首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract.  In this study, we assessed the ability of mitochondrial genome sequences to recover a test phylogeny of five hymenopteran taxa from which phylogenetic relationships are well accepted. Our analyses indicated that the test phylogeny was well recovered in all nucleotide Bayesian analyses when all the available holometabolan (i.e. outgroup) taxa were included, but only in Bayesian analyses excluding third codon positions when only the hymenopteran representatives and a single outgroup were included. This result suggests that taxon sampling of the outgroup might be as important as taxon sampling of the ingroup when recovering hymenopteran phylogenetic relationships using whole mitochondrial genomes. Parsimony analyses were more sensitive to both taxon sampling and the analytical model than Bayesian analyses, and analyses using the protein dataset did not recover the test phylogeny. In general, mitochondrial genomes did not resolve the position of the Hymenoptera within the Holometabola with confidence, suggesting that an increased taxon sampling, both within the Holometabola and among outgroups, is necessary.  相似文献   

2.
We sequenced the entire mitochondrial genome of Abispa ephippium (Hymenoptera: Vespoidea: Vespidae: Eumeninae) and most of the mitochondrial genome of Polistes humilis synoecus (Hymenoptera: Vespoidea: Vespidae: Polistinae). The arrangement of genes differed between the two genomes and also differed slightly from that inferred to be ancestral for the Hymenoptera. The genome organization for both vespids is different from that of all other mitochondrial genomes previously reported. A number of tRNA gene rearrangements were identified that represent potential synapomorphies for a subset of the Vespidae. Analysis of all available hymenopteran mitochondrial genome sequences recovered an uncontroversial phylogeny, one consistent with analyses of other types of data.  相似文献   

3.
We sequenced most of the mitochondrial (mt) genomes of 2 apocritan taxa: Vanhornia eucnemidarum and Primeuchroeus spp. These mt genomes have similar nucleotide composition and codon usage to those of mt genomes reported for other Hymenoptera, with a total A + T content of 80.1% and 78.2%, respectively. Gene content corresponds to that of other metazoan mt genomes, but gene organization is not conserved. There are a total of 6 tRNA genes rearranged in V. eucnemidarum and 9 in Primeuchroeus spp. Additionally, several noncoding regions were found in the mt genome of V. eucnemidarum, as well as evidence of a sustained gene duplication involving 3 tRNA genes. We also report an inversion of the large and small ribosomal RNA genes in Primeuchroeus spp. mt genome. However, none of the rearrangements reported are phylogenetically informative with respect to the current taxon sample.  相似文献   

4.
Mitochondrial genes in animals are especially useful as molecular markers for the reconstruction of phylogenies among closely related taxa, due to the generally high substitution rates. Several insect orders, notably Hymenoptera and Phthiraptera, show exceptionally high rates of mitochondrial molecular evolution, which has been attributed to the parasitic lifestyle of current or ancestral members of these taxa. Parasitism has been hypothesized to entail frequent population bottlenecks that increase rates of molecular evolution by reducing the efficiency of purifying selection. This effect should result in elevated substitution rates of both nuclear and mitochondrial genes, but to date no extensive comparative study has tested this hypothesis in insects. Here we report the mitochondrial genome of a crabronid wasp, the European beewolf (Philanthus triangulum, Hymenoptera, Crabronidae), and we use it to compare evolutionary rates among the four largest holometabolous insect orders (Coleoptera, Diptera, Hymenoptera, Lepidoptera) based on phylogenies reconstructed with whole mitochondrial genomes as well as four single-copy nuclear genes (18S rRNA, arginine kinase, wingless, phosphoenolpyruvate carboxykinase). The mt-genome of P. triangulum is 16,029 bp in size with a mean A+T content of 83.6%, and it encodes the 37 genes typically found in arthropod mt genomes (13 protein-coding, 22 tRNA, and two rRNA genes). Five translocations of tRNA genes were discovered relative to the putative ancestral genome arrangement in insects, and the unusual start codon TTG was predicted for cox2. Phylogenetic analyses revealed significantly longer branches leading to the apocritan Hymenoptera as well as the Orussoidea, to a lesser extent the Cephoidea, and, possibly, the Tenthredinoidea than any of the other holometabolous insect orders for all mitochondrial but none of the four nuclear genes tested. Thus, our results suggest that the ancestral parasitic lifestyle of Apocrita is unlikely to be the major cause for the elevated substitution rates observed in hymenopteran mitochondrial genomes.  相似文献   

5.
We have sequenced and characterized the complete mitochondrial genome of the sea slug, Aplysia californica, an important model organism in experimental biology and a representative of Anaspidea (Opisthobranchia, Gastropoda). The mitochondrial genome of Aplysia is in the small end of the observed sizes of animal mitochondrial genomes (14,117 bp, NCBI Accession No. NC_005827). The Aplysia genome, like most other mitochondrial genomes, encodes genes for 2 ribosomal subunit RNAs (small and large rRNAs), 22 tRNAs, and 13 protein subunits (cytochrome c oxidase subunits 1-3, cytochrome b apoenzyme, ATP synthase subunits 6 and 8, and NADH dehydrogenase subunits 1-6 and 4L). The gene order is virtually identical between opisthobranchs and pulmonates, with the majority of differences arising from tRNA translocations. In contrast, the gene order from representatives of basal gastropods and other molluscan classes is significantly different from opisthobranchs and pulmonates. The Aplysia genome was compared to all other published molluscan mitochondrial genomes and phylogenetic analyses were carried out using a concatenated protein alignment. Phylogenetic analyses using maximum likelihood based analyses of the well aligned regions of the protein sequences support both monophyly of Euthyneura (a group including both the pulmonates and opisthobranchs) and Opisthobranchia (as a more derived group). The Aplysia mitochondrial genome sequenced here will serve as an important platform in both comparative and neurobiological studies using this model organism.  相似文献   

6.
The newly sequenced complete mitochondrial genome of the brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), is a circular molecule of 16,518 bp with a total A+T content of 76.4% and two extensive repeat regions in A+T rich region. Nucleotide composition and codon usage of H. halys are about average when compared with values observed in 19 other published hemipteran mitochondrial genomes. Phylogenetic analyses using these 20 hemipteran mitochondrial genomes support the currently accepted hypothesis that suborders Heteroptera and Auchenorrhyncha form a monophyletic group. The mitochondrial gene arrangements of the 20 genomes are also consistent with our results.  相似文献   

7.
Abstract Mitochondrial genomes provide a promising new tool for understanding deep‐level insect phylogenetics, but have yet to be evaluated for their ability to resolve intraordinal relationships. We tested the utility of mitochondrial genome data for the resolution of relationships within Diptera, the insect order for which the most data are available. We sequenced an additional three genomes, from a syrphid, nemestrinid and tabanid, representing three additional dipteran clades, ‘aschiza’, non‐heteroneuran muscomorpha and ‘basal brachyceran’, respectively. We assessed the influence of optimality criteria, gene inclusion/exclusion, data recoding and partitioning strategies on topology and nodal support within Diptera. Our consensus phylogeny of Diptera was largely consistent with previous phylogenetic hypotheses of the order, except that we did not recover a monophyletic Muscomorpha (Nesmestrinidae grouped with Tabanidae) or Acalyptratae (Drosophilidae grouped with Calliphoridae). The results were very robust to optimality criteria, as parsimony, likelihood and Bayesian approaches yielded very similar topologies, although nodal support varied. The addition of ribosomal and transfer RNA genes to the protein coding genes traditionally used in mitochondrial genome phylogenies improved the resolution and support, contrary to previous suggestions that these genes would evolve too quickly or prove too difficult to align to provide phylogenetic signal at deep nodes. Strategies to recode data, aimed at reducing homoplasy, resulted in a decrease in tree resolution and branch support. Bayesian analyses were highly sensitive to partitioning strategy: biologically realistic partitions into codon groups produced the best results. The implications of this study for dipteran systematics and the effective approaches to using mitochondrial genome data are discussed. Mitochondrial genomes resolve intraordinal relationships within Diptera accurately over very wide time ranges (1–200 million years ago) and genetic distances, suggesting that this may be an excellent data source for deep‐level studies within other, less studied, insect orders.  相似文献   

8.
9.
The apocritan Hymenoptera show extraordinary features in mitochondrial genomes, but no complete sequence has been reported for the basal lineage, Evanioidea. Here, we sequenced the complete mitochondrial genome of Evania appendigaster. This genome is 17,817 bp long; with low A+T content, 77.8%, compared with other hymenopteran species. Four tRNA genes were rearranged, among which remote inversion is the dominant gene rearrangement event. Gene shuffling is caused by tandem duplication-random loss while remote inversion is best explained by recombination. The start codon of nad1 was found as TTG, which might be common across Hymenoptera. trnS2 and trnK use abnormal anticodons TCT and TTT, respectively, and the D-stem pairings in trnS2 are absent. The secondary structure of two rRNA genes are predicted and compared with those in other insects. Five long intergenic spacers were present, including a long intergenic spacer between atp8 and atp6, where these two genes overlap in the previously reported animal genomes. A conserved motif was found between trnS1 and nad1, which is proposed to be associated with mtTERM. The A+T-rich region is 2,325 bp long, among the longest in insects, and contains a tandem repeat region.  相似文献   

10.
Xiao JH  Jia JG  Murphy RW  Huang DW 《PloS one》2011,6(11):e26645
Among the Chalcidoids, hymenopteran parasitic wasps that have diversified lifestyles, a partial mitochondrial genome has been reported only from Nasonia. This genome had many unusual features, especially a dramatic reorganization and a high rate of evolution. Comparisons based on more mitochondrial genomic data from the same superfamily were required to reveal weather these unusual features are peculiar to Nasonia or not. In the present study, we sequenced the nearly complete mitochondrial genomes from the species Philotrypesis. pilosa and Philotrypesis sp., both of which were associated with Ficus hispida. The acquired data included all of the protein-coding genes, rRNAs, and most of the tRNAs, and in P. pilosa the control region. High levels of nucleotide divergence separated the two species. A comparison of all available hymenopteran mitochondrial genomes (including a submitted partial genome from Ceratosolen solmsi) revealed that the Chalcidoids had dramatic mitochondrial gene rearrangments, involved not only the tRNAs, but also several protein-coding genes. The AT-rich control region was translocated and inverted in Philotrypesis. The mitochondrial genomes also exhibited rapid rates of evolution involving elevated nonsynonymous mutations.  相似文献   

11.
The complete nucleotide sequence (14,472 bp) of the mitochondrial genome of the nudibranch Roboastra europaea (Gastropoda: Opisthobranchia) was determined. This highly compact mitochondrial genome is nearly identical in gene organization to that found in opisthobranchs and pulmonates (Euthyneura) but not to that in prosobranchs (a paraphyletic group including the most basal lineages of gastropods). The newly determined mitochondrial genome differs only in the relative position of the trnC gene when compared with the mitochondrial genome of Pupa strigosa, the only opisthobranch mitochondrial genome sequenced so far. Pupa and Roboastra represent the most basal and derived lineages of opisthobranchs, respectively, and their mitochondrial genomes are more similar in sequence when compared with those of pulmonates. All phylogenetic analyses (maximum parsimony, minimum evolution, maximum likelihood, and Bayesian) based on the deduced amino acid sequences of all mitochondrial protein-coding genes supported the monophyly of opisthobranchs. These results are in agreement with the classical view that recognizes Opisthobranchia as a natural group and contradict recent phylogenetic studies of the group based on shorter sequence data sets. The monophyly of opisthobranchs was further confirmed when a fragment of 2,500 nucleotides including the mitochondrial cox1, rrnL, nad6, and nad5 genes was analyzed in several species representing five different orders of opisthobranchs with all common methods of phylogenetic inference. Within opisthobranchs, the polyphyly of cephalaspideans and the monophyly of nudibranchs were recovered. The evolution of mitochondrial tRNA rearrangements was analyzed using the cox1+rrnL+nad6+nad5 gene phylogeny. The relative position of the trnP gene between the trnA and nad6 genes was found to be a synapomorphy of opisthobranchs that supports their monophyly.  相似文献   

12.
Liu Y  Xue JY  Wang B  Li L  Qiu YL 《PloS one》2011,6(10):e25836
Early land plant mitochondrial genomes captured important changes of mitochondrial genome evolution when plants colonized land. The chondromes of seed plants show several derived characteristics, e.g., large genome size variation, rapid intra-genomic rearrangement, abundant introns, and highly variable levels of RNA editing. On the other hand, the chondromes of charophytic algae are still largely ancestral in these aspects, resembling those of early eukaryotes. When the transition happened has been a long-standing question in studies of mitochondrial genome evolution. Here we report complete mitochondrial genome sequences from an early-diverging liverwort, Treubia lacunosa, and a late-evolving moss, Anomodon rugelii. The two genomes, 151,983 and 104,239 base pairs in size respectively, contain standard sets of protein coding genes for respiration and protein synthesis, as well as nearly full sets of rRNA and tRNA genes found in the chondromes of the liverworts Marchantia polymorpha and Pleurozia purpurea and the moss Physcomitrella patens. The gene orders of these two chondromes are identical to those of the other liverworts and moss. Their intron contents, with all cis-spliced group I or group II introns, are also similar to those in the previously sequenced liverwort and moss chondromes. These five chondromes plus the two from the hornworts Phaeoceros laevis and Megaceros aenigmaticus for the first time allowed comprehensive comparative analyses of structure and organization of mitochondrial genomes both within and across the three major lineages of bryophytes. These analyses led to the conclusion that the mitochondrial genome experienced dynamic evolution in genome size, gene content, intron acquisition, gene order, and RNA editing during the origins of land plants and their major clades. However, evolution of this organellar genome has remained rather conservative since the origin and initial radiation of early land plants, except within vascular plants.  相似文献   

13.
Zhang J  Zhou C  Gai Y  Song D  Zhou K 《Gene》2008,424(1-2):18-24
The first complete mitochondrial genome of a mayfly, Parafronurus youi (Arthropoda: Insecta: Pterygota: Ephemeroptera: Heptageniidae), was sequenced using a long PCR-based approach. The genome is a circular molecule of 15,481 bp in length, and encodes the set of 38 genes. Among them, 37 genes are found in other conservative insect mitochondrial genomes, and the 38(th) unique gene is trnM-like (trnM2). The duplication-random loss model can be used to explain one of the translocations at least. The A+T content of the control region is 57%, the lowest proportion detected so far in Hexapoda. Based on the nucleotide dataset and the corresponding amino acid dataset of 12 protein-coding genes, Bayesian inference and maximum likelihood analyses yielded stable support for the relationship of the three basal clades of winged insects as Ephemeroptera+(Odonata+Neoptera).  相似文献   

14.
The first complete mitochondrial genome of a representative of the Symphyla, Scutigerella causeyae (Arthropoda: Myriapoda), was sequenced using a PCR-based approach. Its gene order shows different positions for three tRNA genes compared to the ancestral arthropod pattern. Presence of a pseudogene with partial sequence similarity to rrnS favours the duplication-random loss model as an explanation for at least one of the translocations. None of the genome rearrangements hypothesized for S. causeyae are shared by any of the other four myriapod mitochondrial genomes sequenced so far (two from Chilopoda and two from Diplopoda). Different rearrangement events must have occurred independently in the lineages leading to S. causeyae, Lithobius forficatus, Scutigera coleoptrata and Diplopoda. Phylogenetic analyses could not unequivocally elucidate the position of Symphyla among myriapods. While the nucleotide dataset of eleven protein-coding genes gives weak support for an affinity to Chilopoda, this is not recovered with the corresponding amino acid dataset.  相似文献   

15.

Background

The insect order Neuroptera encompasses more than 5,700 described species. To date, only three neuropteran mitochondrial genomes have been fully and one partly sequenced. Current knowledge on neuropteran mitochondrial genomes is limited, and new data are strongly required. In the present work, the mitochondrial genome of the ascalaphid owlfly Libelloides macaronius is described and compared with the known neuropterid mitochondrial genomes: Megaloptera, Neuroptera and Raphidioptera. These analyses are further extended to other endopterygotan orders.

Results

The mitochondrial genome of L. macaronius is a circular molecule 15,890 bp long. It includes the entire set of 37 genes usually present in animal mitochondrial genomes. The gene order of this newly sequenced genome is unique among Neuroptera and differs from the ancestral type of insects in the translocation of trnC. The L. macaronius genome shows the lowest A+T content (74.50%) among known neuropterid genomes. Protein-coding genes possess the typical mitochondrial start codons, except for cox1, which has an unusual ACG. Comparisons among endopterygotan mitochondrial genomes showed that A+T content and AT/GC-skews exhibit a broad range of variation among 84 analyzed taxa. Comparative analyses showed that neuropterid mitochondrial protein-coding genes experienced complex evolutionary histories, involving features ranging from codon usage to rate of substitution, that make them potential markers for population genetics/phylogenetics studies at different taxonomic ranks. The 22 tRNAs show variable substitution patterns in Neuropterida, with higher sequence conservation in genes located on the α strand. Inferred secondary structures for neuropterid rrnS and rrnL genes largely agree with those known for other insects. For the first time, a model is provided for domain I of an insect rrnL. The control region in Neuropterida, as in other insects, is fast-evolving genomic region, characterized by AT-rich motifs.

Conclusions

The new genome shares many features with known neuropteran genomes but differs in its low A+T content. Comparative analysis of neuropterid mitochondrial genes showed that they experienced distinct evolutionary patterns. Both tRNA families and ribosomal RNAs show composite substitution pathways. The neuropterid mitochondrial genome is characterized by a complex evolutionary history.  相似文献   

16.
A need to increase sampling of mitochondrial genomes for Vetigastropoda has been identified as an important step towards resolving relationships within the Gastropoda. We used shotgun sequencing of genomic DNA, using an Illumina MiSeq, to obtain the first mitochondrial genome for the vetigastropod family Turbinidae, doubling the number of genomes for the species-rich superfamily Trochoidea. This method avoids the necessity of finding suitable primers for long PCRs or primer-walking amplicons, resulting in a timely and cost-effective method for obtaining whole mitochondrial genomes from ethanol-preserved tissue samples. Bayesian analysis of amino acid variation for all available gastropod genomes including the new turbinid mtgenome produced a well resolved tree with high nodal support for most nodes. Major clades within Gastropoda were recovered with strong support, with the exception of Littorinimorpha, which was polyphyletic. We confirm here that mitogenomics is a useful tool for molluscan phylogenetics, especially when using powerful new models of amino acid evolution, but recognise that increased taxon sampling is still required to resolve existing differences between nuclear and mitochondrial gene trees.  相似文献   

17.
Order Chiroptera is a unique group of mammals whose members have attained self-powered flight as their main mode of locomotion. Much speculation persists regarding bat evolution; however, lack of sufficient molecular data hampers evolutionary and conservation studies. Of ~ 1200 species, complete mitochondrial genome sequences are available for only eleven. Additional sequences should be generated if we are to resolve many questions concerning these fascinating mammals. Herein, we describe the complete mitochondrial genomes of three bats: Corynorhinus rafinesquii, Lasiurus borealis and Artibeus lituratus. We also compare the currently available mitochondrial genomes and analyze codon usage in Chiroptera. C. rafinesquii, L. borealis and A. lituratus mitochondrial genomes are 16438 bp, 17048 bp and 16709 bp, respectively. Genome organization and gene arrangements are similar to other bats. Phylogenetic analyses using complete mitochondrial genome sequences support previously established phylogenetic relationships and suggest utility in future studies focusing on the evolutionary aspects of these species. Comprehensive analyses of available bat mitochondrial genomes reveal distinct nucleotide patterns and synonymous codon preferences corresponding to different chiropteran families. These patterns suggest that mutational and selection forces are acting to different extents within Chiroptera and shape their mitochondrial genomes.  相似文献   

18.
Chauliops fallax Scott, 1874 (Hemiptera: Heteroptera: Malcidae: Chauliopinae) is one of the most destructive insect pests of soybean and rice fields in Asia. Here we sequenced the complete mitochondrial genome of this pest. This genome is 15,739 bp long, with an A+T content of 73.7%, containing 37 typical animal mitochondrial genes and a control region. All genes were arranged in the same order as most of other Heteroptera. A remarkable strand bias was found for all nine protein coding genes (PCGs) encoded by the majority strand were positive AT-skew and negative GC-skew, whereas the reverse were found in the remaining four PCGs encoded by the minority strand and two rRNA genes. The models of secondary structures for the two rRNA genes of sequenced true bugs and Lygaeoidea were predicted. 16S rRNA consisted of six domains (domain III is absent as in other known arthropod mitochondrial genomes) and 45 helices, while three domains and 27 helices for 12S rRNA. The control region consists of five subregions: a microsatellite-like region, a tandem repeats region and other three motifs. The unusual intergenic spacer between tRNA-H and ND4 only found in the species of Lygaeoidea, not in other heteropteran species, may be the synapomorphy of this superfamily. Phylogenetic analyses were carried out based on all the 13 PCGs showed that Chauliopinae was the sister group of Malcinae and the monophyly of Lygaeoidea.  相似文献   

19.
X Wan  MI Kim  MJ Kim  I Kim 《PloS one》2012,7(8):e42056
The insect order Dermaptera, belonging to Polyneoptera, includes ~2,000 extant species, but no dermapteran mitochondrial genome has been sequenced. We sequenced the complete mitochondrial genome of the free-living earwig, Challia fletcheri, compared its genomic features to other available mitochondrial sequences from polyneopterous insects. In addition, the Dermaptera, together with the other known polyneopteran mitochondrial genome sequences (protein coding, ribosomal RNA, and transfer RNA genes), were employed to understand the phylogeny of Polyneoptera, one of the least resolved insect phylogenies, with emphasis on the placement of Dermaptera. The complete mitochondrial genome of C. fletcheri presents the following several unusual features: the longest size in insects is 20,456 bp; it harbors the largest tandem repeat units (TRU) among insects; it displays T- and G-skewness on the major strand and A- and C-skewness on the minor strand, which is a reversal of the general pattern found in most insect mitochondrial genomes, and it possesses a unique gene arrangement characterized by a series of gene translocations and/or inversions. The reversal pattern of skewness is explained in terms of inversion of replication origin. All phylogenetic analyses consistently placed Dermaptera as the sister to Plecoptera, leaving them as the most basal lineage of Polyneoptera or sister to Ephemeroptera, and placed Odonata consistently as the most basal lineage of the Pterygota.  相似文献   

20.
The family Trigonalyidae is considered to be one of the most basal lineages in the suborder Apocrita of Hymenoptera. Here, we determine the first complete mitochondrial genome of the Trigonalyidae, from the species Taeniogonalos taihorina (Bischoff, 1914). This mitochondrial genome is 15,927 bp long, with a high A + T-content of 84.60%. It contains all of the 37 typical animal mitochondrial genes and an A + T-rich region. The orders and directions of all genes are different from those of previously reported hymenopteran mitochondrial genomes. Eight tRNA genes, three protein-coding genes and the A + T-rich region were rearranged, with the dominant gene rearrangement events being translocation and local inversion. The arrangements of three tRNA clusters, trnYtrnMtrnItrnQ, trnWtrnL2trnC, and trnHtrnAtrnRtrnNtrnStrnEtrnF, and the position of the cox1 gene, are novel to the Hymenoptera, even the insects. Six long intergenic spacers are present in the genome. The secondary structures of the RNA genes are normal, except for trnS2, in which the D-stem pairing is absent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号