首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new analytical HPLC-fluorescence method was developed for the quantitative determination of eprinomectin (EPM) in soil and cattle faeces. EPM was extracted with acetone and acetonitrile from soil and cattle faeces, respectively. Solid phase extraction and derivatization reaction with N-methylimidazole in the presence of trifluoroacetic anhydride and acetic acid were applied. The limit of quantitation was 1 ng g−1 air dried soil and 2.5 ng g−1 moist cattle faeces. Overall recovery (RSD) was 89% (8) in soil and 85% (10) in cattle faeces and its good reproducibility (RSD < 15%) allows the application of the method in advanced ecotoxicological studies, required for the environmental fate assessment of EPM.  相似文献   

2.
A microwave assisted facile synthesis of a fluorescent 6-O-naphthylacetyl agarose (NA-agarose) employing carbodiimide chemistry (dicyclohexylcarbodiimide/4-dimethylaminopyridine) has been described. NA-agarose was characterized by TGA, GPC, UV spectrophotometry, fluorescence spectroscopy, FT-IR, 1H and 13C NMR spectra, exhibiting that in NA-agarose the naphthylacetyl group was attached to the backbone of the agarose polymer. The hydrolysis of NA-agarose in heterogeneous aqueous phase showed that the 1-naphthyl acetic acid (NAA), a plant growth regulator, got released in a controlled manner, the release rate being dependent on the hydrophilicity of the polymer adduct as well as on pH and temperature. The fluorescence emission (λmax 332 nm) of NA-agarose (1 × 10−3 M) in ethylene glycol was significantly higher (ca. 82%) than that of the molar equivalent of NAA content in the product i.e. 0.08 mg in 1 × 10−3 M solution. The resulting polymer would be of potential utility as a sustained release plant growth regulator and sensory applications.  相似文献   

3.
The degree of acetylation was shown to exert only insignificant effects on the enzymatic hydrolysis of chitosan, while affecting the composition of the resulting hydrolysates and their water solubility. Chitosan with various degrees of acetylation was produced by reacetylation of the initial chitosan (the solvents, methanol and 2% acetic acid, were present in a ratio of 54 : 51 v/v; the amount of acetic anhydride was in the range 0.1–2.0 mmol per gram chitosan). Hydrolysis by the enzymatic preparation Celloviridin G20kh was performed at an enzyme-to-substrate ratio of 1 : 400 in sodium–acetate buffer, pH 5.2 (55°C) for 1 h.  相似文献   

4.
Acylation of Pseudomonas cepacia lipase with Pyromellitic dianhydride to modify 72% of total amino groups was carried out. Different organic solvents were screened for precipitation of modified lipase. It was found that 1,2-dimethoxyethane was the best precipitant which precipitated 97% protein and complete activity. PCMC (protein coated microcrystals), CLPCMC (crosslinked protein coated microcrystals), EPROS (enzyme precipitated and rinsed with organic solvents) and pH tuned preparations of modified and unmodified lipase were prepared and used for carrying out transesterification reaction with n-octane and dimethyl formamide (DMF) as reaction medium. In n-octane, among all the preparations, CLPCMC of modified lipase gave highest rate (1970 nmol min−1 mg−1) as compared to unmodified pH tuned lipase (128 nmol min−1 mg−1). In DMF, with both 1% (v/v) and 5% (v/v) water content, CLPCMC showed highest initial rate of 0.72 and 7.2 nmol min−1 mg−1, respectively. Unmodified pH tuned lipase showed no activity at all in DMF with both 1% and 5% (v/v) water content.  相似文献   

5.
Rice straw is one of the abundant lignocellulosic feed stocks in the world and has been selected for producing ethanol at an economically feasible manner. It contains a mixture of sugars (hexoses and pentoses).Biphasic acid hydrolysis was carried out with sulphuric acid using rice straw. After acid hydrolysis, the sugars, furans and phenolics were estimated. The initial concentration of sugar was found to be 16.8 g L−1. However to increase the ethanol yield, the initial sugar concentration of the hydrolysate was concentrated to 31 g L−1 by vacuum distillation. The concentration of sugars, phenols and furans was checked and later detoxified by over liming to use for ethanol fermentation. Ethanol concentration was found to be 12 g L−1, with a yield, volumetric ethanol productivity and fermentation efficiency of 0.33 g L−1 h−1, 0.4 g g−1 and 95%, respectively by co-culture of OVB 11 (Saccharomyces cerevisiae) and Pichia stipitis NCIM 3498.  相似文献   

6.
A family of copolymer hydrogels containing different mass percentages of vinylimidazole, acrylamide and N,N′-methylenebisacrylamide were used to bind copper(II) ions. The resultant copper-loaded gels demonstrated spectroscopic features that indicated copper was bound in a distorted square planar geometry. The hydrolysis activity of these the most active of these systems towards bis(3-nitrophenyl)phosphate at pH 8 was 2.78 × 10−6 s−1, five orders of magnitude greater than the uncatalyzed reaction. While these systems obey Michaelis-Menten kinetics, they also subject both competitive and non-competitive inhibition from excess substrate and excess hydroxide due to constraints based in the coordination geometry of the copper(II) active sites.  相似文献   

7.
A novel molecularly imprinted polymer that could be applied as enrichment sorbent was prepared using methimazole (MMZ) as the template molecule, methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linker. Though evaluated by static, kinetic and competitive adsorption tests, the polymer exhibited high adsorption capacity, fast kinetics and good selective ability. A method for determination of trace MMZ was developed using this polymer as enrichment sorbent coupled with high performance liquid chromatography focusing on complex biological matrices. Under the optimum experimental conditions, the MMZ standard is linear within the concentration range studied, that is, from 0.5 μg L−1 to 150 μg L−1 (r2 = 0.9941). Lower limits of detection (LOD, at S/N = 3) and quantification (LOQ, at S/N = 10) in pig samples were 0.63 μg kg−1 and 2.10 μg kg−1 for kidney, 0.51 μg kg−1 and 1.70 μg kg−1 for liver, 0.56 μg kg−1 and 1.86 μg kg−1 for muscle, respectively. Recoveries and relative standard deviation (RSD, n = 9) values for precision in the developed method were from 71.14% to 88.41% and from 2.53% to 6.18%.  相似文献   

8.
The objective of the research was to investigate the effect of biomass loading, alkali (NaOH) concentration and pre-treatment time on the yield of glucose obtained following alkaline pre-treatment and enzymatic hydrolysis of oilseed rape (OSR) straw. A maximum glucose yield of (440.6 ± 14.9) g glucose kg−1 biomass was obtained when OSR straw was pre-treated at a biomass loading of 50 g kg−1 and an alkali concentration of 0.63 mol dm−3 NaOH for 30 min. The energy efficiency of glucose extraction (0.39 kg glucose MJ−1 consumed) was highest when OSR straw was pre-treated at a biomass loading of 50 g kg−1 and an alkali concentration of 0.63 or 0.75 mol dm−3 for 30 min. The study demonstrated alkaline pre-treatment of OSR straw is superior to acid pre-treatment in terms of glucose yield and energy efficiency.  相似文献   

9.
F1-ATPase, a water-soluble portion of the enzyme ATP synthase, is a rotary molecular motor driven by ATP hydrolysis. To learn how the kinetics of rotation are regulated, we have investigated the rotational characteristics of a thermophilic F1-ATPase over the temperature range 4-50°C by attaching a polystyrene bead (or bead duplex) to the rotor subunit and observing its rotation under a microscope. The apparent rate of ATP binding estimated at low ATP concentrations increased from 1.2 × 106 M−1 s−1 at 4°C to 4.3 × 107 M−1 s−1 at 40°C, whereas the torque estimated at 2 mM ATP remained around 40 pN·nm over 4-50°C. The rotation was stepwise at 4°C, even at the saturating ATP concentration of 2 mM, indicating the presence of a hitherto unresolved rate-limiting reaction that occurs at ATP-waiting angles. We also measured the ATP hydrolysis activity in bulk solution at 4-65°C. F1-ATPase tends to be inactivated by binding ADP tightly. Both the inactivation and reactivation rates were found to rise sharply with temperature, and above 30°C, equilibrium between the active and inactive forms was reached within 2 s, the majority being inactive. Rapid inactivation at high temperatures is consistent with the physiological role of this enzyme, ATP synthesis, in the thermophile.  相似文献   

10.
The degree of acetylation exerted only insignificant effects on the enzymatic hydrolysis of chitosan, while affecting the composition of the resulting hydrolysates and their water solubility. Chitosan with various degrees of acetylation was produced by reacetylation of the original chitosan (the solvents, methanol and 2% acetic acid, were present at a ratio of 54:51 v/v; the amount of acetic anhydride was in the range 0.1-2.0 mmol per 1 g chitosan). Hydrolysis by the enzymatic preparation Celloviridin G20x was performed at the enzyme to substrate ratio of 1:400 in sodium-acetate buffer, pH 5.2 (55 degrees C) for 1 h.  相似文献   

11.
The dissociation kinetics of the europium(III) complex with H8dotp ligand was studied by means of molecular absorption spectroscopy in UV region at ionic strength 3.0 mol dm−3 (Na,H)ClO4 and in temperature region 25-60 °C. Time-resolved laser-induced fluorescence spectroscopy (TRLIFS) was employed in order to determine the number of water molecules in the first coordination sphere of the europium(III) reaction intermediates and the final products. This technique was also utilized to deduce the composition of reaction intermediates in course of dissociation reaction simultaneously with calculation of rate constants and it demonstrates the elucidation of intimate reaction mechanism. The thermodynamic parameters for the formation of kinetic intermediate (ΔH0 = 11 ± 3 kJ mol−1, ΔS0 = 41 ± 11 J K−1 mol−1) and the activation parameters (Ea = 69 ± 8 kJ mol−1, ΔH = 67 ± 8 kJ mol−1, ΔS = −83 ± 24 J K−1 mol−1) for the rate-determining step describing the complex dissociation were determined. The mechanism of proton-assisted reaction was proposed on the basis of the experimental data.  相似文献   

12.
Although allosteric transitions of GroEL by MgATP2 have been widely studied, the initial bimolecular step of MgATP2− binding to GroEL remains unclear. Here, we studied the equilibrium and kinetics of MgATP2 binding to a variant of GroEL, in which Tyr485 was replaced by tryptophan, via isothermal titration calorimetry (ITC) and stopped-flow fluorescence spectroscopy. In the absence of K+ at 4-5 °C, the allosteric transitions and the subsequent ATP hydrolysis by GroEL are halted, and hence, the stopped-flow fluorescence kinetics induced by rapid mixing of MgATP2 and the GroEL variant solely reflected MgATP2 binding, which was well represented by bimolecular noncooperative binding with a binding rate constant, kon, of 9.14 × 104 M− 1 s− 1 and a dissociation rate constant, koff, of 14.2 s− 1, yielding a binding constant, Kb (= kon/koff), of 6.4 × 103 M− 1. We also successfully performed ITC to measure binding isotherms of MgATP2 to GroEL and obtained a Kb of 9.5 × 103 M− 1 and a binding stoichiometric number of 6.6. Kb was thus in good agreement with that obtained by stopped-flow fluorescence. In the presence of 10-50 mM KCl, the fluorescence kinetics consisted of three to four phases (the first fluorescence-increasing phase, followed by one or two exponential fluorescence-decreasing phases, and the final slow fluorescence-increasing phase), and comparison of the kinetics in the absence and presence of K+ clearly demonstrated that the first fluorescence-increasing phase corresponds to bimolecular MgATP2 binding to GroEL. The temperature dependence of the kinetics indicated that MgATP2 binding to GroEL was activation-controlled with an activation enthalpy as large as 14-16 kcal mol− 1.  相似文献   

13.
Microcrystalline cellulose (MCC) was pretreated with phosphoric acid at 323 K for 10 h. X-ray diffraction (XRD) and Atomic Force Microscope (AFM) analyses revealed that the fiber surface morphology of pretreated MCC (P-MCC) were uneven and rough with the crystalline diffraction peaks of P-MCC decreased to a distinct range. The X-ray Photoelectron Spectroscopy (XPS) analysis showed that the uneven and rough surface of P-MCC could enhance the adsorption of cellulose to the molecular surface of cellulose, which is one of the key factors affecting enzymatic hydrolysis of cellulose. A reversible first order kinetics was employed to describe the adsorption kinetics of cellulase to MCC and P-MCC, and the adsorption rate constants of MCC and P-MCC were found to be 0.016, 0.024, 0.041, and 0.095, 0.149, 0.218 min− 1, respectively at 278 K, 293 K and 308 K. The activation energies of MCC and P-MCC hydrolysis reactions were found to be 22.257 and 19.721 kJ mol− 1. The major hydrolysis products of MCC and P-MCC were cellobiose and glucose. Hydrolysis of MCC for 120 h resulted in yields of glucose (7.21%), cellobiose (13.16%) and total sugars (20.37%). However, after the pretreatment with phosphoric acid, the corresponding sugar yields resulted from enzymatic hydrolysis of P-MCC were increased to 24.10%, 41.42%, and 65.52%; respectively, which were 3.34, 3.15, and 3.22 times of the sugars yields from enzymatic hydrolysis of MCC.  相似文献   

14.
Two new organotin(IV) complexes with dianionic dipeptides containing the α-aminoisobutyryl residue (Aib) as ligands are described. The solid complexes [(n-Bu)2Sn(H−1LA)] · 2MeOH (1 · 2MeOH) (LAH = H-Aib-L-Leu-OH) and [(n-Bu)2Sn(H−1LB)] · MeOH (2 · MeOH) (LBH = H-Aib-L-Ala-OH) have been isolated and characterized by single-crystal X-ray crystallography and spectroscopic techniques (H−1L2− is the dianionic form of the corresponding dipeptide). Complexes 1 · 2MeOH and 2 · MeOH are monomeric with similar molecular structures. The doubly deprotonated dipeptide behaves as a N(amino), N(peptide), O(carboxylate) ligand and binds to the SnIV atom. The five-coordinate metal ion has a distorted trigonal bipyramidal geometry. A different network of intermolecular hydrogen bonds in each compound results in very dissimilar supramolecular features. The IR, far-IR, Raman and 119Sn NMR data are discussed in terms of the nature of bonding and known structures. The antibacterial and antiproliferative activities as well as the effect of the new compounds on pDNA were examined. Complexes 1 and 2 are active against the gram-positive bacteria Bacillus subtilis and Bacillus cereus. The IC50 values reveal that the two compounds express promising cytotoxic activity in vitro against a series of cell lines.  相似文献   

15.
The anaerobic digestion of pure glycerol, which produces a baseline acetic acid to propionic acid ratio of 0.2, was studied in laboratory scale reactors (3 l working volume) at mesophilic temperature (37 °C) with 3000 mg chemical oxygen demand (COD) l−1d−1. During the experiment tVFA and C2-C6 VFA analysis and daily biogas yield measurement were carried out. Following 10 days of a 15% d−1 increase in the organic loading rate (OLR) of 3.0-10.5 g COD l−1d−1, the concentration of propionic acid increased to 6200-8000 mg l−1. Then the inoculum was divided into three parts feeding with 100% glycerol, 50% glycerol + 50% acetic acid, and 50% glycerol + 50% thick stillage, (presented in % of 2.60 g COD l−1d−1 OLR), respectively. The application of co-substrates reduced the recovery period by 5 days compared to feeding with pure glycerol. When the reactors were loaded with glycerol again (10% OLR raise per day) the previously applied co-substrates had a positive effect on the VFA composition and the biogas yield as well.  相似文献   

16.
This study verifies the potential applicability of horizontal-flow anaerobic immobilized biomass (HAIB) reactors to pentachlorophenol (PCP) dechlorination. Two bench-scale HAIB reactors (R1 and R2) were filled with cubic polyurethane foam matrices containing immobilized anaerobic sludge. The reactors were then continuously fed with synthetic wastewater consisting of PCP, glucose, acetic acid, and formic acid as co-substrates for PCP anaerobic degradation. Before being immobilized in polyurethane foam matrices, the biomass was exposed to wastewater containing PCP in reactors fed at a semi-continuous rate of 2.0 μg PCP g−1 VS. The applied PCP loading rate was increased from 0.05 to 2.59 mg PCP l−1 day−1 for R1, and from 0.06 to 4.15 mg PCP l−1 day−1 for R2. The organic loading rates (OLR) were 1.1 and 1.7 kg COD m−3 day−1 at hydraulic retention times (HRT) of 24 h for R1 and 18 h for R2. Under such conditions, chemical oxygen demand (COD) removal efficiencies of up to 98% were achieved in the HAIB reactors. Both reactors exhibited the ability to remove 97% of the loaded PCP. Dichlorophenol (DCP) was the primary chlorophenol detected in the effluent. The adsorption of PCP and metabolites formed during PCP degradation in the packed bed was negligible for PCP removal efficiency.  相似文献   

17.
A Sporothrix variecibatus-inoculated biotrickling filter (BTF) was examined for styrene removal, without and with the addition of silicone oil, at different empty bed residence times. The highest elimination capacities (ECs) were 172.8 (without silicone oil) and 670 g m−3 h−1 (with silicone oil), respectively, corresponding to a 4-fold improvement in presence of oil. The addition of silicone oil formed a well-coalesced emulsion of fungi and silicone oil, resulting in filter-bed clogging. Clogging prevention strategies adopted were; (i) lowering the volume ratio of silicone oil from 10% to 2% (v/v), and (ii) periodic increase in trickling rate of the medium from 50 to 190 mL min−1. During shock-load experiments, the BTF with silicone oil (2% v/v) could withstand high styrene loads, of up to 1900 g m−3 h−1, when compared to the BTF without silicone oil (400 g m−3 h−1).  相似文献   

18.
A novel assay method was investigated for urease (EC 3.5.1.5) from Pseudomonas aeruginosa and Canavalia ensiformis by Fourier transform infrared spectroscopy. This enzyme catalyzed the hydrolysis of urea in phosphate buffer in deuterium oxide (2H2O). The intensities of the bicarbonate bands maxima at 1625 and 1365 cm−1 and of the amide I band at 1605 cm−1 were measured as a function of time to study the kinetics of urea hydrolysis. The extinction coefficients ε of urea and bicarbonate were determined to be 0.72, 0.48, and 0.56 mM−1 cm−1 at 1625, 1605, and 1365 cm−1, respectively. The initial velocity is proportional to the enzyme concentration by using the ureases from both C.ensiformis and P. aeruginosa. The kinetic constants (Vmax, Km, and Kcat) determined by Lineweaver-Burk plot were 532.2  U mg−1 protein, 6.4 mM, and 806.36 s−1, respectively. These data are in agreement with the results obtained by a spectrophotometric method using a linked assay based on glutamate dehydrogenase in aqueous media. Therefore, this spectroscopic method is highly suited to assay for urease activity and its kinetic parameters by using either cell-free extracts or purified enzyme preparations with an additional advantage of performing a real-time measurement of urease activity.  相似文献   

19.
The copper (II) complex of a simple pyridine- and amide-containing copolymer serves as an effective catalyst for heterogeneous hydrolysis of the prototypical phosphodiester substrate bis(p-nitrophenyl)phosphate at pH 8.0 and 25 °C. The catalysis has a first-order rate constant of kcat = 8.3 × 10−6 s−1, corresponding to a catalytic proficiency of 75-thousand folds relative to the uncatalyzed hydrolysis with a rate constant of k0 = 1.1 × 10−10 s−1 in aqueous buffer solution at pH 8.0. This observation suggests that polymers can be designed to include various functional groups feasible for effective metal-centered catalysis of phosphodiester hydrolysis.  相似文献   

20.
γ-Glutamyltransferase (GGT, E.C. 2.3.2.2) catalyzes the hydrolysis and transpeptidation of extracellular glutathione. Due to its central role in maintaining mammalian glutathione homeostasis, GGT is now believed to be a valuable drug target for a variety of life-threatening diseases, such as cancer. Unfortunately, however, effective tools for screening GGT inhibitors are still lacking. We report here the synthesis and evaluation of an α-phenylthio-containing glutathione peptide mimic that eliminates thiophenol upon GGT-catalyzed hydrolysis of the γ-glutamyl peptide bond. The concurrent, real-time spectrophotometric quantification of the released thiophenol using Ellman’s reagent creates a GGT assay format that is simple, robust, and highly sensitive. The versatility of the assay has been demonstrated by its application to the kinetic characterization of equine kidney GGT, and enzyme inhibition assays. The ability of the glutathione mimic to behave as an excellent donor substrate (exhibiting Michaelis-Menten kinetics with a Km of 11.3 ± 0.5 μM and a kcat of 90.1 ± 0.8 nmol mg−1 min−1), coupled to the assay’s ability to study the hydrolysis-only mode of the GGT-catalyzed reaction, make our approach amenable to high-throughput drug screening platforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号