首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electric permittivity of aqueous solutions of different synthetic polyelectrolytes have been measured as a function of frequency in the range 5 kHz up to 100 MHz in the absence of added salt. Solutions of polymethacrylic acid and polyacrylic acid of different degrees of polymerization, both partially neutralized with NaOH, were investigated as well as solutions of Na-polystyrenesulphonate at different concentrations.For all systems a dispersion profile with two separated dispersion regions was obtained with a molecular weight dependent value of the static electric permittivity. The low frequency dispersion region was found to be characterized by a molecular weight dependent mean relaxation time while for the high frequency dispersion region both the mean relaxation time and the dielectric increment are molecular weight independent. It is shown that the reciprocal values of the specific increments and of the relaxation times depend linearly on the macromolecular concentration. Extrapolation of the corresponding quantities to infinite dilution was found to be possible. A comparison of these extrapolated values with calculated ones according to the previously derived theory also applicable to flexible macromolecules establishes that this theory describes satisfactorily the dielectric behaviour of the systems investigated.The conclusion is reached that the high frequency dispersion and relaxation can be attributed to fluctuations in the distribution of bound counterions along limited parts of the macromolecule. The relaxation time of the low frequency dispersion region seems to be essentially determined by the rotation of the complete molecule and the static electric permittivity can he explained in terms of fluctuations in the counterion density extending over the whole macromolecule.  相似文献   

2.
We examined the dynamic properties of the lipid-water interface region of model membranes using the probe 2-p-toluidinylnaphthalene-6-sulfonic acid (TNS). For comparison we also examined the temperature-dependent spectral properties of TNS in the viscous solvent glycerol. Fluorescence phase shift and demodulation measurements were used to prove that the membranes relax around the excited state of TNS on the ns time scale. The rate of spectral relaxation is thought to reflect the mobility of the polar interface region of the membranes on this same time scale. The spectral relaxation times were estimated by the use of phase-sensitive detection of fluorescence. Using this method one may directly record, in an approximate fashion, the emission spectra of the relaxed and the initially excited states of TNS. The relative intensities of these phase-sensitive spectra, in combination with the measured phase and modulation values on the short and long wavelength sides of the emission, yield the spectral relaxation times. For saturated and unsaturated phosphatidylcholines, at temperatures ranging from 5 to 50°C, the relaxation times ranged from 5 to 1 ns. The activation energies for spectral relaxation were near 4 kcal/mol. Surprisingly, the relaxation times decreased smoothly with increasing temperature, and did not change abruptly at the phase transition temperatures. These results indicate that the small molecular motions of the interface region of membranes, which are responsible for spectral relaxation, are not dramatically influenced by the phase state of the acyl side chain region of the membranes.  相似文献   

3.
Articular cartilage is the connective tissue which covers bone surfaces and deforms during in vivo activity. Previous research has investigated flow-dependent cartilage viscoelasticity, but relatively few studies have investigated flow-independent mechanisms. This study investigated polymer dynamics as an explanation for the molecular basis of flow-independent cartilage viscoelasticity. Polymer dynamics predicts that stress-relaxation will proceed more slowly at higher volumetric concentrations of polymer. Stress-relaxation tests were performed on cartilage samples after precompression to different strain levels. Precompression increases the volumetric concentration of cartilage biopolymers, and polymer dynamics predicts an increase in relaxation time constant. Stress-relaxation was slower for greater precompression. There was a significant correlation between the stress-relaxation time constant and cartilage volumetric concentration. Estimates of the flow-dependent timescale suggest that flow-dependent relaxation occurs on a longer timescale than presently observed. These results are consistent with polymer dynamics as a mechanism of cartilage viscoelasticity.  相似文献   

4.
The weight-average molecular weight (Mw) and intrinsic viscosity ([eta]) of the alpha-(1-->3)-D-glucan (L-FV-II) from Lentinus edodes in 0.5 and 1.0 M NaOH aqueous solution containing urea, were studied by light scattering and viscometry. The Mw value of the glucan decreased with increase of the urea and NaOH concentration. A strong intermolecular hydrogen bonding confers water-insolubility on the glucan, but NaOH and especially urea, broke this hydrogen bonding leading to enhanced water-solubility. Use of 1.0 M urea-1.0 M NaOH as solvent broke not only intermolecular hydrogen bonds but also partial covalent bonds of the alpha-glucan in aqueous solution, resulting in a decrease of Mw and [eta]. The urea and NaOH concentrations, storage time with stirring, and mode of preparation of the polysaccharide in aqueous solution significantly affected the determination of Mw and [eta]. The dependences of specific rotation and fluorescence emission ratio of a probe on urea concentration showed that a change in the molecular conformation of the alpha-glucan in 0.5 M NaOH aqueous solution containing urea occurred in the range 0.4-0.6 M urea. The 0.5 M urea-0.5 M NaOH aqueous solution is a suitable solvent for the glucan, and the Mw and [eta] values obtained were 5.21 x 10(5) and 148 cm3 g(-1), respectively. Degradation of the glucan was obvious after storage for 15 months.  相似文献   

5.
Cationized agaroses with different degrees of substitution (0.04–0.77) were synthesized, employing 3-chloro-2-hydroxypropyltrimethylammonium chloride (CHPTAC). The influence of different reaction parameters on the substitution degree and molecular weight was evaluated. The investigated parameters were concentration of reagents, temperature, time, and addition of NaBH4. The products were characterized by means of scanning electronic microscopy, infrared spectroscopy, viscosimetry, and NMR spectroscopy. Methanolysis products were studied by electrospray ionization mass spectrometry. The higher the concentration of CHPTAC employed, a higher degree of substitution was obtained, if the optimum concentration of NaOH in each case was employed. Insufficient quantities of NaOH reduced epoxide formation and the reacting alkoxides of the polysaccharide, whereas an excess of NaOH favored degradation of the epoxide and decrease in the molecular weight of the product. A reaction time of 2 h was sufficient to obtain products with the maximum degree of substitution for each case. The addition of NaBH4 gave products with a slightly higher molecular weight, but the extra cost involved should not justify its use for large-scale application.  相似文献   

6.
The objective of this study was to examine the composition and branch chain lengths of alfalfa (Medicago sativa L.) taproot starch during starch utilization and reaccumulation in response to defoliation. Genotypes were propagated vegetatively and well-established plants were sampled at defoliation and at weekly intervals thereafter. Starch granules from root tissues were dispersed in dimethyl sulfoxide and starch components separated using gel permeation chromatography. Root starches also were debranched enzymically, and branch chain lengths were examined. Results indicate that, irrespective of starch concentration, starch from taproots of the high starch genotype was composed of approximately 80% high molecular weight starch with I2-Kl absorbance characteristics similar to amylopectin. The remaining 20% of the starch was low molecular weight with I2-Kl absorbance characteristics similar to amylose. Starches of the low starch genotype contained approximately 85% high molecular weight polysaccharide at high root starch concentrations (>50 grams per kilogram). At low root starch concentrations (<10 grams per kilogram), starch from the low starch genotype had nearly equal proportions of low and high molecular weight polysaccharide. The I2-Kl absorbance properties of the low molecular weight starches from roots of the low starch genotype indicated that some branching may be present. The distribution of chain lengths from amylopectin did not change during starch degradation and reaccumulation for the high starch genotype. In the low starch genotype, the proportion of low molecular weight branches having a degree of polymerization between 1 and 30 was decreased at the very low starch concentrations observed on the 14th day of regrowth. Higher concentrations and/or quantities of starch in roots of the high starch genotype were not associated with greater rate of herbage regrowth, when compared to the low starch genotype.  相似文献   

7.
Non-invasive techniques for quantifying early biochemical and biomechanical changes in articular cartilage may provide a means of more precisely assessing osteoarthritis (OA) progression. The goals of this study were to determine the relationship between T1rho magnetic resonance (MR) imaging relaxation times and changes in cartilage composition, cartilage mechanical properties, and synovial fluid biomarker levels and to demonstrate the application of T1rho imaging to evaluate cartilage composition in human subjects in vivo. Femoral condyles and synovial fluid were harvested from healthy and OA porcine knee joints. Sagittal T1rho relaxation MR images of the condyles were acquired. OA regions of OA joints exhibited an increase in T1rho relaxation times as compared to non-OA regions. Furthermore in these regions, cartilage sGAG content and aggregate modulus decreased, while percent degraded collagen and water content increased. In OA joints, synovial fluid concentrations of sGAG decreased and C2C concentrations increased compared to healthy joints. T1rho relaxation times were negatively correlated with cartilage and synovial fluid sGAG concentrations and aggregate modulus and positively correlated with water content and permeability. Additionally, we demonstrated the application of these in vitro findings to the study of human subjects. Specifically, we demonstrated that walking results in decreased T1rho relaxation times, consistent with water exudation and an increase in proteoglycan concentration with in vivo loading. Together, these findings demonstrate that cartilage MR imaging and synovial fluid biomarkers provide powerful non-invasive tools for characterizing changes in the biochemical and biomechanical environments of the joint.  相似文献   

8.
Microalgae are being considered as a promising raw material for biofuel production. However, rapid, efficient, and economic technologies for harvesting microalgae are essential for successful applications. In this study, the high–pH-induced flocculation method was applied to harvest marine Chlorella sp. strains. These algae could be concentrated up to approximately 20-fold by increasing pH using NaOH, with a flocculation efficiency of 90 %. When NaOH dosage was low (1 or 3 mM), the flocculation efficiency decreased considerably with the increase of biomass concentration. At higher NaOH dosage tested (5 or 7 mM), flocculation occurred quickly and efficiently, which tended to be independent of biomass concentration. In larger volumes, all strains were flocculated with similar efficiencies (approximately 90 %) after adding 5 mM NaOH. After flocculation, the flocculated algae cells could be re-cultured as inoculum, and the growth yields in flocculated medium were slightly higher than those from fresh medium. Additionally, for each strain, there were no significant differences in lipid extraction yield and fatty acid composition according to different harvesting methods. These results showed that the high–pH-induced flocculation method could be used to harvest marine Chlorella sp. for biofuel production successfully.  相似文献   

9.
S J Miller  J G Wetmur 《Biopolymers》1974,13(1):115-128
The relaxation of the birefringence of native DNA in solution was investigated in a pulsed sine-wave electric field. Relaxation times were calculated from the degree of damping of the birefringence signal and were studied as a function of the strength and frequency of the applied field, the molecular weight of the DNA, and the viscosity and ionic strength of the solvent. Relaxation times decrease with increasing field strength. For high-molecular weight DNA (>106 daltons), the relaxation times decreased with frequency and increased less than linearly with viscosity. For low-molecular-weight DNA (<6 × 105 daltons), the relaxation times were independent of frequency, increased linearly with viscosity, and varied with the 1.65 ± 0.1 power of the molecular weight. The average birefringence of high-molecular-weight DNA decreased with frequency in 0.001M Na2 EDTA plus NaOH, pH 7.0, but is much less frequency-dependent if the EDTA concentration is reduced tenfold, while the average birefringence of sonicated DNA increases in both solvents with increasing frequency.  相似文献   

10.
Serine production from methanol and glycine was tried using frozen-thawed resting cells of a methylotroph, Protomonas extorquens NR-1 under multi-variable controlled conditions. The conditions for l-serine formation were optimized at 30°C. The production of l-serine in 0.4% CaCl2 solution (initial pH 8.2) was the same as in 0.1 M Tris-HCl buffer (initial pH 8.3). Increasing the initial glycine concentration promoted l-serine formation. A high aeration rate decreased l-serine production. The optimum concentrations of dissolved oxygen and methanol were 0.5 ppm and 10 g/l, respectively. The highest l-serine, 24.9 g/l, was obtained at 24 h from 30.94 gl (as dry weight) resting cells using 100 g/l initial glycine with controlled pH. The relationship between the initial rate of l-serine formation and cell concentration indicated an unusual curve due to the effects of the added NaOH which was used for controlling the pH. In similar experiments without control of pH, a normal profile was observed with respect to the relationship between the initial rate of l-serine formation and cell concentration. The highest l-serine, 54.5 g/l, was obtained at 48 h by 36.4 g/l (as dry weight) resting cells. The yield (mol of l-serine/mol of added substrate) of l-serine from methanol and glycine were 8.3% and 39.3%, respectively. The selectivity of l-serine (mol of l-serine/mol of glycine consumed) was 67.9%. The stoichiometry of the maximum l-serine formation showed that the resting cells carried the highly active methanol dehydrogenase while serine transhydroxymethylase was rather low. Serine glyoxalate aminotransferase was not completely inhibited by the high concentration of glycine (about 68% of synthesized l-serine was detected in the supernatant.  相似文献   

11.
A total of one hundred and eighty-four New Zealand White rabbits were used in three separate experiments: to establish the concentration of sodium hydroxide solution needed to improve the nutritive quality of sawdust for rabbit feeding; to investigate whether there is any difference between the nutritive quality of hardwood- or softwood-sawdust when treated with optimum sodium hydroxide solution; and to study the extent to which NaOH-treated sawdust can be substituted for the conventional feeds in rabbit diets.Food consumption was significantly (P < 0.05) greater in rabbits given diets containing sawdust treated with 6% solutions of NaOH, than with sawdust treated with 0–3% solutions. Rabbits given sawdust treated with 4 or 5% NaOH showed significantly (P < 0.05) better rate of gain and efficiency of feed utilization than those given sawdust treated with 0 or 1% sodium hydroxide solutions, and also grew slightly, but non-significantly, faster than those fed on sawdust treated with 3 and 6% NaOH.Alkali treatment of sawdust increased carcass yield. Hardwood-responded better than softwood-sawdust to alkali treatment, and a higher concentration of alkali may be required for the latter. Rabbits may tolerate and efficiently utilize up to 15% of treated sawdust without any reduction in performance. Beyond this level, there was a significant (P < 0.05) decrease in the rate of gain, feed/gain ratio and carcass yield.  相似文献   

12.
The effects of gelation kinetics and chain-relaxation properties of glutaraldehyde-cross-linked chitosan gel on microspheres preparation or drug release were studied. The rate of gelation is zero order corresponding to the chitosan concentration but non-zero order corresponding to the glutaraldehyde concentration. It was suggested that the cross-linking reaction was mainly dominated by the concentration of small molecule reactant, glutaraldehyde. The relaxation of an entangled polymer chain in a gel network as a result of the swelling of cross-linked chitosan hydrogel was investigated by the stress–strain determination. The higher the cross-linking density of chitosan hydrogel, the lower the swelling ability of chitosan hydrogel due to the slower relaxation rate of polymer chain, which then results in the decreased drug-release rate.  相似文献   

13.
Zhang X  Zhang L  Xu X 《Biopolymers》2004,75(2):187-195
Molecular morphologies and conformation transition of lentinan, a beta-(1-->3)-D-glucan from Lentinus edodes, were studied in aqueous NaOH solution by atomic force microscopy (AFM), viscometry, multiangle laser light scattering, and optical rotation measurements. The results revealed that lentinan exists as triple-helical chains and as single random-coil chains at NaOH concentration lower than 0.05M and higher than 0.08M, respectively. Moreover, the dramatic changes in weight-average molecular weight Mw, radius of gyration [s2](1/2), intrinsic viscosity [eta], as well as specific optical rotation at 589 nm [alpha]589 occurred in a narrow range of NaOH concentration between 0.05 and 0.08M NaOH, indicating that the helix-coil conformation transition of lentinan was carried out more easily than that of native schizophyllan and scleroglucan, and was irreversible. For the first time, we confirmed that the denatured lentinan molecule, which was dissolved in 0.15M NaOH to be disrupted into single coil chains, could be renatured as triple helical chain by dialyzing against abundant water in the regenerated cellulose tube at ambient temperature (15 degrees C). In view of the AFM image, lentinan in aqueous solution exhibited the linear, circular, and branched species of triple helix compared with native linear schizophyllan or scleroglucan.  相似文献   

14.
The effects of pretreatment process variables [straw concentration between 20 and 90 kg volatile solids (VS)/m(3), temperature between 30 and 85 degrees C, and alkaline dosage between 0 and 80 g NaOH/kg VS] on acidogenesis and methanogenesis were investigated. Rates of acidogenesis and methanogenesis were determined using firstorder kinetics, and ultimate acid and methane yields were measured. The acid yield was not affected by pretreatment concentration or temperature, but increased as alkaline dosage increased. The acidogenesis rate was not affected by pretreatment temperature or alkaline dosage, but decreased as the substrate concentration increased. This decrease in the acidogenesis rate was attributed to a decrease in the inoculum: substrate ratio as the substrate concentration increased. The methane yield and methanogenesis rate were not affected by pretreatment substrate concentration or temperature, and both increased with alkaline dosage up to about 40 g NaOH/kg VS, then remained relatively constant above 40 g NaOH/kg VS.  相似文献   

15.
Effects of NaOH treatment on the crude protein (CP), condensed tannin (CT) and in vitro gas production kinetics of leaves of Arbutus andrachne, Glycyrrhiza glabra L. and wheat straw were determined. Wheat straw, which is tannin-free, was used as the standard. The NaOH treatment was completed by pulverization of samples with 0, 20, 40, 60 and 80 g/L of NaOH solution in the proportion of 1 L of solution to 1 kg of sample. Gas production was determined at 3, 6, 12, 24, 48, 72 and 96 h of incubation. NaOH treatment linearly decreased (P<0.001) the CT contents of leaves of Arbutus andrachne and Glycyrrhiza glabra L. whereas NaOH treatment had no effect on the CP contents of Arbutus andrachne, Glycyrrhiza glabra L. and wheat straw. The 80 g/L NaOH treatment reduced the CT content of leaves of Arbutus andrachne and Glycyrrhiza glabra L. by 59.6% and 86.7%, respectively. NaOH treatment linearly decreased (P<0.01) gas production rate of Arbutus andrachne although it linearly increased (P<0.01) gas production rate of wheat straw. In contrast, NaOH treatment had no effect on gas production rate of leaves of Glycyrrhiza glabra L. NaOH treatment linearly decreased (P<0.001) potential gas production of leaves of Arbutus andrachne and Glycyrrhiza glabra L. whereas NaOH treatment linearly increased (P<0.001) potential gas production of wheat straw. Treatment with NaOH can be used to improve the nutritive value of tannin-free forages such as straw, but not for tannin-containing leaves.  相似文献   

16.
Magnetic resonance imaging (MRI) using measurement of the transverse relaxation time (R2*) is to be considered as a promising approach for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. While the relationship between core composition of nanoparticles and their MRI properties is well studied, little is known about possible effects on progenitor cells. This in vitro study aims at comparing two magnetic iron oxide nanoparticle types, single vs. multi-core nanoparticles, regarding their physico-chemical characteristics, effects on cellular behavior of adipose tissue-derived stem cells (ASC) like differentiation and proliferation as well as their detection and quantification by means of MRI. Quantification of both nanoparticle types revealed a linear correlation between labeling concentration and R2* values. However, according to core composition, different levels of labeling concentrations were needed to achieve comparable R2* values. Cell viability was not altered for all labeling concentrations, whereas the proliferation rate increased with increasing labeling concentrations. Likewise, deposition of lipid droplets as well as matrix calcification revealed to be highly dose-dependent particularly regarding multi-core nanoparticle-labeled cells. Synthesis of cartilage matrix proteins and mRNA expression of collagen type II was also highly dependent on nanoparticle labeling. In general, the differentiation potential was decreased with increasing labeling concentrations. This in vitro study provides the proof of principle for further in vivo tracking experiments of progenitor cells using nanoparticles with different core compositions but also provides striking evidence that combined testing of biological and MRI properties is advisable as improved MRI properties of multi-core nanoparticles may result in altered cell functions.  相似文献   

17.
P. Mathiez  C. Mouttet  G. Weisbuch 《Biopolymers》1981,20(11):2381-2394
Quasielastic light scattering is used to study saline solutions of polyadenylic acid with varying polymer concentrations and molecular masses. These experiments clearly show the existence of two relaxation times. For dilute solutions, when the chains are mutually independent, the fast mode is due to the free diffusion of the polymer chains. For concentrations above the overlap concentration C*, the fast mode is due to the propagation of collective excitations of the pseudolattice of polymer chains. The slow modes are observed when the polymer concentration is in the vicinity of the overlap concentration C*. A series of experiments shows that both their relaxation time and amplitude depend only on the polymer concentration and not on the polymer molecular mass. This result rules out any previous explanation based on individual chain motion. Furthermore, since the amplitudes depend on the time elapsed from the preparation of the solution, the slow modes are due to the diffusion of concentration inhomogeneities in the pseudolattice.  相似文献   

18.
The relaxational processes in amorphous solid gentiobiose and cellobiose are studied by thermally stimulated depolarization currents (TSDC) in the temperature region from 108 K up to 423 K. The slow molecular mobility was characterized in the crystal and in the glassy state. The features of different motional components of the secondary relaxation have been monitored as a function of time as the glass structurally relaxes on aging. It is concluded that some modes of motion of this mobility are aging independent, while others are affected by aging. The value of the steepness index or fragility (Tg-normalized temperature dependence of the relaxation time) was obtained by differential scanning calorimetry (DSC) from the analysis of the scanning rate dependency of Tg.  相似文献   

19.
Interaction of DNA-binding protein HU from Bacillus stearothermophilis (HUBst) with coliphage T2 DNA was investigated by observing an elongational flow-induced birefringence, Deltan, of a T2-phage DNA aqueous solution at various HU concentrations. Localized flow birefringence was observed in the pure elongational flow region, and the strain rate dependence of Deltan had a critical strain rate epsilon;(c) for the appearance of flow birefringence at all of the HU concentrations examined, indicating that a coil-stretch transition occurred at epsilon;(c) in each DNA-HU system. For strain rates larger than epsilon;(c), Deltan increased rapidly and then gradually, approaching a plateau value. The value of epsilon;(c) increased with an increase in HU concentration. Analysis based on the relationship between epsilon; (c) and the Rouse-Zimm relaxation time revealed that the increase in epsilon;(c)with increase in HU can be explained by the decrease in the size of the DNA-HU complex. The plateau birefringence value, Deltan(p), decreased at small HU concentrations but did not change at larger HU concentrations. Considering that Deltan(p) is related to the orientational order parameter of segments, it was concluded that there were at least two stages in the process of compaction of DNA induced by HU.  相似文献   

20.
The interactions between basic oligopeptides (Lys2, Lys3, Arg2, and Arg3) and single stranded polynucleotides (poly(A), poly(C), poly(I) and poly(U) were investigated at low ion concentration by UV spectroscopy, circular dichroism and field jump relaxation. Various domains of binding were detected: 1) High concentrations (up to 1 mM) of some peptides induce opalescencs followed by coacervation- Arg3 causes coacervation in all polynucleotides used, yet Lys3 only in poly(I). In the case of poly(I) the threshold concentration for coacervation is much lower for Arg3 (150 μM) than for Lys3 (500 μM). 2) Medium concentrations (?10 μM) of Arg3 and Lys3 induce helix formation in poly(U). In the case of poly(I) cooperative helix formation is only induced by Lys3, but not by Arg3. 3) The onset of peptide association is observed at very low peptide concentrations (?1 μM) already by using the field jump method. The association is reflected by a relaxation process, that can be described by a single exponential within experimental accuracy. Measurements of relaxation time constants as a function of the peptide concentration provide information on the association constants K, the number of nucleotide residues per binding place n and the rate constants kR and kD. Using a simple model with independent and “separate” binding sites, K for Arg3 and Lys3 is found to be in the range of 106 to 107 M?1. In the case of Arg2 and K is lower by a factor of about 10. For various polynucleotides KArg3 is slightly higher than KLys3. except in the case of poly(I), where KArg3/KLys3 ≈ 5. Similar data are obtained by application of a “sphere model” (see below). These results provide quantitative evidence for specific hydrogen bonding between the guanidino group of Arg and inosine. They also explain the absence of helix formation for poly(I) + Arg3: Arg blocks the hydrogen bonding sites of inosine. Thus cooperative coupling leads in this case to a considerable amplification of specificity in the peptide-polynucleotide interaction Both field jump and stopped flow data demonstrate a high mobility of the peptide lisands along the polymer, resulting in a redistribution being fast compared with the overall binding step. Based on this result the relaxation data are analysed by a “sphere” model, which considers a) excluded binding under the condition of fast Ugand distribution along the lattice and b) the connection of sites into a polymer sphere. The rate constants obtained by this model are in the range of 4 × 1011 M?1 s?1. These high values reflect the large reaction distance for polymers of chain lengths around 1000. A comparison with rate constants obtained previously for oligomer complexes indicates that the recombination rate is approximately a function of the square root of the nucleotide chain length, which is directly related to the mean radius of coiled polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号