首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

Rheumatoid arthritis (RA) is a chronic disease causing recurring inflammatory joint attacks. These attacks are characterized by macrophage infiltration contributing to joint destruction. Studies have shown that RA treatment efficacy is correlated to synovial macrophage number. The aim of this study was to experimentally validate the use of in vivo superparamagnetic iron oxide nanoparticle (SPION) labeled macrophages to evaluate RA treatment by MRI.

Methods

The evolution of macrophages was monitored with and without dexamethasone (Dexa) treatment in rats. Two doses of 3 and 1 mg/kg Dexa were administered two and five days following induction of antigen induced arthritis. SPIONs (7 mg Fe/rat) were injected intravenously and the knees were imaged in vivo on days 6, 10 and 13. The MR images were scored for three parameters: SPION signal intensity, SPION distribution pattern and synovial oedema. Using 3D semi-automated software, the MR SPION signal was quantified. The efficacy of SPIONs and gadolinium chelate (Gd), an MR contrast agent, in illustrating treatment effects were compared. Those results were confirmed through histological measurements of number and area of macrophages and nanoparticle clusters using CD68 immunostaining and Prussian blue staining respectively.

Results

Results show that the pattern and the intensity of SPION-labeled macrophages on MRI were altered by Dexa treatment. While the Dexa group had a uniform elliptical line surrounding an oedema pocket, the untreated group showed a diffused SPION distribution on day 6 post-induction. Dexa reduced the intensity of SPION signal 50-60% on days 10 and 13 compared to controls (P = 0.00008 and 0.002 respectively). Similar results were found when the signal was measured by the 3D tool. On day 13, the persisting low grade arthritis progression could not be demonstrated by Gd. Analysis of knee samples by Prussian blue and CD68 immunostaining confirmed in vivo SPION uptake by macrophages. Furthermore, CD68 immunostaining revealed that Dexa treatment significantly decreased the area and number of synovial macrophages. Prussian blue quantification corresponded to the macrophage measurements and both were in agreement with the MRI findings.

Conclusions

We have demonstrated the feasibility of MRI tracking of in vivo SPION-labeled macrophages to assess RA treatment effects.  相似文献   

2.
Radiofrequency ablation (RFA) is a widely used and effective treatment for primary or metastatic liver cancer with small-size lesions. However, the therapeutic effectiveness of RFA in controlling metastatic lesion or recurrence is still limited. As the major cell population in tumor microenvironment (TME), macrophages have been reported to be recruited to RFA-treated lesion, but their roles are still unclear. Herein, we successfully established the mouse model mimicking RFA-induced abscopal effect, in which RFA eliminated the local orthotopic liver tumor but failed to control growth of distant tumor. Correspondently, RFA suppressed protumoral activation of local tumor-associated macrophages (TAMs), but failed to reprogram TAMs in distance. Importantly, although RFA led to reduced proportion of hepatic CD169+ macrophages in local and decreased expression of immune inhibitory molecules Tim-3 and PD-L1, these alterations were not observed for CD169+ macrophages in distant TME. Further RNA-seq and flow cytometry analysis showed that hepatic CD169+ macrophages contributed to reprograming TME through recruiting CD8+ T/NK cells and suppressing accumulation of MDSCs/Tregs. Consistently, depletion of CD169+ macrophages in CD169-DTR mouse greatly promoted liver tumor progression and largely dampened RFA-induced tumor suppression. Notably, transfer of CD169+ macrophages synergistically enhanced RFA-induced inhibition of distant tumor. To our knowledge, this is the first study which demonstrates hepatic CD169+ macrophages as a key factor responsible for RFA-induced abscopal effect. Our data suggest RFA with transfer of CD169+ macrophages as a promising combination therapy to lessen metastasis or recurrence of liver cancer in patients.  相似文献   

3.
Jiang W  Xie H  Ghoorah D  Shang Y  Shi H  Liu F  Yang X  Xu H 《PloS one》2012,7(5):e37376
Currently, effective and specific diagnostic imaging of brain glioma is a major challenge. Nanomedicine plays an essential role by delivering the contrast agent in a targeted manner to specific tumor cells, leading to improvement in accurate diagnosis by good visualization and specific demonstration of tumor cells. This study investigated the preparation and characterization of a targeted MR contrast agent, transferrin-conjugated superparamagnetic iron oxide nanoparticles (Tf-SPIONs), for brain glioma detection. MR imaging showed the obvious contrast change of brain glioma before and after administration of Tf-SPIONs in C6 glioma rat model in vivo on T2 weighted imaging. Significant contrast enhancement of brain glioma could still be clearly seen even 48 h post injection, due to the retention of Tf-SPIONs in cytoplasm of tumor cells which was proved by Prussian blue staining. Thus, these results suggest that Tf-SPIONs could be a potential targeting MR contrast agent for the brain glioma.  相似文献   

4.
Superparamagnetic iron oxide nanoparticles (SPIONs) are excellent MR contrast agents when coated with biocompatible polymers such as hydrophilic synthetic polymers, proteins, polysaccharides, and lipids, which improve their stability and biocompatibility and reduce their aggregation. Various biocompatible materials, coated or conjugated with targeting moieties such as galactose, mannose, folic acid, antibodies and RGD, have been applied to SPION surfaces to provide tissue specificity to hepatocytes, macrophages, and tumor regions in order to reduce non-specific uptake and improve biocompatibility. This review discusses the recent progress in the development of biocompatible and hydrophilic polymers for improving stability of SPIONs and describes the carbohydrates based biocompatible materials that are providing SPIONs with cell/tissue specificity as ligands.  相似文献   

5.
Superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as promising contrast agents for magnetic resonance imaging. The influence of different surface coatings on the biocompatibility of SPIONs has been addressed, but the potential impact of the so-called corona of adsorbed proteins on the surface of SPIONs on their biological behavior is less well studied. Here, we determined the composition of the plasma protein corona on silica-coated versus dextran-coated SPIONs using mass spectrometry-based proteomics approaches. Notably, gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed distinct protein corona compositions for the two different SPIONs. Relaxivity of silica-coated SPIONs was modulated by the presence of a protein corona. Moreover, the viability of primary human monocyte-derived macrophages was influenced by the protein corona on silica-coated, but not dextran-coated SPIONs, and the protein corona promoted cellular uptake of silica-coated SPIONs, but did not affect internalization of dextran-coated SPIONs.  相似文献   

6.
7.
RNA interference therapy utilizes physiological gene silencing that is originally found as a defense function against foreign RNAs. To silence the target gene, short double stranded RNA has to be delivered to cytosol. However, lack of a suitable delivering carrier is the major obstacle to practical usage. In this study, we present a novel complex consisting of β-1,3-glucan and short interference RNA (siRNA) as a solution for the problem. We used a β-1,3-glucan schizophyllan (SPG) and a siRNA (dA-siTNFα) that is designed to suppress tumor necrosis factor alpha (TNF-α), where the sense strand of siRNA has (dA40) tail to induce complexation with SPG. The dA-siTNFα/SPG complex showed higher affinity to recombinant dectin-1 than SPG itself, where dectin-1 is a β-1,3-glucan receptor expressed on antigen presenting cells and can be a target for specific delivery. The complex suppressed lipopolysaccharide (LPS)-induced TNF-α secretion by peritoneal macrophages in vitro. When the complex was intravenously injected, the oligonucleotide accumulated in liver; especially distributed into Kupffer cells. The complex significantly decreased the serum TNF-α level for the mouse model of LPS-induced acute hepatitis. This new siRNA delivery system may overcome the problem for RNA interference therapy because of its non-toxicity and high target specificity.  相似文献   

8.
Hepatic macrophages are key immune cells associated with the broad ranges of liver diseases including steatosis, inflammation and fibrosis. Hepatic macrophages interact with other immune cells and orchestrate hepatic immune circumstances. Recently, the heterogenous populations of hepatic macrophages have been discovered termed residential Kupffer cells and monocyte-derived macrophages, and identified their distinct population dynamics during the progression of various liver diseases. Liver injury lead to Kupffer cells activation with induction of inflammatory cytokines and chemokines, which triggers recruitment of inflammatory monocyte-derived macrophages. To understand liver pathology, the functions of different subtypes of liver macrophages should be regarded with different perspectives. In this review, we summarize recent advances in the roles of hepatic macrophages under liver damages and suggest hepatic macrophages as promising therapeutic targets for treating liver diseases.  相似文献   

9.
Unmethylated CpG sequences (CpG DNA) can induce Th1 response and thus become a potential immunotherapeutic agent. A key step in the treatment is to transport CpG DNA to its receptor TLR9 located in the endocytosis pathway of target immune cells. For the effective transport, we prepared a novel complex from a β-1,3-glucan schizophyllan (SPG) and CpG DNA, and administered the complex to murine peritoneal macrophages that had been previously activated by thioglycollate and expressed a major β-1,3-glucan receptor Dectin-1 on the cellular surface. Flow cytometric analysis and microscopic observation showed that the complex was taken up by the macrophage through Dectin-1 mediated pathway. Indeed, ELISA demonstrated that IL-12 production was increased sigmoidally with increasing SPG/CpG DNA ratio in the complexation, and reached the maximum at the SPG-rich composition. In the present work, we describe a new approach to deliver CpG DNA to immune cells by use of a β-1,3-glucan/DNA complex.  相似文献   

10.
Yao Y  Wang Y  Zhang Y  Li Y  Sheng Z  Wen S  Ma G  Liu N  Fang F  Teng GJ 《PloS one》2012,7(3):e33523

Background

Angiotensin II (ANG II) promotes vascular inflammation and induces abdominal aortic aneurysm (AAA) in hyperlipidemic apolipoprotein E knock-out (apoE−/−) mice. The aim of the present study was to detect macrophage activities in an ANG II-induced early-stage AAA model using superparamagnetic iron oxide (SPIO) as a marker.

Methodology/Principal Findings

Twenty-six male apoE−/− mice received saline or ANG II (1000 or 500 ng/kg/min) infusion for 14 days. All animals underwent MRI scanning following administration of SPIO with the exception of three mice in the 1000 ng ANG II group, which were scanned without SPIO administration. MR imaging was performed using black-blood T2 to proton density -weighted multi-spin multi-echo sequence. In vivo MRI measurement of SPIO uptake and abdominal aortic diameter were obtained. Prussian blue, CD68,α-SMC and MAC3 immunohistological stains were used for the detection of SPIO, macrophages and smooth muscle cells. ANG II infusion with 1000 ng/kg/min induced AAA in all of the apoE−/− mice. ANG II infusion exhibited significantly higher degrees of SPIO uptake, which was detected using MRI as a distinct loss of signal intensity. The contrast-to-noise ratio value decreased in proportion to an increase in the number of iron-laden macrophages in the aneurysm. The aneurysmal vessel wall in both groups of ANG II treated mice contained more iron-positive macrophages than saline-treated mice. However, the presence of cells capable of phagocytosing haemosiderin in mural thrombi also induced low-signal-intensities via MRI imaging.

Conclusions/Significance

SPIO is taken up by macrophages in the shoulder and the outer layer of AAA. This alters the MRI signaling properties and can be used in imaging inflammation associated with AAA. It is important to compare images of the aorta before and after SPIO injection.  相似文献   

11.
12.
Oleic acid-conjugated chitosan (oleyl-chitosan) is a powerful platform for encapsulating oleic acid-decorated iron oxide nanoparticles (ION), resulting in a good magnetic resonance imaging (MRI) probe. Oleyl-chitosan could self-assemble into core-shell structures in aqueous solution and provide the effective core compartment for loading ION. ION-loaded oleyl-chitosan nanoparticles showed good enhanced MRI sensitivity in a MR scanner. Cy5.5 dye was accessed to the oleyl-chitosan conjugate for near-infrared (NIR) in vivo optical imaging. After intravenous injection of ION-loaded Cy5.5-conjugated oleyl-chitosan (ION-Cy5.5-oleyl-chitosan) nanoparticles in tumor-bearing mice, both NIRF and MR imaging showed the detectable signal intensity and enhancement in tumor tissues via enhanced permeability and retention (EPR) effect. Tumor accumulation of the nanoparticles was confirmed through ex vivo fluorescence images and Prussian blue staining images in tumor tissues. It is concluded that ION-Cy5.5-oleyl-chitosan nanoparticle is highly an effective imaging probe for detecting tumor in vivo.  相似文献   

13.
Previous studies have shown that β-glucans extracted from yeast or fungi potentiate immune responses. In the present study, the immunomodulatory activities of β-(1→3, 1→4)-glucan, derived from oats, were investigated. The ability of oat β-glucan (OβG) to stimulate IL-1 and TNF-α release from murine peritoneal macrophages and the murine macrophage cell line P338D1, was assessed. In vitro stimulation of macrophages with OβG resulted in the production of IL-1 in a dose and time-dependent manner, whereas only small amounts of TNF-α could be detected in the culture supernatants. OβG also induced the production of IL-2, IFN-γ and IL-4 secretion in a dose-dependent manner in cultured spleen cells. The intraperitoneal administration of OβG in mice resulted in the accumulation of leucocytes, predominantly macrophages, in the peritoneal cavity. Furthermore, OβG was tested for its ability to enhance non-specific resistance to a bacterial challenge in mice. Survival of mice challenged with Staphylococcus aureus was enhanced by a single intraperitoneal administration of 500 μg of OβG 3 days prior to bacterial challenge. In conclusion, these studies demonstrated that OβG possesses immunomodulatory activities capable of stimulating immune functions both in vitro and in vivo.  相似文献   

14.
Phagocytes engulf pathogenic microbes, kill them and degrade their cellular macromolecules by hydrolytic enzymes in phagolysosomes. However, such enzymes are unable to degrade some microbial polysaccharides, and fate of such indigestible polysaccharides in phagocytes remains uncertain. Using the extracellular domain of Dectin-1 as β-glucan-specific probes, we succeeded in detection of soluble and Dectin-1-reactive β-glucan discharged from mouse RAW 264.7 and human THP-1 macrophage cell lines as well as mouse peritoneal macrophages, which had phagocytized insoluble β-glucan particles. The RAW 264.7 cell culture-supernatant containing the discharged β-glucan stimulated naïve RAW 264.7 cells, resulting in the induction of cytokine expression. Such discharge of Dectin-1-reactive β-glucan from macrophage cells was inhibited by either NADPH oxidase inhibitors (apocynin and diphenylene iodonium) or radical scavengers (N-acetyl cysteine and MCI-186). Moreover, reactive oxygen species (ROS) produced by a Cu2+/ascorbic acid system solubilized insoluble β-glucan particles in vitro, and a part of the solubilized β-glucan was Dectin-1 reactive and biologically active in macrophage activation. The soluble and biologically active β-glucan was degraded further during prolonged exposure to ROS. These results suggest that degraded but Dectin-1-reactive β-glucan is discharged from macrophage cells phagocytizing insoluble β-glucan particles and stimulates not only themselves again but also the other naïve phagocytes, leading to the effective elimination of infecting microbes and the ultimate breakdown and inactivation of metabolically resistant β-glucan.  相似文献   

15.
BackgroundDietary fiber reduces the intestinal absorption of nutrients and the blood concentrations of cholesterol and triglycerides.AimWe wished to test the hypothesis that high-viscosity (HV) and low-viscosity preparations of barley and oat β-glucan modify the expression of selected genes of lipid-binding proteins in the intestinal mucosa and reduce the intestinal in vitro uptake of lipids.MethodsFive different β-glucan extracts were separately added to test solutions at concentrations of 0.1–0.5% (wt/wt), and the in vitro intestinal uptake of lipids into the intestine of rats was assessed. An intestinal cell line was used to determine the effect of β-glucan extracts on the expression of intestinal genes involved in lipid metabolism and fatty acid transport.ResultsAll extracts reduced the uptake of 18:2 when the effective resistance of the unstirred water layer was high. When the unstirred layer resistance was low, the HV oat β-glucan extract reduced jejunal 18:2 uptake, while most extracts reduced ileal 18:2 uptake. Ileal 18:0 uptake was reduced by the HV barley extract, while both jejunal and ileal cholesterol uptakes were reduced by the medium-purity HV barley extract. The inhibitory effect of HV barley β-glucan on 18:0 and 18:2 uptake was more pronounced at higher fatty acid concentrations. The expression of genes involved in fatty acid synthesis and cholesterol metabolism was down-regulated with the HV β-glucan extracts. β-Glucan extracts also reduced intestinal fatty-acid-binding protein and fatty acid transport protein 4 mRNA.ConclusionsThe reduced intestinal fatty acid uptake observed with β-glucan is associated with inhibition of genes regulating intestinal uptake and synthesis of lipids. The inhibitory effect of β-glucan on intestinal lipid uptake raises the possibility of their selective use to reduce their intestinal absorption.  相似文献   

16.
Tian J  Ma J  Wang S  Yan J  Chen J  Tong J  Wu C  Liu Y  Ma B  Mao C  Jiao Z  Shao Q  Lu L  Xu H 《Cellular immunology》2011,(2):183-187
β-Glucans have been shown to enhance immune responses for centuries, which contributes to their anti-tumor property. However, their mechanisms of action are still elusive. Dectin-1, the C-type lectin receptor for β-glucan, is expressed abundantly on dendritic cells (DCs). Activation of DCs via Dectin-1 can lead to the maturation of DC, inducing both innate and adaptive immune responses against tumor development and microbial infection. In this study, we found that particulate yeast-derived β-glucans could induce the maturation of murine dendritic cell line D2SC/1 cells and increase the expression of mGITRL on D2SC/1 cells via Dectin-1/Syk pathway in a dose dependent manner. Furthermore, we demonstrated that the increased mGITRL on D2SC/1 cells could impair the suppressive activity of CD4+CD25+ regulatory T cells (Tregs) and enhance the proliferation of CD4+CD25 effector T cells (Teffs). These findings suggest that particulate β-glucan can be used as immunomodulator to stimulate potent T cell-mediated adaptive immunity while down-regulate immune suppressive activity, leading to a more efficient defense mechanism against tumor development or infectious diseases.  相似文献   

17.
β-glucan is an important polysaccharide due to its medicinal properties of stimulating the immune system and preventing chronic diseases such as cancer. The aim of the present study was to determine the anticlastogenic effect of β-glucan in cells exposed to ultraviolet radiation (UV). Chromosome aberration assay was performed in drug-metabolizing cells (HTC) and non drug-metabolizing cells (CHO-K1 and repair-deficient CHO-xrs5), using different treatment protocols. Continuous treatment (UV + β-glucan) was not effective in reducing the DNA damage only in CHO-xrs5 cells. However, the pre-treatment protocol (β-glucan before UV exposition) was effective in reducing DNA damage only in CHO-K1 cells. In post-treatment (β-glucan after UV exposition) did not show significative anticlastogenic effects, although there was a tendency toward prevention. The data suggest that β-glucan has more than one action mechanism, being capable of exerting desmutagenic as well as bio-antimutagenic action. The findings also suggest that the presence of the xenobiotic metabolizing system can reduce the chemopreventive capacity of β-glucan. Therefore, these results indicate that β-glucan from Saccharomyces cerevisiae can be used in the prevention and/or reduction of DNA damage.  相似文献   

18.
Antitumor mAb bind to tumors and activate complement, coating tumors with iC3b. Intravenously administered yeast beta-1,3;1,6-glucan functions as an adjuvant for antitumor mAb by priming the inactivated C3b (iC3b) receptors (CR3; CD11b/CD18) of circulating granulocytes, enabling CR3 to trigger cytotoxicity of iC3b-coated tumors. Recent data indicated that barley beta-1,3;1,4-glucan given orally similarly potentiated the activity of antitumor mAb, leading to enhanced tumor regression and survival. This investigation showed that orally administered yeast beta-1,3;1,6-glucan functioned similarly to barley beta-1,3;1,4-glucan with antitumor mAb. With both oral beta-1,3-glucans, a requirement for iC3b on tumors and CR3 on granulocytes was confirmed by demonstrating therapeutic failures in mice deficient in C3 or CR3. Barley and yeast beta-1,3-glucan were labeled with fluorescein to track their oral uptake and processing in vivo. Orally administered beta-1,3-glucans were taken up by macrophages that transported them to spleen, lymph nodes, and bone marrow. Within the bone marrow, the macrophages degraded the large beta-1,3-glucans into smaller soluble beta-1,3-glucan fragments that were taken up by the CR3 of marginated granulocytes. These granulocytes with CR3-bound beta-1,3-glucan-fluorescein were shown to kill iC3b-opsonized tumor cells following their recruitment to a site of complement activation resembling a tumor coated with mAb.  相似文献   

19.
The ruminal mucosal epithelium can secrete defensins, which play a key role in innate and adaptive immunity and are considered potential replacements for antibiotics. Of these, sheep β-defensin-1 (SBD-1) is one of the most potent molecules produced by ovine ruminal epithelial cells (ORECs). β-glucan, safe and effective immune activators, can stimulate innate and adaptive immune responses. Here we examined whether β-glucan from Saccharomyces cerevisiae can induce SBD-1 expression in ORECs, as well as the underlying mechanism. First, ORECs were cultured, and quantitative real-time PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA) were used to study the effects of different β-glucan concentrations. Then western blotting, immunohistochemistry, and immunocytofluorescence were performed to investigate the regulatory mechanism of β-glucan-induced SBD-1 upregulation. We show that β-glucan can induce the release of SBD-1 from ORECs; the highest SBD-1 mRNA and protein expression was achieved after treatment with 10 μg/mL at 2 and 4 h. Moreover, β-glucan-induced SBD-1 production was mediated by the activation of dendritic-cell-associated C-type lectin 1 (Dectin-1) receptors, Syk, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). These findings highlight the immunomodulatory effects of β-glucan on ORECs.  相似文献   

20.
目的利用荧光素酶基因标记的人肝癌细胞株BEL-7402建立裸鼠肝原位移植模型,及小鼠肝原位移植模型的生物发光和小动物PET-CT成像的比较。方法构建表达荧光素酶基因的真核表达载体并将其转入人肝癌细胞BEL-7402,经梯度浓度G418筛选获得稳定表达荧光素酶基因的细胞克隆并扩大培养。BALB/cA-nu裸鼠肝门静脉接种5×105个发光细胞使其成瘤,活体荧光成像和小动物PET-CT成像系统观察肿瘤的生长情况。结果获得了稳定表达Luc的人肝癌细胞株,将其接种到裸鼠体内,活体荧光成像系统观察发现能够成瘤,小动物PET-CT影像观察发现小鼠肝脏边缘对18 F-FDG有高摄取区域。结论利用荧光素酶基因标记的人肝癌细胞BEL-7402成功建立了原位肝癌裸鼠模型,小动物活体成像结合小动物PET-CT技术为原位肿瘤模型的建立提供了一种新的可靠的技术,为进一步研究肝癌生长转移机制和药物开发提供了新的有用工具。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号