首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immortal cell lines are essential for genetic and biochemical studies. Unlike rodent cells, which will form continuously growing cultures either spontaneously or after infection with an oncogenic virus (e.g., Simian Virus 40 (SV40)), human cells fail to form continuous cell lines spontaneously and in only rare cases from cell lines after oncogenic virus infection. We have used a plasmid (pSV3gpt) containing both the SV40 early region encoding T antigen and the bacterial gene xanthine-guanine phosphoribosyl transferase (gpt) to achieve high efficiency morphological transformation and immortalization of primary human skin fibroblasts. Transfection of this plasmid into primary human skin fibroblasts derived from a normal individual, two Cockayne's syndrome patients, and an immuno-deficient patient and selection for the gpt gene resulted in an altered cell morphology and growth properties characteristic of previously described SV40-transformed cells. Transfected cultures subsequently senesced, entered crisis and in each case formed a rapidly growing culture. The high efficiency of immunortalization described here (four out of four cell strains) is in contrast to previously described procedures utilizing focal overgrowth. We suggest that the use of a dominant selectable marker linked to the SV40 early region increases the probability of establishing an immortal human cell line.  相似文献   

2.
Simian virus 40 (SV40)-mediated transformation of human fibroblasts offers an experimental system for studying both carcinogenesis and cellular aging, since such transformants show the typical features of altered cellular growth but still have a limited life span in culture and undergo senescence. We have previously demonstrated (D. S. Neufeld, S. Ripley, A. Henderson, and H. L. Ozer, Mol. Cell. Biol. 7:2794-2802, 1987) that transformants generated with origin-defective mutants of SV40 show an increased frequency of overcoming senescence and becoming immortal. To clarify further the role of large T antigen, we have generated immortalized transformants by using origin-defective mutants of SV40 encoding a heat-labile large T antigen (tsA58 transformants). At a temperature permissive for large-T-antigen function (35 degrees C), the cell line AR5 had properties resembling those of cell lines transformed with wild-type SV40. However, the AR5 cells were unable to proliferate or form colonies at temperatures restrictive for large-T-antigen function (39 degrees C), demonstrating a continuous need for large T antigen even in immortalized human fibroblasts. Such immortal temperature-dependent transformants should be useful cell lines for the identification of other cellular or viral gene products that induce cell proliferation in human cells.  相似文献   

3.
We have immortalized rat central nervous system (CNS) cells of primary cultures of rat optic nerve with murine leukemia virus psi-2,SV-40-6, which is defective in assembly and contains the SV-40 large T antigen and neomycin resistance genes, to produce a cell line that we named A7. After drug selection, greater than 90% of the growing cells expressed nuclear SV-40 large T cells and a fraction of these contained the astrocyte-specific marker, glial fibrillary acidic protein. The majority of these cells also expressed surface marker A4 (specific for neural tube derivatives), Ran 2, p185 (the 185-kD phosphoprotein product of the neu oncogene), and fibronectin, but did not express the astrocyte enzymes glutamine synthetase and monoamine oxidase B. Surface markers characteristic of glial progenitors (A2B5) and oligodendrocytes (galactocerebroside) were not detected. After two rounds of cell cloning, subclone A7.6-3 expressed Ran 2, fibronectin, and the neural cell adhesion molecule (N-CAM) but not glial fibrillary acidic protein and A4. The A7 cell line and subclones also displayed certain functions of type 1 astrocytes: the conditioned medium of these cells had a potent mitogenic activity for glial progenitor cells which could be neutralized by anti-platelet-derived growth factor antibodies and monolayers of these cells supported the growth of embryonic hypothalamic neurons. We conclude that a retrovirus containing SV-40 large T antigen can immortalize rat CNS cells and that such immortalized glial cells retain at least two important functions of type 1 astrocytes: the ability to secrete platelet-derived growth factor and to support the growth of embryonic CNS neurons. Moreover, such stable immortalized clonal cell lines can be used to study gene regulation in glial cells.  相似文献   

4.
When the hamster cell lines BHK21 and Nil-2 were infected at a multiplicity of 100 with the adenovirus 7-simian virus 40 (SV40) hybrid (strain LLE46), SV40 T antigen was induced in 0.1 to 6% of the cells during the first 96 hr postinfection, morphological changes occurred 3 to 7 weeks later, and eventually all the cells contained SV40 T antigen, but no adeno 7 T antigen. Results were similar when primary and secondary monolayer cultures of hamster embryo (HE) cells were infected with the adeno 7-SV40 hybrid, and when primary HE cells were infected with SV40. However, infection of BHK21, Nil-2, and secondary HE cells with the same multiplicity of SV40 did not induce SV40 T antigen or morphological transformation. This suggests that the target cells required for infection with SV40 virions, but not those required for infection with the hybrid, are lost or altered in secondary HE cultures and in the two cell lines. In most of the virus-host cell systems in which SV40 T antigen and transformation were induced, there was a decrease in the number of T antigen-positive cells after the initial infection. This was followed by a lag period of up to 2 months before the onset of a progressive increase in the number of positive cells. The beginning of the rise in T antigen production coincided with the first morphological changes.  相似文献   

5.
6.
A new cell line of transformed astrocytes was obtained from primary new born rat brain cultures. rat brain cultures. These transformed cell line possess a normal karyotype, a doubling time of 17-24 hrs. and astrocyte specific protein marquers: glial fibrillar acidic protein (GFA) and glutamine synthetase. The ganglioside pattern is more differentiated than that of other known astrocyte lines.  相似文献   

7.
A permanent glial cell line has been established from the neonatal mouse primary mixed glial cell cultures by transfection with replication origin-defective simian virus 40 DNA. This cell line, designated OS3, has morphological similarity to type-2 astrocyte and expresses an astrocyte-specific marker, glial fibrillary acidic protein (GFAP), when cultured in the presence of 10% calf serum (CS). OS3 cells do not express the O4 antigen, galactocerebroside (GalC) and A2B5 under this culture condition. When cultured in a medium containing 2% CS or a chemically defined medium, these cells undergo morphological transformation. Some of these cells express O4 antigen and/or GalC, and the percentage of GFAP positive cells decreases under these conditions. Thus depending on the culture conditions, the OS3 cells display either type-2 astrocyte properties or immature oligodendrocyte characteristics. Furthermore, the OS3 cells show similar responses to the various growth factors as do oligodendrocyte/type-2 astrocyte (O-2A) progenitors. Therefore, the OS3 cell line is an unique mouse bipotential permanent O-2A lineage cell line which may be useful to analyze the developmental properties of these glial cells.  相似文献   

8.
Thein vitrolife span of human cells is under genetic control and limited. Immortalized cells, however, can be obtained at a low frequency following expression of the SV40 T antigen gene though the steps that lead to immortality are not well understood. p53 has been implicated in cell cycle regulation and evidence suggests it may have a role in controlling life span in rodent and human cells. In this study, we investigated whether allelic loss or mutation ofp53was an essential step during SV40 immortalization leading to the appearance of immortal cell lines. The gross structure of thep53gene was examined in a primary fibroblast cell strain (1BR.3) and two SV40-immortalized derivatives, 1BRMT1 and 1BRgn2. There was no evidence for allelic loss of thep53gene during immortalization. The primary cells and the immortal derivatives all expressed authenticp53mRNAs, though the immortal cell lines had higher levels of expression. Sequence analysis of exons 5–8 did not detect mutations associated with the immortal phenotype. These data are consistent with SV40 immortalization being independent of genetic changes inp53.  相似文献   

9.
10.
The ability to generate expanded populations of individual cell types able to undergo normal differentiationin vitro andin vivo is of critical importance in the investigation of the mechanisms that underly differentiation and in studies on the use of cell transplantation to repair damaged tissues. This review discusses the development of a strain of transgenic mice that allows the direct derivation of conditionally immortal cell lines from a variety of tissues, simply by dissociation of the tissue of interest and growth of cells in appropriate conditions. In these mice the tsA58 mutant of SV40 large T antigen is controlled by the interferon-inducible Class I antigen promoter. Cells can be grown for extended periodsin vitro simply by growing them at 33°C in the presence of interferon, while still retaining the capacity to undergo normal differentiationin vivo andin vitro. In addition, it appears that cell lines expressing mutant phenotypes can readily be generated by preparing cultures from appropriate offspring of matings between H-2KbtsA58 transgenic mice and mutant mice of interest.  相似文献   

11.
12.
Cloned simian virus 40 (SV40)-transformed human breast epithelial cell lines can differentiate to myoepithelial-like cells, and these can be isolated as clonal cell lines. Immunofluorescent and immunocytochemical analysis of such cell lines growing on plastic surfaces, collagen gels, and as tumor-nodules in nude mice indicate that all the cell lines produce SV40 large T antigen, but that the production of this antigen is qualitatively increased in the myoepithelial-like cells and cell lines. The myoepithelial-like cell lines produce 4-6 times more immunoprecipitable large T antigen than the parental epithelial cells. The amount of mRNA for large T antigen is also increased by 3.5-5-fold in the myoepithelial-like cell lines when analysed by dot-blot or by Northern hybridisations. Thus, differentiation along the myoepithelial-like cell pathway is associated in these SV40-transformed cells with increased expression of the viral large T antigen. It is suggested that immortalization of primary breast epithelial cell cultures may be, in part, due to the expression of large T antigen preventing processes of terminal keratinization.  相似文献   

13.
14.
Summary Phenotypic changes (increased longevity, decreased growth factor requirements, altered cell surface features, growth in semisolid agarose, and SV40 T antigen expression) suggesting in vitro transformation were displayed by human normal colon mucosal epithelial cells transfected with pSV3gpt, a pBR322 recombinant containing the SV40 “early” T antigen coding region and the dominant selectable marker bacterial gene, xanthine-guanine phosphoribosyltransferase. In contrast, control cultures which received neither DNA nor the recombinatn pSV2gpt (which is identical to pSV3gpt but lacks the SV40 T antigen region) were not phenotypically altered.  相似文献   

15.
16.
Summary Comparison of proteins expressed by SV40 transformed cell lines and untransformed cell lines is of interest because SV40 transformed cells are immortal, whereas untransformed cells senesce after about 50 doublings. In MRC-5 SV40 cells, only seven proteins have previously been reported to shift from undetectable to detectable after transformation by SV40 virus. We report that butyrylcholinesterase is an 8th protein in this category. Butyrylcholinesterase activity in transformed MRC-5 SV40 cells increased at least 150-fold over its undetectable level in MRC-5 parental cells. Other SV40 transformed cell lines, including COS-1, COS-7, and WI-38 VA13, also expressed endogenous butyrylcholinesterase, whereas the parental, untransformed cell lines, CV-1 and WI-38, had no detectable butyrylcholinesterase activity or mRNA. Infection of CV-1 cells by SV40 virus did not result in expression of butyrylcholinesterase, showing that the butyrylcholinesterase promoter was not activated by the large T antigen of SV40. We conclude that butyrylcholinesterase expression resulted from events related to cell immortalization and did not result from activation by the large T antigen.  相似文献   

17.
D I Linzer  A J Levine 《Cell》1979,17(1):43-52
SV40 infection or transformation of murine cells stimulated the production of a 54K dalton protein that was specifically immunoprecipitated, along with SV40 large T and small t antigens, with sera from mice or hamsters bearing SV40-induced tumors. The same SV40 anti-T sera immunoprecipitated a 54K dalton protein from two different, uninfected murine embryonal carcinoma cell lines. These 54K proteins from SV40-transformed mouse cells and the uninfected embryonal carcinomas cells had identical partial peptide maps which were completely different from the partial peptide map of SV40 large T antigen. An Ad2+ND4-transformed hamster cell line also expressed a 54K protein that was specifically immunoprecipitated by SV40 T sera. The partial peptide maps of the mouse and hamster 54K protein were different, showing the host cell species specificity of these proteins. The 54K hamster protein was also unrelated to the Ad2+ND4 SV40 T antigen. Analogous proteins immunoprecipitated by SV40 T sera, ranging in molecular weight from 44K to 60K, were detected in human and monkey SV40-infected or -transformed cells. A wide variety of sera from hamsters and mice bearing SV40-induced tumors immunoprecipitated the 54K protein of SV40-transformed cells and murine embryonal carcinoma cells. Antibody produced by somatic cell hybrids between a B cell and a myeloma cell (hybridoma) against SV40 large T antigen also immunoprecipitated the 54K protein in virus-infected and -transformed cells, but did not do so in the embryonal carcinoma cell lines. We conclude that SV40 infection or transformation of mouse cells stimulates the synthesis or enhances the stability of a 54K protein. This protein appears to be associated with SV40 T antigen in SV40-infected and -transformed cells, and is co-immunoprecipitated by hybridomas sera to SV40 large T antigen. The 54K protein either shares antigenic determinants with SV40 T antigen or is itself immunogenic when in association with SV40 large T antigen. The protein varies with host cell species, and analogous proteins were observed in hamster, monkey and human cells. The role of this protein in transformation is unclear at present.  相似文献   

18.
Balb/c mouse embryo cultures that are carried under a rigid transfer schedule that minimizes cell-cell contact evolve into permanent lines that possess properties very similar to 3T3. From the same embryo cultures, a transfer schedule where cell-cell contact is extensive leads to lines (Balb/3T12) that form multiple cell layers and have saturation densities up to 25-fold higher than the Balb/3T3 lines. All the lines are hypotetraploid. Comparison of the Balb/3T3 lines with 3T3 reveals similar morphology, ability to grow at high dilution, low saturation density, and high susceptibility to transformation by SV40 virus. The Balb/3T12 lines, which are continually maintained at high cell density, show little improvement in cloning efficiency. Infection with SV40 produces transformants that can be selected by their ability to form colonies at low cell densities. Using the appropriate selective system for each line, it appears that SV40 T antigen induction and transformation in Balb/3T3 and Balb/3T12 are comparable.  相似文献   

19.
We have constructed a series of MLV-based retroviral vectors and packaging components expressed from the CMV promoter and carried on plasmids containing SV40 origins of replication. These two features greatly enhanced retroviral gene expression when introduced into cell lines carrying the SV40 large T antigen. The two packaging components, gag-pol and env, were placed on separate plasmids to reduce helper virus formation. Using a highly transfectable human cell line and sodium butyrate to further increase expression of each component, we achieved helper-free viral stocks of approximately 10(7) infectious units/ml by 48 h after transient co-transfection with the three plasmid components. This system can be used both for the generation of high titer retroviral stocks for transduction and for the rapid screening of a large number of MLV gag-pol or env mutants.  相似文献   

20.
Normal human diploid fibroblasts (HF) have a limited life span, undergo senescence, and rarely, if ever, spontaneously immortalize in culture. Introduction of the gene for T antigen encoded by the DNA virus SV40 extends the life span of HF and increases the frequency of immortalization; however, immortalization requires both T-dependent and T-independent functions. We previously generated independent SV40-transformed non-immortal (pre-immortal) HF cell lines from which we then obtained immortal sublines as part of a multifaceted approach to identify functions responsible for immortalization. In this study we undertook a search for cellular mRNAs which are differentially expressed upon immortalization. A λcDNA library was prepared from a pre-immortal SV40-transformed HF (HF-C). We screened the library with a subtracted probe enriched for sequences present in HF-C and reduced in immortal AR5 cells. A more limited screen was also employed for sequences overexpressed in AR5 using a different strategy. Alterations in the level of mRNAs in AR5 encoding functions relevant to signal transduction pathways were identified; however, most cDNAs encoded novel sequences. In an effort to clarify which of the altered mRNAs are most relevant to immortalization, we performed Northern analysis with RNA prepared from three paired sets of independent pre-immortal and immortal (4 cell lines) SV40-transformants using eight cloned cDNAs which show reduced expression in AR5. Three of these were reduced in additional immortal cell lines as well; one, J4-4 (unknown function) is reduced in all the immortal cell lines tested; a second, J4-3 (possible PP2C type phosphatase) is reduced in 2 of the 3 matched sets; and a third, J2-2 (unknown function) is redu ced in 2 unrelated immortal cell lines. Although the roles of these genes are as yet unclear, their further analysis should extend our understanding of the molecular bases for immortalization. In particular, the patterns of expression of J4-4 and J4-3 strongly suggest that they are involved in the process of immortalization and/or can serve as target genes for assessing regulators of gene expression in this process. J. Cell. Physiol. 171:325–335, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号