共查询到20条相似文献,搜索用时 15 毫秒
1.
Cotton fabric was thermally crosslinked with poly (N-vinyl-2-pyrrolidone) (PVP) at different conditions including temperature, time, PVP concentrations and molecular weights. Results indicated that treating the cotton fabrics with 4% aqueous solution of PVP of molecular weight 10,000 Dalton followed by drying at 85 °C for 5 min then curing at 160 °C for 3 min results in crosslinking as will as an improvement in some performance properties of that fabrics such as resiliency, tensile strength, and acid dyeability. Post-treating PVP crosslinked fabric with 5% iodine in ethanol solution for 5 h at 50 °C imparts antibacterial activity against Staphylococcus aureus and Escherichia coli. Moreover, incorporation of PVP in the easy-care finishing of cotton fabrics, as polymer additive, with N,N-dimethylol 4,5-dihydroxyethylene urea as a crosslinker enhances some of the performance properties of finished fabrics such as the nitrogen content, tensile strength and acid dyeability along with decreasing resiliency as well as whiteness index, whereas the ester crosslinking with citric acid, in presence of PVP, enhances resilience, tensile strength and whiteness indices accompanied with a reduction in the %N of the treated fabrics. Infra red spectrum of PVP crosslinked fabric as well as EDX analysis of loaded iodine on PVP crosslinked cotton fabric were investigated. 相似文献
2.
Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract
《Saudi Journal of Biological Sciences》2016,23(4):517-523
Zinc oxide (ZnO) has broad applications in various areas. Nanoparticle synthesis using plants is an alternative to conventional physical and chemical methods. It is known that the biological synthesis of nanoparticles is gaining importance due to its simplicity, eco-friendliness and extensive antimicrobial activity. Also, in this study we report the synthesis of ZnO nanoparticles using Trifolium pratense flower extract. The prepared ZnO nanoparticles have been characterized by UV–Vis absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) with Energy dispersive X-ray analysis (EDX). Besides, this study determines the antimicrobial efficacy of the synthesized ZnO nanoparticles against clinical and standard strains of S. aureus and P. aeruginosa and standard strain of E. coli. 相似文献
3.
《Saudi Journal of Biological Sciences》2023,30(1):103487
BackgroundFabricating zinc oxide nanoparticles (ZnO-NPs) from plant extracts is a cost-effective, safe, and environmentally friendly alternative to established chemical procedures. This study was aimed at the environmentally friendly fabrication of ZnO-NPs from plant extract. An additional objective was to investigate the antibacterial and antioxidant activity of these biosynthesized ZnO-NPs.MethodsZnO-NPs were fabricated using the leaf extract of Ailanthus altissima, as an eco-friendly approach. The physicochemical properties of ZnO-NPs were explored using UV–visible spectroscopy, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectrometry. The bio-fabricated ZnO-NPs were examined for bactericidal activity against pathogenic bacteria (gram-negative and gram-positive) using the agar well diffusion technique. The antioxidant efficiency of ZnO-NPs was assessed using a DPPH assay.ResultsA surface Plasmon peak was recorded at 327 nm, showing the existence of ZnO-NPs in the reaction solution of plant extract and zinc sulfate hexahydrate salt. These nanoparticles were predominantly spherical and capped by different functional groups of biomolecules. Furthermore, ZnO-NPs showed a dose-dependent antibacterial and antioxidant activity. At 20 mg/mL ZnO-NPs, the maximum bactericidal potential of ZnO-NPs was reported against Staphylococcus aureus (201.2 mm). ZnO-NPs have an IC50 value of 78.23 µg/mL, indicating that they are an effective antioxidant.ConclusionThis research presents an environmentally acceptable method for producing spherical ZnO-NPs with high antibacterial and antioxidant activities. These bio-fabricated ZnO-NPs could be a good option for applications in medicine and the healthcare industry. 相似文献
4.
Roberta Cassano Sonia Trombino Teresa Ferrarelli Rita Muzzalupo Lorena Tavano Nevio Picci 《Carbohydrate polymers》2009,78(3):639-641
We prepared cellulose cotton fibers containing ampicillin moieties and evaluated their antibacterial activity. In spite of recent progress in experimental and clinical medicine, the problem of chronic wounds treatment remains to be solved. In fact conventional methods are based on solutions of antibiotics and antiseptics and ointment bandages but the efficacy of this method is low and so the idea to use modified cotton gauzes would have to prevent infections insorgence during wounds healing. Ampicillin, a large spectrum antibiotic, was covalently coupled to cellulose backbone of hydrophilic cotton fibers by a heterogeneous synthesis to produce a functionalized biopolymer with a satisfactory degree of substitution (DS) and antibacterial activity. The obtained biopolymer was characterized by infrared spectroscopy (FT-IR). Finally, the antibacterial activity in inhibiting microorganism growth in Petri dishes, was evaluated. The results suggested that these biomaterials posses an excellent “in vitro” antibacterial activity and so they can be efficiently employed in biomedical fields for chronic wounds management to ensure a valid protection against infections and contaminations. Biopolymers so functionalized were found to be very efficient to contrast sensible bacteria growth. 相似文献
5.
Preparation and antibacterial activity of chitosan nanoparticles 总被引:17,自引:0,他引:17
Chitosan nanoparticles, such as those prepared in this study, may exhibit potential antibacterial activity as their unique character. The purpose of this study was to evaluate the in vitro antibacterial activity of chitosan nanoparticles and copper-loaded nanoparticles against various microorganisms. Chitosan nanoparticles were prepared based on the ionic gelation of chitosan with tripolyphosphate anions. Copper ions were adsorbed onto the chitosan nanoparticles mainly by ion-exchange resins and surface chelation to form copper-loaded nanoparticles. The physicochemical properties of the nanoparticles were determined by size and zeta potential analysis, atomic force microscopy (AFM), FTIR analysis, and XRD pattern. The antibacterial activity of chitosan nanoparticles and copper-loaded nanoparticles against E. coli, S. choleraesuis, S. typhimurium, and S. aureus was evaluated by calculation of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Results show that chitosan nanoparticles and copper-loaded nanoparticles could inhibit the growth of various bacteria tested. Their MIC values were less than 0.25 microg/mL, and the MBC values of nanoparticles reached 1 microg/mL. AFM revealed that the exposure of S. choleraesuis to the chitosan nanoparticles led to the disruption of cell membranes and the leakage of cytoplasm. 相似文献
6.
Vesna Ili Zoran aponji Vesna Vodnik Branislav Potkonjak Petar Jovan
i Jovan Nedeljkovi Maja Radeti 《Carbohydrate polymers》2009,78(3):564-569
The aim of this study was to examine the antimicrobial efficiency and color changes of cotton fabrics loaded with colloidal silver nanoparticles which were synthesized without using any stabilizer. The influence of colloidal concentration and consequently, the amount of silver deposited onto the fabric surface, on antimicrobial activity against Gram-negative bacterium Escherichia coli, Gram-positive bacterium Staphylococcus aureus and fungus Candida albicans as well as laundering durability of obtained effects were studied. Although cotton fabrics loaded with silver nanoparticles from 10 ppm colloid exhibited good antimicrobial efficiency, their poor laundering durability indicated that higher concentrated colloids (50 ppm) must be applied for obtaining long-term durability. Additionally, the influence of dyeing with C.I. Direct Red 81 on antimicrobial activity of cotton fabrics loaded with silver nanoparticles as well as the influence of their presence on the color change of dyed fabrics were evaluated. Unlike color change, the antimicrobial efficiency was not affected by the order of dyeing and loading of silver nanoparticles. 相似文献
7.
Sivaranjana Paramasivan Nagarajan E.R. Varada Rajulu Anumakonda Hariram N. 《Preparative biochemistry & biotechnology》2013,43(7):574-581
AbstractIn the present study, cotton fabric nanocomposites with in situ generated copper nanoparticles (CuNPs) were prepared using Cassia alata leaf extract as reducing agent. The prepared cotton fabric nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscoy (SEM) techniques. The cotton fabric nanocomposites exhibited significant antibacterial activity against Escherichia coli bacteria. These nanocomposites retained the antibacterial activity even after 15 washes indicating the generation of permanent CuNPs in them. The antibacterial activity of the nanocomposites prepared even in sewerage water was also studied. The obtained results suggest that the cotton fabric nanocomposites with in situ generated CuNPs can be considered for medical and water treatment applications. 相似文献
8.
The synthesis of chitosan-based silver nanoparticles and their antibacterial activity 总被引:3,自引:0,他引:3
Chitosan-based silver nanoparticles were synthesized by reducing silver nitrate salts with nontoxic and biodegradable chitosan. The silver nanoparticles thus obtained showed highly potent antibacterial activity toward both Gram-positive and Gram-negative bacteria, comparable with the highly active precursor silver salts. Silver-impregnated chitosan films were formed from the starting materials composed of silver nitrate and chitosan via thermal treatment. Compared with pure chitosan films, chitosan films with silver showed both fast and long-lasting antibacterial effectiveness against Escherichia coli. The silver antibacterial materials prepared in our present system are promising candidates for a wide range of biomedical and general applications. 相似文献
9.
《Bioorganic & medicinal chemistry letters》2014,24(17):4298-4303
Here, we report a simple, eco-friendly and inexpensive approach for the synthesis of zinc oxide nanoparticles (ZnO NPs) using Coptidis Rhizoma. The ZnO NPs were characterized by UV–visible absorption spectroscopy, FTIR, SEM-EDX, TGA, TEM, SAED and XRD. TEM images confirmed the presence of spherical and rod shaped ZnO NPs in the range of 2.90–25.20 nm. Green synthesized ZnO NPS exhibited moderate antibacterial activity against Gram-positive and Gram-negative bacteria and excellent DPPH free radical scavenging activity. Synthesized ZnO NPs had no toxic effects on the RAW 264.7 cell line. 相似文献
10.
An environment-friendly, cheap method, biogenic synthesis of silver nanoparticles (AgNPs) is interesting as compared to physical and chemical synthesis methods. The aim of the present study was to utilize the inherent capability of Yarrowia lipolytica as a novel biocatalyst for green production of AgNPs using different strategies, including growing cells, resting cells, and cell-free extracts (CFE) under optimized reaction conditions. The produced AgNPs were evaluated with UV–vis spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and Fourier transform infrared spectrometry. In the growing cells strategy, Y. lipolytica produced spherical AgNPs under the optimized conditions, 2.5 mM of silver ions, 7.5 g/l of yeast biomass, a temperature of 30 °C, a pH of 6, and a shaking rate of 50 rpm after 48 h. The sizes and monodispersity of the AgNPs in the resting cells strategy were better than those in the other two. However, the AgNPs were produced faster in the CFE strategy. The antibacterial activity and minimal inhibitory concentration of the AgNPs against certain Gram-positive and Gram-negative bacteria were determined by the agar well diffusion and broth microdilution methods. The AgNPs had a considerable antibacterial effect compared to chloramphenicol as a broad-spectrum antibiotic. 相似文献
11.
Half-fin anchovy (Setipinna taty) hydrolysates (HAHp) was conjugated with zinc oxide nanoparticles (ZnO NPs) using a hydrothermal method to develop a novel antibacterial nanocomposite. The generated supernatants of the conjugate, designated as HAHp(3.0)/ZnO NPs, were characterized by transmission electron microscopy, high resolution transmission electron microscopy, and inductively coupled plasma-optical emission spectrometer. Results showed that HAHp(3.0) was absorbed on the surface of the ZnO NPs. The total content of zinc element was 9127.4 mg/kg in HAHp(3.0)/ZnO NPs. The increased antibacterial effects were observed for the HAHp(3.0)/ZnO NPs with the minimal inhibitory concentration of 3.5 μgprotein/mL against Escherichia coli (E. coli), Pseudomonas fluorescens, Salmonella and Staphylococcus aureus, compared to the bare HAHp(3.0). The antibacterial activity of HAHp(3.0)/ZnO NPs was further evaluated using E. coli as the model strain. The incubation of HAHp(3.0)/ZnO NPs increased the outer and inner membrane permeability in E. coli cells, and the leakages of potassium ions and the cytoplasmic β-galactosidase were detected during the process. Furthermore, porous structures were observed on the membrane of E. coli cells by scanning electron microscopy. In addition, the formation of intracellular reactive oxygen species was detected using fluorescence microscopy. The results suggested that the HAHp(3.0)/ZnO NPs could be a promising antibacterial nanocomposite. 相似文献
12.
Zhe-hui Zhao Xiao-xi Zhang Long-long Jin Shuang Yang Ping-sheng Lei 《Bioorganic & medicinal chemistry letters》2018,28(14):2358-2363
A series of quinoylalkyl side chains was designed and synthesized, followed by introduction into ketolides by coupling with building block 6 or 32. The corresponding targets 7a–n, 33b, and 33e were tested for their in vitro activities against a series of macrolide-sensitive and macrolide-resistant pathogens. Some of them showed a similar antibacterial spectrum and comparable activity to telithromycin. Among them, two C2-F ketolides, compounds 33b and 33e, displayed excellent activities against macrolide-sensitive and macrolide-resistant pathogens. 相似文献
13.
Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings 总被引:1,自引:0,他引:1
Shalumon KT Anulekha KH Nair SV Nair SV Chennazhi KP Jayakumar R 《International journal of biological macromolecules》2011,49(3):247-254
Sodium alginate (SA)/poly (vinyl alcohol) (PVA) fibrous mats were prepared by electrospinning technique. ZnO nanoparticles of size ∼160 nm was synthesized and characterized by UV spectroscopy, dynamic light scattering (DLS), XRD and infrared spectroscopy (IR). SA/PVA electrospinning was further carried out with ZnO with different concentrations (0.5, 1, 2 and 5%) to get SA/PVA/ZnO composite nanofibers. The prepared composite nanofibers were characterized using FT-IR, XRD, TGA and SEM studies. Cytotoxicity studies performed to examine the cytocompatibility of bare and composite SA/PVA fibers indicate that those with 0.5 and 1% ZnO concentrations are less toxic where as those with higher concentrations of ZnO is toxic in nature. Cell adhesion potential of this mats were further proved by studying with L929 cells for different time intervals. Antibacterial activity of SA/PVA/ZnO mats were examined with two different bacteria strains; Staphylococcus aureus and Escherichia coli, and found that SA/PVA/ZnO mats shows antibacterial activity due to the presence of ZnO. Our results suggest that this could be an ideal biomaterial for wound dressing applications once the optimal concentration of ZnO which will give least toxicity while providing maximum antibacterial activity is identified.f 相似文献
14.
《Saudi Journal of Biological Sciences》2020,27(7):1753-1759
The present study aimed in green synthesis and characterization of silver nanoparticles (AgNPs) using the leaves of Cleistanthus collinus. The NPs showed various absorption peaks between 3402 cm−1 and 1063 cm−1. FTIR spectrum revealed the presence of OH group, alkene, aromatic hydrocarbon, aliphatic fluro compound and aliphatic chloro compounds. Scanning electron microscopic analysis revealed the particle size ranged from 30 to 50 nm. The biosynthesized NPs have potent activity against Shigella dysentriae, Staphylococcus aureus and Bacillus subtilis and the zone of inhibition was 21 ± 1, 20 ± 2, 16 ± 2 mm, respectively. Toxicity of the synthesized NPs was tested on green gram (Vigna radiata) seed at various concentrations (20–100%) and germination was induced by NPs treated seeds. Shoot length and root length was higher in NPs treated plant than control plant (p < 0.01). Elevated level of catalase (CAT) and superoxide dismutase (SOD) and about 13% CAT and 7% SOD activity registered than control. Superoxide dismutase activity of root and shoot varied based on the dosage of AgNPs (p < 0.01). Also, the NPs (1%) showed significant larvicidal activity on Aedes aegypti and 100% mortality was achieved after 24 h treatment. The green synthesized NPs reduced methylene blue and 4-nitrophenol significantly (p < 0.01). The colouration of methylene blue and 4-nitrophenol were considerably reduced after 60 min showed the potential of dye degrading ability. 相似文献
15.
N-vanillylnonanamide (VAN) was successfully synthesized from vanillylamine hydrochloride by enzymatic catalysis in supercritical carbon dioxide (SC–CO2). Five commercial lipases, Novozyme 435, Lipozyme IM, Amano PS, Amano G and Sigma Candida cylindracea type VII, as biocatalysts for VAN synthesis were compared. Lipozyme IM exhibited best yields of tested lipases. Various parameters such as time, temperature, pressure and vanillylamine hydrochloride/nonanoic anhydride ratio that influenced the reaction were investigated. Nonanoic anhydride showed the best acyl donor of the employed substrates. An amidation yield of 40% was obtained when nonanoic anhydride and Lipozyme IM were used at 170 bar and 50 °C for 23 h in SC–CO2. Besides, addition of 2 mM divalent salts (CuCl2 and ZnCl2) significantly increased 11–23% yield of the VAN. The enzyme operational stability suggested that Lipozyme IM maintained over 50 °C of the initial activity for the synthesis of VAN after reuse for 69 h. Furthermore, in vitro, VAN behaved as a potential antibacterial against Escherichia coli. 相似文献
16.
《Saudi Journal of Biological Sciences》2023,30(9):103765
The increasing prevalence of antibiotic resistant bacteria is a significant healthcare crisis with substantial socioeconomic impact on global community. The development of new antibiotics is both costly and time-consuming prompting the exploration of alternative solutions such as nanotechnology which represents opportunities for targeted drug delivery and reduced MIC. However, concerns have arisen regarding genotoxic effects of nanoparticles on human health necessitating an evaluation of nanoparticle induced DNA damage.This study aimed to investigate the antibacterial potential of already prepared, characterized chitosan nanoparticles loaded with carvacrol and their potential synergism with Topoisomerase II inhibitors against S. aureus, E. coli and S. typhi using agar well diffusion, microdilution and checkerboard method. Genotoxicity was assessed through comet assay.Results showed that both alone and drug combinations of varying concentrations exhibited greater zones of inhibition at higher concentrations. Carvacrol nanoparticles combined with ciprofloxacin and doxorubicin significantly reduced MIC compared to the drugs used alone. The MIC50 values for ciprofloxacin were 35.8 µg/ml, 48.74 µg/ml, 35.57 µg/ml while doxorubicin showed MIC50 values of 20.79 µg/ml, 34.35 µg/ml, 25.32 µg/ml against S. aureus, E. coli and S. typhi respectively. The FICI of ciprofloxacin and doxorubicin with carvacrol nanoparticles found ≤ 0.5 Such as 0.44, 0.44,0.48 for ciprofloxacin and 0.45, 0.45, 0.46 for doxorubicin against S. aureus, E. coli and S. typhi respectively revealed the synergistic effect. The analysis of comet assay output images showed alteration of DNA at high concentrations.Our results suggested that carvacrol nanoparticles in combination with Topoisomerase inhibitors may prevent and control the emergence of resistant bacteria with reduced dose. 相似文献
17.
Zhang Y Li G Liu M You X Feng L Lv K Cao J Guo H 《Bioorganic & medicinal chemistry letters》2011,21(3):928-931
We report herein the design and synthesis of novel 7-(3-alkoxyimino-5-amino/methylaminopiperidin-1-yl)fluoroquinolone derivatives based on the structures of new fluoroquinolones IMB and DZH. The antibacterial activity of these newly synthesized compounds was also evaluated and compared with gemifloxacin, ciprofloxacin, and levofloxacin. Results revealed that all of the target compounds 10-27 have good potency in inhibiting the growth of Staphylococcus aureus including MSSA (MIC: 0.125-8 μg/mL), Staphylococcus epidermidis including MRSE (MIC: 0.25-16 μg/mL), Streptococcus pneumoniae (MIC: 0.125-4 μg/mL), and Escherichia coli (MIC: 0.25-0.5 μg/mL). In particular, some compounds showed useful activity against several fluoroquinolone-resistant strains, and the most active compound 15 was found to be 16-128, 2-32, and 4-8-fold more potent than the three reference drugs against fluoroquinolone-resistant MSSA, MRSA, and MRSE. 相似文献
18.
猪源产细菌素芽孢杆菌的筛选及抑菌特性 总被引:1,自引:0,他引:1
【背景】抗生素作为生长促进剂在畜牧业中的滥用,出现了严重的耐药基因富集和扩散问题,发掘新兴的生长促进剂作为饲料添加剂市场潜力巨大,目前益生菌制剂的开发最具潜力。【目的】通过对散养健康育肥猪粪便中芽孢杆菌的分离筛选,获得对典型肠道病原菌具有显著抑菌活性的芽孢杆菌,确定其产生的细菌素特性,以此对芽孢杆菌作为猪养殖业生长促进剂的潜力进行评价。【方法】采用梯度稀释涂平板法分离可培养细菌,利用牛津杯法检测菌株的抑菌活性。通过微生物形态及16S r RNA基因序列分析,确认6株产细菌素菌株的分类地位,并对其抗生素耐药性、细菌素稳定性及生理生化特征进行比较分析。【结果】从116株纯培养物中筛选得到6株对指示病原细菌具有显著抑菌效应的产细菌素芽孢杆菌,其中2株为贝莱斯芽孢杆菌(Bacillus velezensis),3株为枯草芽孢杆菌(Bacillus subtilis),1株为地衣芽孢杆菌(Bacillus licheniformis)。菌株B.licheniformis DY7和B.subtilis FX4对致泻、产肠毒素、出血性Escherichia coli均有显著的抑制效果,对头孢噻肟和红霉素高度敏感,其细菌素在p H 3.0-9.0、50-100°C水浴处理后仍具有明显的抑菌活性。【结论】猪源产细菌素芽孢杆菌DY7和FX4具有高效的病原细菌抑菌能力,所产细菌素稳定性较好,具有作为动物生长促进剂的应用潜力。 相似文献
19.
抗菌活性海洋真菌HN4-13的鉴定及其发酵优化 总被引:1,自引:0,他引:1
[目的]鉴定一株来源于连云港近岸海域沉积物并具有分泌抗菌活性代谢产物的真菌菌株HN4-13,优化其合成抗菌活性物质的发酵条件.[方法]通过形态学观察及ITS序列分析方法对菌株HN4-13进行鉴定;通过基础发酵培养基筛选、碳氮源及无机盐的单因素试验,继而采用正交试验设计优化其合成抗菌活性物质的发酵条件.[结果]菌株HN4-13被鉴定为黄柄曲霉(Aspergillus flavipes),其分泌抗菌活性产物的发酵条件为:4%蔗糖、0.5%蛋白胨、0.1% KCl、0.06% NaH2PO4、28℃、1%接种量、160 r/min培养9d.[结论]实验结果为进一步分离纯化菌株HN4-13所产抗菌活性代谢产物提供了基础. 相似文献
20.
Mehrez E. El-Naggar Sahar Shaarawy Mohamed S. Abdel-Aziz Hazem Abd El Moneim katry Ahmed M. Youssef 《Luminescence》2022,37(5):854-864
The target of our current work was designed to prepare titanium oxide doped silver nanoparticles (Ag/TiO2NPs) and their impact on the functionalization of cotton fabrics. Additionally, the effect of Ag/TiO2NPs was compared with the individually prepared silver nanoparticles (AgNPs) and titanium oxide nanoparticles (TiO2NPs). In this work, AgNPs were prepared in the solid state using arabic gum as efficient stabilizing and reducing agent. Then, two concentrations of the as-synthesized nanoparticles were used to functionalize the cotton fabrics by pad-dry-cure treatment in the presence of fixing agent to increase the durability of treated cotton fabrics against vigorous washing cycles. The findings implied that the as-prepared nanoparticles were successfully synthesized in nano-size with spherical shape and homogeneity. The efficacy of the functionalized cotton fabrics with those nanoparticles were evaluated in terms of multifunctional properties including antimicrobial and ultraviolet protection factor (UPF) and the mechanical features before and after many washing cycles; 10, 15 and 20 times. The resultant also proved that Ag/TiO2NPs-treated cotton fabrics exhibited the greater values of both antimicrobial and UPF properties with enhancement in the tensile strength and elongation features. Thus, the combination between these two nanoparticles through doping reaction is suitable for imparting superior antimicrobial properties against the four tested microbial species (Staphylococcus aureus, Escherichia coli, Candida albicans, and Aspergillus niger) and good UPF properties. Depending on the promising obtained results of the multi-finishing fabrics, these nanoparticles of Ag/TiO2NPs can be applied for the production of an efficient medical clothes for doctors, nurses and bed sheets for patients in order to kill and prevent the spread of bacteria and then, reduce the transmission of infection to others. 相似文献