首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A central composite rotatable design (CCRD) was used to evaluate the effects of walnut oil (WO, 3-6%, w/w) and gum arabic (GA, 5-10%, w/w) on the average droplet size (D(32)), specific surface area (SSA), polydispersity index (span), apparent viscosity, interfacial tension and opacity of walnut-beverage emulsions. The response surface methodology (RSM) showed that the significant second-order polynomial regression equations with high R(2) (>0.95) were successfully fitted for all responses as function of independent variables. The linear effect of WO had a significant term in all reduced models. The overall optimum region was found to be at the combined level of 10% (w/w) GA content and 5.84% (w/w) WO concentration. At this optimum point, D(32), SSA, span, apparent viscosity, interfacial tension and opacity of emulsions were 0.609 μm, 8.236 m(2)/ml, 0.886, 1.336 Pa s, 51.37 mN/m and 0.810, respectively. No significant (p>0.05) difference was found between the actual values and predicted values. Moreover, principal component analysis (PCA), conducted via PCA variable loadings and cluster dendrogram was able to discriminate the emulsions with different formulations into separate classes.  相似文献   

2.
The effect of the molecular weight of the gum arabic sample on droplet-size distributions of n-hexadecane-in-water emulsions (1% wt gum, 10% vol. oil) has been investigated at neutral pH. A high-molecular-weight fraction (0·87% nitrogen) corresponding to 10% of a natural gum (0·38% N) gives initially slightly larger droplets but better emulsion stability than the low-molecular-weight fraction (0·35% N) corresponding to the residual 90% of the original gum. Samples of a different gum arabic (0·35% N) subjected to different degrees of controlled degradation give decreasing emulsion stability with reduction in weight-average molecular weight from 3·1 × 105 to 2·2 × 105Da.  相似文献   

3.
The interaction of gum arabic, maltodextrin and pullulan with lipids in emulsion systems was investigated. Interfacial tension and interfacial viscosity measurements revealed that only gum arabic could adsorb and form a viscoelastic film at the oil-water interface. Good emulsifying activity was demonstrated for gum arabic, whereas fine emulsions could not be produced from the other polysaccharide solutions and oil. Frequency-dependent increases in the storage and loss moduli were observed for all the polysaccharide solutions. Such rheological behavior did not substantially change when maltodextrin and pullulan were mixed with oil to form emulsions. However, the frequency-dependence of the dynamic moduli disappeared in the gum arabic-stabilized emulsion, suggesting the formation of a network structure in which oil droplets could form junctions with gum arabic chains. The results on the inhibition of lipid oxidation by polysaccharides suggest that gum arabic protected lipids from the attack of lipoxygenase and free radicals by adsorbing at the oil droplet surface.  相似文献   

4.
We investigated the surface behavior of gum Arabic (GA) as well as its effects on the lipolytic activity of human pancreatic lipase (HPL) and Humicola lanuginosa lipase (HLL), using emulsions of triacylglycerols (TAG) with various chain lengths. The effects of GA on the interfacial binding of HPL were also investigated. In the presence of 4 mM sodium taurodeoxycholate (NaTDC), GA (3% w/v, final concentration) had no effect on the HPL activity measured in the presence of colipase, whatever the type of TAG used. However, in the absence of bile salts or at low bile salt concentrations, GA inhibited the HPL activity when trioctanoin (TC8) and purified soybean oil (PSO) were used as substrates. At 3% (w/v, final concentration), GA strongly desorbed pure HPL from the TC8 interface and the classical anchoring effect of colipase was clearly observed. Both crude and dialyzed GA solutions were found to be highly tensioactive at the air-water as well as the oil-water interface using the drop technique. In conclusion, GA, or a putative contaminant present in GA, was found to be surface active and to have similar effects to those of bile salts on the interfacial binding and activity of HPL.  相似文献   

5.
The objectives of the present study were to assess how the stability of the emulsion recovered from aqueous extraction processing of soybeans was affected by characteristics of the starting material and extraction and demulsification conditions. Adding endopeptidase Protex 6L during enzyme-assisted aqueous extraction processing (EAEP) of extruded soybean flakes was vital to obtaining emulsions that were easily demulsified with enzymes. Adding salt (up to 1.5 mM NaCl or MgCl2) during extraction and storing extruded flakes before extraction at 4 and 30 °C for up to 3 months did not affect the stabilities of emulsions recovered from EAEP of soy flour, flakes and extruded flakes. After demulsification, highest free oil yield was obtained with EAEP of extruded flakes, followed by flour and then flakes. The same protease used for the extraction step was used to demulsify the EAEP cream emulsion from extruded full-fat soy flakes at concentrations ranging from 0.03% to 2.50% w/w, incubation times ranging from 2 to 90 min, and temperatures of 25, 50 or 65 °C. Highest free oil recoveries were achieved at high enzyme concentrations, mild temperatures, and short incubation times. Both the nature of enzyme (i.e., protease and phospholipase), added alone or as a cocktail, concentration of enzymes (0.5% vs. 2.5%) and incubation time (1 vs. 3 h), use during the extraction step, and nature of enzyme added for demulsifying affected free oil yield. The free oil recovered from EAEP of extruded flakes contained less phosphorus compared with conventional hexane-extracted oil. The present study identified conditions rendering the emulsion less stable, which is critical to increasing free oil yield recovered during EAEP of soybeans, an environmentally friendly alternative processing method to hexane extraction.  相似文献   

6.
The study of the stability of concentrated oil-in-water emulsions is imperative to provide a scientific approach for an important problem in the beverage industry, contributing to abolish the empiricism still present nowadays. The use of these emulsions would directly imply a reduction of transportation costs between production and the sales points, where dilution takes place. The goal of this research was to evaluate the influence of the main components of a lemon emulsion on its stability, aiming to maximize the concentration of oil in the beverage and to correlate its physicochemical characteristics to product stability, allowing an increase of shelf life of the final product. For this purpose, analyses of surface and interface tension, electrokinetic potential, particle size and rheological properties of the emulsions were conducted. A 24-1 fractional factorial design was performed with the following variables: lemon oil/water ratio (30% to 50%), starch and Arabic gum concentrations (0% to 30%) and dioctyl sodium sulfosuccinate (0 mg/L to 100 mg/L), including an evaluation of the responses at the central conditions of each variable. Sequentially, a full design was prepared to evaluate the two most influential variables obtained in the first plan, in which concentration of starch and gum ranged from 0% to 20%, while concentration of lemon oil/water ratio was fixed at 50%, without dioctyl sodium sulfosuccinate. Concentrated emulsions with stability superior to 15 days were obtained with either starch or Arabic gum and 50% lemon oil. The most stable formulations presented viscosity over 100 cP and ratio between the surface tension of the emulsion and the mucilage of over 1. These two answers were selected, since they better represent the behavior of emulsions in terms of stability and could be used as tools for an initial selection of the most promising formulations.  相似文献   

7.
The influence of the nature of the oil phase on the emulsifying behaviour of gum arabic has been investigated at neutral pH. Time-dependent droplet-size distributions are reported for oil-in-water emulsions (1% wt gum, 10% vol. oil) made with n-hexadecane, -limonene and orange oil. Three different gum samples of known analytical composition have been compared, and it is found that the gum giving the most rapid lowering of the tension at the n-hexadecane-water interface also gives the most stable n-hexadecane-in-water emulsions as well as the smallest droplets with all three oils. On the other hand, the same gum gives the poorest stability of the -limonene-in-water and orange oil-in-water emulsions.  相似文献   

8.
An acceptable strategy to incorporate canthaxanthin (CX) as a natural colorant into products is by means of oil-in-water emulsions. The used CX in this study was produced by bacterium Dietzia natronolimnaea HS-1 using a batch bioreactor system. A central composite rotatable design-response surface methodology (CCRD-RSM) consisting of three-factored factorial design with five levels was applied for analysis of the results to obtain the optimal formulation of emulsions. Three independent variables including fenugreek gum (FG, 0.2-0.5%, w/w), coconut oil (CO, 6-10%, w/w), and CO/CX ratio (10:1-50:1) were transformed to coded values and second-order polynomial models was developed to predict the responses (p<0.0001). The studied independent variables were the stability, viscosity and droplet size properties such as volume-weighted mean diameter (D(43)), specific surface area (S(v)) and polydispersity index (PDI) of emulsions. The 3-D response surface plot derived from the mathematical models was used to determine the optimal conditions. Main emulsion components under the optimum conditions ascertained presently by RSM: 50:1 CO/CX ratio, 0.49% (w/w) FG content and 6.28% (w/w) CO concentration. At this optimum point, stability, viscosity, D(43), S(v) and PDI were 90.6%, 0.0118Pas, 0.595μm, 12.03m(2)/ml and 1.380, respectively.  相似文献   

9.
Graft copolymer of xanthan gum (XG) and ethylacrylate (EA) has been synthesized by free radical polymerization using potassium peroxydisulfate (KPS) as an initiator in an air atmosphere. The grafting parameters, i.e. grafting ratio and efficiency decrease with increase in concentration of xanthan gum from 0.050 mg/25 mL to 0.350 mg/25 mL, but these grafting parameters increase with increase in concentration of ethylacrylate from 9 × 10−2 to 17 × 10−2 ML−1, and KPS from 15 × 10−3 to 35 × 10−3 ML−1. The graft copolymer has been characterized by FTIR, XRD, TGA and SEM analysis. The grafted copolymer was also evaluated as efficient Zn2+ metal binder. The grafted copolymer shows improvement in the stability, solubility as well as their sorbing capacity. Thus graft copolymer formed could find applications in metal ion removal and in drug delivery.  相似文献   

10.
The enzymatic cross-linking of adsorbed biopolymer nanoparticles formed between whey protein isolate (WPI) and sugar beet pectin using the complex coacervation method was investigated. A sequential electrostatic depositioning process was used to prepare emulsions containing oil droplets stabilized by WPI – nanoparticle – membranes. Firstly, a finely dispersed primary emulsion (10 % w/w miglyol oil, 1 % w/w WPI, 10 mM acetate buffer at pH 4) was produced using a high-pressure homogenizer. Secondly, a series of biopolymer particles were formed by mixing WPI (0.5 % w/w) and pectin (0.25 % w/w) solutions with subsequent heating above the thermal denaturation temperature (85 °C, 20 min) to prepare dispersions containing particles in the submicron range. Thirdly, nanoparticle-covered emulsions were formed by diluting the primary emulsion into coacervate solutions (0–0.675 % w/w) to coat the droplets. Oil droplets of stable emulsions with different interfacial membrane compositions were subjected to enzymatic cross-linking. We used cross-linked multilayered emulsions as a comparison. The pH stability of primary emulsions, biopolymer complexes and nanoparticle-coated base emulsions, as well as multilayered emulsions, was determined before and after enzyme addition. Freeze-thaw stability (?9 °C for 22 h, 25 °C for 2 h) of nanoparticle-coated emulsions was not affected by laccase. Results indicated that cross-linking occurred exclusively in the multilamellar layers and not between adsorbed biopolymer nanoparticles. Results suggest that the accessibility of distinct structures may play a key role for biopolymer-cross-linking enzymes.  相似文献   

11.
Corn fiber gum (CFG) is a hemicellulose (arabinoxylan)-enriched fraction obtained by the extraction of corn bran/fiber using a mild alkaline hydrogen peroxide process. The unique polysaccharide, CFG, with its low solution viscosity has been proposed as a stabilizer for oil-in-water emulsions. We have verified that in some model systems, CFG can out-perform the “gold standard” emulsifier, gum arabic. Our results have also shown that “pure” CFG fractions often contain considerable amounts of associated lipids, phenolic acids and proteins which contribute to its emulsifying properties. The extraction of CFG with alkaline hydrogen peroxide was investigated using different combinations of alkali concentration and time to identify the optimum extraction condition to retain its functional groups (protein, lipids and phenolic acids). The pure CFG prepared by this process was hydrolyzed with 1.5 N methanolic KOH at 70 °C for 1 h to release hydroxycinnamic acids (p-coumaric and ferulic) and lipids. The total lipid was extracted with chloroform/methanol, evaporated and quantified. The released phenolic acids were identified and quantified using HPLC with detection by both UV and evaporative light-scattering detection (ELSD). The protein content was determined by an AACC approved combustion method. The total lipids, phenolic acids and protein content in CFGs isolated with lower alkali concentration for a shorter time was comparatively higher than CFGs isolated with higher alkali concentration for a longer time. The presence of these phenolic acids, lipids and protein in CFG may contribute to its excellent emulsifying properties and may combine to give improved chemical, physical, and even nutritional properties. Understanding these critical structural elements required for optimal emulsification properties will allow future commercial producers of CFG to provide consistent quality and functionality in their products.  相似文献   

12.
Dodecanol was covalently coupled to sodium alginate (NaAlg) via ester functions using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC-HCl) as a coupling reagent to provide an amphiphilic dodecanol alginate (DA) for subsequent use in oil-in-water (O/W) emulsion application. The structure of DA was confirmed by FT-IR spectrometry. The stability of the emulsions prepared with different concentrations (0.3-1.2 wt%) of DA or 1.0 wt% NaAlg was evaluated by measuring droplet size, microstructure, viscosity and creaming. The results showed that the emulsions containing 1.0 wt% NaAlg, 0.3 and 0.5 wt% DA were unstable and the emulsions containing 0.8-1.2 wt% DA presented better stability during storage.  相似文献   

13.
H Li  R Chen  X Lu  W Hou 《Carbohydrate polymers》2012,90(3):1330-1336
Rheological properties of aqueous solution containing xanthan gum (XG) and cationic cellulose JR400 were investigated at different composition ratio, shear rate, pH and electrolyte concentrations. It was found that the mixing of XG and JR400 can induce a viscosity-increasing effect for the mixed solution. As the concentration fraction (f(JR)) of JR400 in the mixed solution increases from 0 to 0.40 with the total polymer concentration (c(t)) of 1%, the solution transforms from an elastic fluid into a viscoelastic one, while as f(JR) decreases from 1 to 0.78, the solution transforms from a viscous fluid into a viscoelastic one. At pH 5-10, both the viscosity and elasticity of XG/JR400 mixture (f(JR)=0.15) are independent of pH and the viscosity-increasing effect is obvious. Outside this pH range, the viscosity, elasticity and viscosity-increasing effect of the mixture decrease. The increase of added NaCl concentration and shear rate can induce the decrease of viscosity, elasticity and viscosity-increasing effect of the XG/JR400 mixture.  相似文献   

14.
Natural polysaccharides, due to their outstanding merits, have received more and more attention in the field of drug delivery. In the present study tamoxifen citrate, TMX (a non-steroidal antiestrogenic drug) loaded guar gum nanoparticles, GG NPs, crosslinked with glutaraldehyde were prepared for treatment of breast cancer. An oil in water (o/w) emulsion polymer cross-linking method was employed for preparation of blank and drug loaded sustained release nature biodegradable nanoparticles. Prepared nanoparticles were characterized by morphology in scanning electron microscope (SEM), size distribution in transmission electron microscope (TEM), TMX loading by high performance liquid chromatography (HPLC) and in vitro drug release characteristics. An overall sustained release of the drug from the biodegradable nanoparticles was observed in in vitro release studies. The release of TMX from GG NPs was found to be effected by guar gum and glutaraldehyde concentration. Regression coefficient (R2) analysis suggested that the predominant mechanism behind the drug release from the nanoparticles was time dependent release and diffusion. In vivo studies on female albino mice demonstrated maximum uptake of the drug by mammary tissue after 24 h of administration with drug loaded guar gum nanoparticles in comparison with that with the tablet form of the drug. These findings demonstrate that controlled release of TMX from GG NPs could be a potential alternative pharmaceutical formulation in passive targeting of TMX in breast cancer treatments.  相似文献   

15.
Lipid emulsions with saturated triacylglycerols (TAGs) with 4 to 10 carbons in each acyl chain were prepared to study how the oil component alters the stability of the lipid emulsions when phosphatidylcholines were used as emulsifiers. The average droplet size of the emulsions became smaller as the chain length of the TAG increased. For a given oil, emulsion with smaller droplets was formed with an emulsifier having higher HLB value. The influence of HLB values on the droplet size was biggest for the tributyrin (C4) emulsions. For the tricaprylin (C8) emulsions, droplet size was identical at given emulsifier concentrations regardless of HLB values. The HLB value and the concentration of the emulsifiers also affect the droplet size of the emulsions. The emulsions with smaller average droplet size were more stable than with bigger size for 20 days. The oil and water (o/w) interfacial tension is inversely proportional to the initial droplet size of the emulsion.  相似文献   

16.
The effect of main beverage emulsion components namely Arabic gum (7–13% w/w), xanthan gum (0.1–0.3% w/w) and orange oil (6–10% w/w) on physicochemical properties of orange beverage emulsion was determined by using a three-factor central composite design (CCD). The reduced models with high R2 (?0.80) values and non significant (p > .05) lack of fit were significantly (p < .05) fitted to the experimental data, thus ensuring a satisfactory fitness of the regression models relating the response to independent variables. The quadratic effect of xanthan gum had a significant (p < .05) term in all reduced models. The independent variables had the most significant (p < .05) effect on turbidity loss rate and viscosity ratio. The overall optimum region resulted in the desirable orange beverage emulsion was predicted at a combined level of 13% (w/w) Arabic gum, 0.3% (w/w) xanthan gum and 10% (w/w) orange oil.  相似文献   

17.
Many plant gums, such as gum arabic, contain hydroxyproline-rich glycoproteins (HRGPs), which are also abundant components of the plant cell extracellular matrix. Here we expressed in transgenic BY2 Nicotiana tabacum (tobacco) cells, a synthetic gene encoding a novel HRGP-based gum, designated gum arabic-8 or (GA)(8). (GA)(8) encoded eight repeats of the consensus polypeptide sequence of gum arabic glycoprotein (GAGP): Gly-Pro-His-Ser-Pro-Pro-Pro-Pro-Leu-Ser-Pro-Ser-Pro-Thr-Pro-Thr-Pro-Pro-Leu, in which most of the Pro residues were posttranslationally modified to hydroxyproline (Hyp). (GA)(8) was expressed as a green fluorescent protein (GFP) fusion protein targeted to the culture medium, (GA)(8)GFP. The culture of the transgenic cells in a 5-L bioreactor showed that the production of (GA)(8)GFP was cell growth-associated. The extracellular yield of (GA)(8)GFP was 116.8 mg/L after 14 days of culture and accounted for 87% of the total fusion protein expressed. (GA)(8)GFP was purified from the culture medium by a combination of hydrophobic interaction, gel permeation, and reversed phase chromatography. Biochemical characterization indicated that the amino acid composition of the (GA)(8) module, after removal of GFP by proteolysis, was virtually identical to that of predicted by the GAGP consensus sequence and that carbohydrate, which occurred as arabinogalactan polysaccharides and small oligoarabinosides O-linked through the Hyp residues, accounted for 84% of the molecules' dry weight. Functional assays showed that (GA)(8) exhibited low viscosity in aqueous solution similar to native GAGP. However, neither GFP alone nor the (GA)(8) module could emulsify orange oil. However, the fusion protein (GA)(8)GFP possessed 1.28-fold better emulsification properties than native GAGP. This work demonstrates the feasibility and potential of a synthetic gene approach to the de novo design of novel glycoprotein-based gums and emulsifiers.  相似文献   

18.
Co-enzyme Q10 (CoQ10), a lipophilic compound that widely used in the food and pharmaceutical products was formulated in a κ-carrageenan coated oil-in-water (O/W) emulsion. In this work, we examined the solubility of CoQ10 in different carrier oils and effects of emulsifier type on the formation and stability of CoQ10-loaded O/W emulsion. Nine vegetable oils and four types of emulsifiers were used. CoQ10 was found significantly (p?<?0.05) more soluble in medium chain oils (coconut oil and palm kernel oil) as compared to other vegetable oils. The O/W emulsions were then prepared with 10 % (w/w) coconut oil and palm kernel oil containing 200 g CoQ10/L oil stabilized by 1 % (w/v) emulsifiers (sucrose laurate (SEL), sodium stearoyl lactate (SSL), polyglycerol ester (PE), or Tween 80 (Tw 80)) in 1 % (w/v) κ-carrageenan aqueous solution. Particle size distribution and physical stability of the emulsions were monitored. The droplet sizes (surface weighted mean diameter, D[3,2]) of fresh O/W emulsion in the range of 2.79 to 5.83 μm were observed. Irrespective of the oil used, results indicated that complexes of SSL/κ-carrageenan provided the most stable CoQ10-loaded O/W emulsion with smaller and narrower particle size distribution. Both macroscopic and microscopic observations showed that O/W emulsion stabilized by SSL/κ-carrageenan is the only emulsion that exhibited no sign of coalescence, flocculation, and phase separation throughout the storage period observed.  相似文献   

19.
The effect of additives on welan gum production produced by fermentation with Alcaligenes sp. CGMCC2428 was studied. Tween-40 was the best additive for improving welan gum production and welan gum displayed better rheological properties than that obtained by control fermentation without additives. Response surface methodology was employed to optimize the culture conditions for welan gum production in the shake flask culture, including Tween-40 concentration, pH and culture temperature. The optimal conditions were determined as follows: Tween-40 concentration 0.94 g/l, pH 6.9 and temperature 29.6 °C. The corresponding experimental concentration of welan gum was 23.62 ± 0.60 g/l, which was agreed closely with the predicted value (23.48 g/l). Validation experiments were also carried out to prove the adequacy and the accuracy of the model obtained. The welan gum fermentation in a 7.5 l bioreactor reached 24.90 ± 0.68 g/l.  相似文献   

20.
Four water-in-oil-in water (W1/O/W2) double emulsions were made by adding the primary emulsion (W1/O) containing 74% (w/w) of chia essential oil, 6% (w/w) of ascorbic acid, and a 0.2 dispersed phase mass fraction (φW1/O) to aqueous solutions (W2) of mesquite gum (MG), maltodextrin DE-10 (MD) and whey protein concentrate (WPC) in different proportions (MG66-MD17-WPC17 and MG17-MD66-WPC17), and in a ratio of 1:2.12 and 1:4.12 W1/O to dry biopolymers blends solids. All the double emulsions showed type C morphologies and only slight changes in the volume-weighted mean diameter (d4,3) throughout the storage time, indicative of good stability, despite they presented bimodal size distributions, but the double emulsion formulated with a predominant proportion of MD and ratio 1:2.12 provided a higher stability against droplet coalescence. All the double emulsions displayed viscoelastic character dependent on frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号