during co-cultivation was supported by sonication or vacuum infiltration treatment. The selection of putative transformants in both regeneration systems carried out on media with 100 mg dm−3 kanamycin. The presence of introduced genes was verified histochemically (GUS assay) and by means of PCR and Southern blot analysis in T0 putative transformants and their seed progenies (T1 to T3 generations). Both methods, but largely in vivo approach showed to be genotype independent, resulting in efficient and reliable transformation system for pea. The in vivo approach has in addition also benefit of time and money saving, since transgenic plants are obtained in much shorter time. All tested T0 – T3 plants were morphologically normal and fertile.This research was supported by the National Agency for Agricultural Research (grants No. QE 0046 and QF 3072) and Ministry of Education of the Czech Republic (grant No. ME 433).  相似文献   

5.
In higher plants the essential amino acids lysine, threonine, methionine and isoleucine are synthesised through a branched pathway starting from aspartate. The key enzyme of lysine biosynthesis in this pathway—dihydrodipicolinate synthase (DHDPS)—is feedback-inhibited by lysine. The dhdps-r1 gene from a mutant Nicotiana sylvestris, which encodes a DHDPS enzyme insensitive to feedback inhibition, was used to improve the lysine content in pigeonpea seeds. The dhdps-r1 coding region driven by a phaseolin or an Arabidopsis 2S2 promoter was successfully overexpressed in the seeds of pigeonpea by using Agrobacterium transformation and particle bombardment. In 11 lines analysed, a 2- to 6-fold enhanced DHDPS activity in immature seeds at a late stage of maturation was found in comparison to wild type. The overexpression of dhdps-r1 led to an enhanced content of free lysine in the seeds of pigeonpea from 1.6 to 8.5 times compared with wild type. However, this was not reflected in an increase in total seed lysine content. This might be explained by a temporal discrepancy between maximal expression of dhdps-r1 and the rate of amino acid incorporation into storage proteins. Assays of the lysine degradative enzyme lysine-ketoglutarate reductase in these seeds showed no co-ordinated regulation of lysine biosynthesis and catabolism during seed maturation. All transgenic plants were fertile and produced morphologically normal seeds.  相似文献   

6.

Key message

We report molecular mapping and inheritance of restoration of fertility (Rf) in A4 hybrid system in pigeonpea. We have also developed PCR-based markers amenable to low-cost genotyping to identify fertility restorer lines.

Abstract

Commercial hybrids in pigeonpea are based on A4 cytoplasmic male sterility (CMS) system, and their fertility restoration is one of the key prerequisites for breeding. In this context, an effort has been made to understand the genetics and identify quantitative trait loci (QTL) associated with restoration of fertility (Rf). One F2 population was developed by crossing CMS line (ICPA 2039) with fertility restorer line (ICPL 87119). Genetic analysis has shown involvement of two dominant genes in regulation of restoration of fertility. In parallel, the genotyping-by-sequencing (GBS) approach has generated ~?33 Gb data on the F2 population. GBS data have provided 2457 single nucleotide polymorphism (SNPs) segregating across the mapping population. Based on these genotyping data, a genetic map has been developed with 306 SNPs covering a total length 981.9 cM. Further QTL analysis has provided the region flanked by S8_7664779 and S8_6474381 on CcLG08 harboured major QTL explained up to 28.5% phenotypic variation. Subsequently, sequence information within the major QTLs was compared between the maintainer and the restorer lines. From this sequence information, we have developed two PCR-based markers for identification of restorer lines from non-restorer lines and validated them on parental lines of hybrids as well as on another F2 mapping population. The results obtained in this study are expected to enhance the efficiency of selection for the identification of restorer lines in hybrid breeding and may reduce traditional time-consuming phenotyping activities.
  相似文献   

7.
Microcystis aeruginosa and Aulacoseira distans strains were grown in batch cultures to investigate the consequences of N/P ratio on the growth of these species and on their abilities to take up nitrogen and phosphorus. N/P ratio did not influence the growth rates, which were similar under all the experimental conditions. However, exponential growth lasted longer in Microcystis than in Aulacoseira, especially under low N/P ratio conditions. Distinct patterns of nutrient uptake for Aulacoseira and Microcystis were observed. N-uptake was higher in Microcystis, but not influenced by N/P ratio. However, the amount absorbed was proportional to the concentration in the culture medium for both strains studied. Although Microcystis showed lower uptake of N per biomass unit, a greater yield of Microcystis growth relative to the diatom was observed. This could have resulted from its ability to produce biomass using less nitrogen per unit of biomass. A variation of N/P ratio in the culture medium during the growth of both species was observed. This owed to the uptake of nutrients, with Microcystis showing greater potential than Aulacoseira to influence the N/P ratio. Thus, in contrast to what has been stated in the literature, our results indicated that a low N/P ratio could be a consequence of the capacities and rates of cyanobacterial uptake of nitrogen and phosphorus.  相似文献   

8.
9.

Background  

Pigeonpea (Cajanus cajan (L.) Millsp) is one of the major grain legume crops of the tropics and subtropics, but biotic stresses [Fusarium wilt (FW), sterility mosaic disease (SMD), etc.] are serious challenges for sustainable crop production. Modern genomic tools such as molecular markers and candidate genes associated with resistance to these stresses offer the possibility of facilitating pigeonpea breeding for improving biotic stress resistance. Availability of limited genomic resources, however, is a serious bottleneck to undertake molecular breeding in pigeonpea to develop superior genotypes with enhanced resistance to above mentioned biotic stresses. With an objective of enhancing genomic resources in pigeonpea, this study reports generation and analysis of comprehensive resource of FW- and SMD- responsive expressed sequence tags (ESTs).  相似文献   

10.
11.
12.
13.
The present study deals with isolation and characterization of a novel hybrid-proline-rich protein gene (CcHyPRP) promoter from pigeonpea. Real time PCR analysis revealed that CcHyPRP expression was strongly induced by dehydration, salt, Abscisic acid (ABA) and Salicylic acid (SA) treatments. The CcHyPRP promoter, isolated by genome-walking method, contained 1112 bp and showed the presence of various cis -regulatory elements necessary for tissue specific expression and stress responsiveness. Different 5′ deletions of the promoter were generated and were used to drive the expression of β-glucuronidase reporter gene (gusA) in Arabidopsis thaliana. Histochemical and fluorometric assays confirmed that GUS expression driven by the full-length fragment (1112 bp) was higher when compared to different deletion fragments. Under normal conditions, GUS expression was predominantly detected in the roots and hypocotyls of transformants, while under mannitol, NaCl, ABA and SA treatment conditions higher GUS expression levels were observed in the roots and leaves. However, the GUS expression was mostly confined to the roots of transformants carrying 477 and 300 bp promoter regions. The results amply indicate that CcHyPRP promoter is regulated by different stress factors, and as such the promoter can be deployed in genetic engineering of crop plants for enhanced abiotic stress tolerance.  相似文献   

14.
Photosynthetic Euglena gracilis grown with different K2CrO4 concentrations was analyzed for its ability to take up, retain and reduce Cr(VI). For comparison, cells were also exposed to CrCl3. Cellular Cr(VI) uptake at pH 7.2 showed a hyperbolic saturation pattern with K m of 1.1 mM, V m of 16 nmol (h × 107 cells)−1, and K i sulfate of 0.4 mM. Kinetic parameters for sulfate uptake were similar, K m = 0.83 mM, V m = 15.9 nmol (h × 107cells)−1 and K i chromate = 0.3 mM. The capacity to accumulate chromium depended on the ionic species, external concentration and pH of the incubation medium. Cr(VI) or Cr(III) accumulation was negligible in the acidic (pH 3.5) culture medium, in which Cr(VI) was abiotically reduced to Cr(III). At pH 7.2 Cr(VI) was fully stable and high accumulation (>170 nmol/1 × 107 cells at 1 mM K2CrO4) was achieved; surprisingly, Cr(III) accumulation was also significant (>35 nmol/1 × 107 cells at 1 mM CrCl3). Cr(VI) was reduced by cells at pH 7.2, suggesting the presence of an external reductive activity. Cr(VI) induced an increased cysteine and glutathione content, but not in phytochelatins suggesting that chromium accumulation was mediated by monothiol compounds.  相似文献   

15.
Being regulators of growth, both spermidine (Spd) and melatonin (Mel) are involved actively in the modulation of abiotic stress responses of plants. Hence, the present study was aimed to scrutinize the possible involvements of Spd and Mel in alleviation of fluoride ion (F?)-induced injuries in Cajanus cajan L. Seeds of C. cajan L. were exposed to 1) control, 2) F?, 3) Spd, 4) Spd?+?F?, 5) Mel and 6) Mel?+?F? for five days. The results unveiled that F? treatment caused inhibited growth (radicle length and dry mass accumulation), protein content, genomic template stability, membrane stability index, and free radical scavenging capacity, but enhanced the levels of cell death, active oxygen species (AOS), malondialdehyde, lipase, protein carbonylation, and DNA polymorphism. Moreover, F? toxicity elevated the concentrations of endogenous proline, ascorbic acid, and glutathione, and altered the isoenzyme profiles and gene expressions of stress responsive enzymes (superoxide dismutase, catalase, ascorbate peroxidase, and glutathione-S-transferase). In contrast, exogenous supplementation of Spd and Mel alleviated the deleterious effects of F?, consequently improved growth, free radical scavenging capacity, and accumulations of protein, proline, ascorbic acid, and glutathione in C. cajan L. Additionally, application of Spd or Mel also improved the isoenzyme profiles and gene expressions of stress responsive enzymes, and genomic template stability, thereby reduced cell death, AOS, lipid peroxidation, lipase activity, and DNA polymorphism in stressed tissues. The present study concludes that Spd and Mel, particularly Mel, alleviated the adverse impacts of F? by improving antioxidant machinery and genomic template stability.  相似文献   

16.
Auxin receptors TIR1/AFBs play an essential role in a series of signaling network cascades. These F-box proteins have also been identified to participate in different stress responses via the auxin signaling pathway in Arabidopsis. Cucumber (Cucumis sativus L.) is one of the most important crops worldwide, which is also a model plant for research. In the study herein, two cucumber homologous auxin receptor F-box genes CsTIR and CsAFB were cloned and studied for the first time. The deduced amino acid sequences showed a 78% identity between CsTIR and AtTIR1 and 76% between CsAFB and AtAFB2. All these proteins share similar characteristics of an F-box domain near the N-terminus, and several Leucine-rich repeat regions in the middle. Arabidopsis plants ectopically overexpressing CsTIR or CsAFB were obtained and verified. Shorter primary roots and more lateral roots were found in these transgenic lines with auxin signaling amplified. Results showed that expression of CsTIR/AFB genes in Arabidopsis could lead to higher seeds germination rates and plant survival rates than wild-type under salt stress. The enhanced salt tolerance in transgenic plants is probably caused by maintaining root growth and controlling water loss in seedlings, and by stabilizing life-sustaining substances as well as accumulating endogenous osmoregulation substances. We proposed that CsTIR/AFB-involved auxin signal regulation might trigger auxin mediated stress adaptation response and enhance the plant salt stress resistance by osmoregulation.  相似文献   

17.
With increasing consumer demand for vegetables, edible-podded peas have become more popular. Stringlessness is one of most important traits for snap peas. A single recessive gene, sin-2, controls this trait. Because pollen carrying the stringless gene is less competitive than pollen carrying the stringy gene, there are fewer than expected stringless plants recovered in segregating generations. Marker-assisted selection (MAS) is a valuable tool to identify plants with the traits of interest at an early stage in the breeding process. The objective of this study was to identify robust, user-friendly molecular markers tightly linked to sin-2. A total of 144 target region amplification polymorphism (TRAP) primer combinations were used to screen four DNA bulks, which were constructed from 32 pea breeding lines based on their phenotypes. Sixty polymorphic TRAP primer combinations were identified between bulks of stringless and stringy pods. Five primer combinations, F6_Trap03_168, F6_SA12_145, F10_ODD8_130, F11_GA5_850, and F12_SA12_190, showed more than 90 % association with the stringless phenotype in 32 pea breeding lines. Two of the TRAP markers, F10_ODD8_130 and F12_SA12_190, were cloned, sequenced, and successfully converted to sequence characterized amplified region (SCAR) markers. These two SCAR markers were validated using 20 F5 recombinant inbred lines derived from a cross between Bohatyr (a dry pea variety with strings) and S1188 (a stringless snap pea variety) and showed strong marker-trait association. The results will have direct application in MAS of stringless edible-podded peas.  相似文献   

18.
Pisum sativum L., the garden pea crop plant, is serving as the unique model for genetic analyses of morphogenetic development of stipule, the lateral organ formed on either side of the junction of leafblade petiole and stem at nodes. The stipule reduced (st) and cochleata (coch) stipule mutations and afila (af), tendril-less (tl), multifoliate-pinna (mfp) and unifoliata-tendrilled acacia (uni-tac) leafblade mutations were variously combined and the recombinant genotypes were quantitatively phenotyped for stipule morphology at both vegetative and reproductive nodes. The observations suggest a role of master regulator to COCH in stipule development. COCH is essential for initiation, growth and development of stipule, represses the UNI-TAC, AF, TL and MFP led leafblade-like morphogenetic pathway for compound stipule and together with ST mediates the developmental pathway for peltate-shaped simple wild-type stipule. It is also shown that stipule is an autonomous lateral organ, like a leafblade and secondary inflorescence.  相似文献   

19.
A cDNA coding for a putative auxin efflux carrier was amplified from Pisum sativum seedling shoot tips by RT-PCR and the corresponding full-length cDNA, PsPIN1, was subsequently obtained by RACE-PCR. The deduced amino acid sequence (599 residues) showed the three domain topology typical of the other PIN proteins. The PsPIN1 protein structure prediction possessed five transmembrane domains at both the N-(7-150) and C-(450-575) termini and a hydrophylic region in the middle. PsPIN1 showed highest similarity to Medicago, MtPIN4. Using the Genome Walking technique, a 1511 bp upstream region for PsPIN1 gene was sequenced. This PsPIN1 upstream region possessed multiple putative auxin, GA and light regulatory elements. The PsPIN1 mRNA was ubiquitously expressed throughout the pea plant, especially in growing tissues. Auxin induced PsPIN1 mRNA in dark grown pea seedling shoot tips. It was induced by 4-chloro-IAA, which is also an active auxin in pea, and by gibberellin (GA3). Interestingly, the PsPIN1 mRNA was down-regulated by light treatment, possibly because light negatively regulates auxin and, especially GA levels in pea. Thus PIN1-mediated auxin efflux is a highly regulated process, not only at the level of protein localization, but also at the level of mRNA accumulation.  相似文献   

20.
An efficient, rapid and large scale propagation of a multipurpose herb, Ocimum basilicum through in vitro culture of nodal segments with axillary buds from mature plants has been accomplished. Among the cytokinins, 6-benzyladenine (BA), thidiazuron (TDZ), kinetin (Kin) and 2-isopentenyl adenine (2-iP) tested as supplements to Murashige and Skoog (MS) medium, 5.0 μM BA was optimum in inducing bud break. The highest rate of shoot multiplication was achieved on half-strength MS medium supplemented with 2.5 μM BA and 0.5 μM indole-3-acetic acid (IAA) combination. The shoots regenerated from TDZ supplemented medium when subcultured to hormone-free MS medium considerably increased the rate of shoot multiplication and shoot length by the end of third subculture. For rooting, MS medium supplemented with 1.0 μM indole-3-butyric acid (IBA) proved to be better than that supplemented with IAA or α-naphthalene acetic acid (NAA). The in vitro raised plantlets with well developed shoots and roots were successfully established in earthen pots containing garden soil and were grown in greenhouse with 90% survival rate. Chlorophyll a and b, carotenoids and net photosynthetic rate were measured in leaves during ex vitro acclimatization at 0, 7, 14, 21 and 28 days. Firstly these parameters showed a decreasing trend but subsequently increased after 7 days of acclimatization. These findings indicate that the adaptation of micropropagated plants to ex vitro conditions is more extended in time than generally accepted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号