首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pasta is a popular carbohydrate-based food with a low glycemic response. A continuous protein matrix which entraps starch granules and/or limits/retards starch hydrolysis by α-amylase is thought to be an important factor in explaining the slow digestion of starch in pasta. The characteristics of the protein matrix may also play an important role in determining the rate of starch digestion in pasta and therefore its glycemic response. In this study, the structural and physicochemical characteristics of the protein matrix of pasta were modified by varying the number of passes through sheeting rollers to investigate their effect on in vitro starch digestibility. The results show that the proteins dissociated from the starch granules with increasing sheeting passes thereby allowing an increased degree of digestion of starch.  相似文献   

2.
Flours and isolated starches from three different cultivars (1544-8, 1658-11 and 1760-8) of pea grown under identical environmental conditions were evaluated for their physicochemical properties and in vitro digestibility. The protein content, total starch content and apparent amylose content of pea flour ranged from 24.4 to 26.3%, 48.8 to 50.2%, and 13.9 to 16.7%, respectively. In pea starches, the 1760-8 showed higher apparent amylose content and total starch content than the other cultivars. Pea starch granules were irregularly shaped, ranging from oval to round with a smooth surface. All pea starches showed C-type X-ray diffraction pattern with relative crystallinity ranging between 23.7 and 24.7%. Pea starch had only a single endothermic transition (12.1-14.2 J/g) in the DSC thermogram, whereas pea flour showed two separate endothermic transitions corresponding to starch gelatinization (4.54-4.71 J/g) and disruption of the amylose-lipid complex (0.36-0.78 J/g). In pea cultivars, the 1760-8 had significantly higher setback and final viscosity than the other cultivars in both pea flour (672 and 1170 cP, respectively) and isolated starch (2901 and 4811 cP). The average branch chain length of pea starches ranged from 20.1 to 20.3. The 1760-8 displayed a larger proportion of short branch chains, DP (degree of polymerization) 6-12 (21.1%), and a smaller proportion of long branch chains, DP ≥ 37 (8.4%). The RDS, SDS and RS contents of pea flour ranged from 23.7 to 24.1%, 11.3 to 12.8%, and 13.2 to 14.8%, respectively. In pea starches, the 1760-8 showed a lower RDS content but higher SDS and RS contents. The expected glycemic index (eGI), based on the hydrolysis index, ranged from 36.9 to 37.7 and 69.8 to 70.7 for pea flour and isolated pea starch, respectively.  相似文献   

3.
4.
An experiment was conducted to study the rumen digestion characteristics of whole feeds (WF) and the neutral detergent fibre (aNDF) and neutral detergent soluble (NDS) fractions of a range of starch-rich feeds using an automated in vitro gas production (GP) technique. In addition, the ruminal digestibility values predicted from the GP data were compared to previously acquired in vivo data. Nine feeds with starch concentrations ranging from 389 to 712 g/kg dry matter and with known in vivo digestibilities were subjected to neutral detergent extraction. The GP for each WF and the corresponding aNDF fractions were measured in duplicate in buffered rumen fluid during 72 h on two occasions. The fermentation residues were collected and analyzed for aNDF concentration to estimate their true organic matter (OM) and NDF digestibility. The GP from the NDS fraction was calculated by subtracting the GP from the aNDF fraction from the GP of the WF. A three-pool Gompertz model was fitted to the GP profiles (R2 = 0.99) and a two compartment, mechanistic and dynamic rumen model was used to predict the digestibility of the potentially digestible feed fraction and the effective digestion rate (kd). The true OM and NDF digestibility determined for the WF ranged from 0.804 to 1.011 and from 0.362 to 1.107, respectively. The NDF digestibility determined for the aNDF fraction ranged from 0.410 to 0.985. The effective kd values estimated using GP data varied from 0.118 to 0.282/h for the WF and from 0.123 to 0.301/h for the NDS fraction, and were less (P<0.05) for maize compared to small grains (SG) but did not differ between barley and wheat (P>0.05). The effective kd values for the aNDF fraction ranged from 0.039 to 0.082/h and did not differ (P>0.05) either between maize and SG or between barley and wheat. The predicted ruminal NDS digestibility determined using GP data closely matched the in vivo data describing starch digestion (R2 = 0.81). The effective kd values for the WF were strongly related (R2 = 0.94) to those for the NDS fractions. The results indicate that when measured with the GP technique, the differences in the digestion characteristics of maize and small grains are less than those previously reported in studies using the in situ method. It is concluded that the predicted NDS digestibility determined using GP data corresponded well to the in vivo starch digestibility. Our results also suggest that the first order digestion rates of NDS (starch) in starch-rich feeds can be accurately determined by incubating WF samples in the GP system and using the GP kinetic data in a dynamic, mechanistic rumen model.  相似文献   

5.
The present study investigates the effect of guar gum on the digestibility of a waxy maize starch in vitro under simulated gastric and intestinal conditions. A detailed rheology and confocal scanning laser microscopy of the digesta were performed in order to study the possible mechanisms of interactions involved during in vitro hydrolysis of starch. No starch hydrolysis was observed under simulated gastric conditions, whereas more than 90% hydrolysis was observed at the end of digestion under simulated intestinal conditions. In the presence of guar gum, the starch hydrolysis was reduced by nearly 25% during the first 10 min and by 15% at the end of in vitro intestinal digestion. The rheological behavior of the digesta was significantly affected in the presence of the gum. The viscosity of digesta decreased during intestinal digestion; however, the extent of decrease was quite low in the presence of guar gum. The consistency index increased and flow behavior index of digesta decreased in the presence of gum after 1 min of intestinal digestion. All the samples (digested or undigested) displayed a pseudoplastic behavior as their apparent viscosity (η a) decreased with an increase in shear rate. A negative correlation between the starch hydrolysis (%) and storage modulus for the starch sample without gum and a positive correlation for the starch sample with gum were found. Large granule remnants observed through confocal micrographs have shown that the solubilization of starch granule remnants during in vitro digestion is significantly reduced in the presence of gum.  相似文献   

6.
Although dietary fiber (DF) negatively affects energy and nutrient digestibility, there is growing interest for the inclusion of its fermentable fraction in pig diets due to their functional properties and potential health benefits beyond supplying energy to the animals. This paper reviews some of the relevant information available on the role of different types of DF on digestion of nutrients in different sections of the gut, the fermentation process and its influence on gut environment, especially production and utilization of metabolites, microbial community and gut health of swine. Focus has been given on DF from feed ingredients (grains and coproducts) commonly used in pig diets. Some information on the role DF in purified form in comparison with DF in whole matrix of feed ingredients is also presented. First, composition and fractions of DF in different feed ingredients are briefly reviewed. Then, roles of different fractions of DF on digestion characteristics and physiological functions in the gastrointestinal tract (GIT) are presented. Specific roles of different fractions of DF on fermentation characteristics and their effects on production and utilization of metabolites in the GIT have been discussed. In addition, roles of DF fermentation on metabolic activity and microbial community in the intestine and their effects on intestinal health are reviewed and discussed. Evidence presented in this review indicates that there is wide variation in the composition and content of DF among feed ingredients, thereby their physico-chemical properties in the GIT of swine. These variations, in turn, affect the digestion and fermentation characteristics in the GIT of swine. Digestibility of DF from different feed ingredients is more variable and lower than that of other nutrients like starch, sugars, fat and CP. Soluble fractions of DF are fermented faster, produce higher amounts of volatile fatty acid than insoluble fractions, and favors growth of beneficial microbiota. Thus, selective inclusion of DF in diets can be used as a nutritional strategy to optimize the intestinal health of pigs, despite its lower digestibility and consequential negative effect on digestibility of other nutrients.  相似文献   

7.
Studies on the physico-chemical, microstructural characteristics and in vitro (under simulated gastric and small intestine conditions) starch digestibility of navy beans were carried out. The microstructure of raw and cooked beans observed through scanning electron microscopy (SEM) showed the presence of hexagonal or angular shaped cotyledon cells (50-100 μm size) containing starch granules with a size ranging between 10 and 50 μm. The extent of starch hydrolysis (%) after 120 min of in vitro gastro-intestinal digestion differed between whole navy beans (∼60%) and milled bean flour and bean starch (85-90%) after they were cooked under similar conditions. Starch hydrolysis (%) increased significantly when the cotyledon cells in the cooked whole navy beans were disrupted using high pressure treatment (French press). The storage of freshly cooked whole beans resulted in a lower (40-45%) starch hydrolysis whereas re-heating increased the same to 70-80% during in vitro small intestinal digestion. The SEM pictures of cooked navy bean digesta after different intervals of in vitro gastric and small intestinal digestion showed that the cotyledon cell structure is maintained well throughout the digestion period. However cotyledon cells appear shrunken and developed wrinkles during in vitro digestion. Particle size analysis of cooked bean paste taken before and after the in vitro gastro-intestinal digestion showed similar particle size distributions.  相似文献   

8.
Investigators often study product release from starches during prolonged incubations with α-amylase in vitro. The reaction time courses usually fit to a linear form of a first order rate equation, i.e., ln[(C − Ct)/C] = −kt. This equation calls for an accurate estimate of C, i.e., the concentration of product at the end of the reaction. Estimates of C from digestibility curves can be unreliable. The Guggenheim method does not require prior knowledge of C but seems not to have been applied to starch hydrolysis data. An alternative method is also available in which the logarithm of the slope (LOS) of a digestibility curve at various time points is plotted against time. This allows estimations of both k and C and can also reveal whether changes occur in digestion rate from rapid to slow as digestion proceeds. We describe the Guggenheim and LOS methods and provide examples of their application to starch digestibility data.  相似文献   

9.
Three sweetpotato cultivars were investigated for their starch content and amylose/amylopectin ratio. Ym starch contains 87.2% amylopectin and 12.8% amylose, when total starch was calculated as 100%. The Zm cultivar contains 33.6% amylopectin and 18.2% amylose, and its total starch was calculated as 51.8% of that of Ym. The Hm cultivar contains 39.1% amylopectin and 30.5% amylose, and its total starch was 69.6%. We analyzed the expression levels of starch and sucrose biosynthesis-related genes including AGPases a, b, and c; sucrose synthases I and II; starch synthase I; GBSS I; and SBEs I and II. All genes tested in this experiment were detected only in Ym, while several genes showed very faint or no expression in Zm and Hm. We also measured tissue-specific expression of these genes in whole plants of Ym. Most of the genes are expressed in the stem and roots of the plants. Expression profiles of starch synthesis-related genes of the sweetpotato leaves were investigated after supplementing the different concentrations of sucrose solution. All genes in Ym were clearly induced by sucrose, but the expression levels of some of these genes did not change in Zm and Hm. The total starch content of Ym, Zm, and Hm gradually increased over time on addition of 3%, 6%, and 9% sucrose concentrations. The greatest accumulation was observed in Ym at 48 h, and it was almost 2.24 times higher than that of the (0%) control, while Zm and Hm showed 1.76 and 1.91 times higher levels of starch, respectively. These results indicate that cooperative expression of all related genes is essential for starch biosynthesis from sucrose. This is the first report on different sucrose contents and the efficiency with which exogenous sucrose switches on gene expression of starch biosynthesis-related genes among cultivars.  相似文献   

10.
The quality of starch digestion, related to the rate and extent of release of dietary glucose, is associated with glycemia-related problems such as diabetes and other metabolic syndrome conditions. Here, we found that the rate of glucose generation from starch is unexpectedly associated with mucosal α-glucosidases and not just α-amylase. This understanding could lead to a new approach to regulate the glycemic response and glucose-related physiologic responses in the human body. There are six digestive enzymes for starch: salivary and pancreatic α-amylases and four mucosal α-glucosidases, including N- and C-terminal subunits of both maltase-glucoamylase and sucrase-isomaltase. Only the mucosal α-glucosidases provide the final hydrolytic activities to produce substantial free glucose. We report here the unique and shared roles of the individual α-glucosidases for α-glucans persisting after starch is extensively hydrolyzed by α-amylase (to produce α-limit dextrins (α-LDx)). All four α-glucosidases share digestion of linear regions of α-LDx, and three can hydrolyze branched fractions. The α-LDx, which were derived from different maize cultivars, were not all equally digested, revealing that the starch source influences glucose generation at the mucosal α-glucosidase level. We further discovered a fraction of α-LDx that was resistant to the extensive digestion by the mucosal α-glucosidases. Our study further challenges the conventional view that α-amylase is the only rate-determining enzyme involved in starch digestion and better defines the roles of individual and collective mucosal α-glucosidases. Strategies to control the rate of glucogenesis at the mucosal level could lead to regulation of the glycemic response and improved glucose management in the human body.  相似文献   

11.
Three experiments were conducted to study effects of amylose/amylopectin ratios and starch particle size on ruminal digestion characteristics of barley starch using an automated in vitro gas production system. In Experiment 1, starch digestion characteristics were measured in 12 barley cultivars with different amylose/amylopectin ratios, both as milled grain and as purified starch isolated from the original grain samples. The same 12 cultivars, harvested 1 year later from the same locations, were used in Experiment 2. Gas production was measured in milled samples, and in neutral detergent fibre (NDF) extracted from the same samples. The objective of this approach was to estimate gas production from neutral detergent solubles (NDS) as an approximation of starch. This was done by subtracting the NDF gas curve from the total gas production curve. In Experiment 3, starch digestion characteristics were measured for large and small starch granules from nine of the original cultivars used in Experiment 1. The gas curves obtained were fitted to a three-pool Gompertz model, and the effective rate of digestion (kd) was estimated with a two-compartmental rumen model. In Experiment 1, the effective starch kd for milled barley and purified starch were 0.122 and 0.118/h, respectively. Barley cultivars with low amylose (LA) had a higher effective kd (0.148/h) compared with cultivars with normal amylose (NA) (0.115/h) and high amylose (HA) (0.102/h) (P=0.010). Results obtained with milled barley were supported by the purified barley starch sample results, but differences were smaller and only numerically different. In Experiment 2, the ranking of the amylose groups was consistent with those in Experiment 1 (i.e., LA > NA > HA) (P=0.096). However, these differences were not reflected in the effective kd for the NDS fraction (P=0.366). Thus, factors other than those related to starch per se, or other structural features, are apparently important. Barley cultivars in the LA group had a higher effective kd for aNDF (0.098/h) than did NA and HA barley (0.060 and 0.055/h, respectively). Thus, the effect of the amylose group on the effective kd for aNDF corresponded well with the milled barley results. The NDF fraction, directly or indirectly, has a clear impact on the ruminal digestion rate of barley starch. There was no difference in the effective kd for starch between the small (0.126/h) and large (0.129/h) starch granules.  相似文献   

12.
The mobile bags procedure was used to measure the disappearance of starch and proteins in the precaecal as well as in the total intestinal tract of four caecally cannulated horses. Experimental grains were oats, barley and maize, each in four different forms: ground, pelleted, extruded and micronized. The horses had 16 to 20 mobile nylon bags containing one of the experimental cereals intubated through a nasogastric tube together with the morning meal. Some of the bags were captured with a magnet through the caecal cannula and analysed for contents of starch and protein. The remaining bags were captured from the faeces and underwent the same analysis, and the digestibilities in the different parts of the gastrointestinal (GI) tract were calculated. Oats had a high degree of starch digestibility (0.949 precaecally and 0.990 totally), considerably higher (P<0.05) than barley (0.705 precaecally and 0.960 totally) and maize (0.663 precaecally and 0.910 totally). However, oats had a higher precaecal digestibility of protein (P<0.10), but a lower total tract digestibility than the other grains (P<0.01). The high-temperature treated cereals (extruded and micronized) had a higher total tract digestibility of protein than the untreated cereals (P<0.01). The pelleted and micronized cereals had the highest precaecal digestibility of protein. Differences in digestibility should be considered when formulating rations for the athletic horse.  相似文献   

13.
This study aimed at assessing the impact of four barley forms on total tract apparent digestibility of dietary fibre in horses fed a large amount of starch in the morning meal (0.27% BW). Processed barley forms had a greater pre-caecal starch digestibility than the whole form. Based on this result, we hypothesised that using barley-processing methods would limit the potential dumping of undegraded starch in the hindgut of horses and, consequently, the potential negative effect on fibre degradation in the hindgut. In a 4×4 latin square design, four mature geldings fitted with a right ventral colon-fistula were fed a meadow hay : concentrate (62 : 38; dry matter (DM) basis) diet at 1.7% BW. The concentrate was made of 80% barley distributed either as whole grain or as processed forms: 2.5 mm ground, pelleted or steam-flaked. For each period, total tract apparent digestibilities of DM, NDF and ADF were determined over 3 consecutive days by total faecal collection, whereas pH, volatile fatty acids (VFA) concentrations and cultural functional bacteria counts (total anaerobic, cellulolytic bacteria, lactic acid producers, amylolytic bacteria and lactic acid utilisers) in colonic content were evaluated on 1 day 4 h after the morning meal. Total tract apparent digestibility of DM and dietary fibre was influenced (P<0.05) by barley form. Diets including thermo-mechanically treated barley forms led to a higher (P<0.05) total tract apparent digestibility of NDF than those constituted of ground barley and also led to a greater (P<0.05) total tract apparent digestibility of ADF than those made of whole or ground barley forms. However, no significant difference was observed in colonic pH, VFA concentrations and cultural bacteria concentrations. Owing to a high starch supply in the morning meal, the concentration of the functional bacteria in the colonic content averaged 7.8 log CFU/ml, 5.9 NPM/ml, 6.9 and 7.3 CFU/ml for total anaerobic, cellulolytic, amylolytic and lactic acid-utilising bacteria, respectively. Consequently, providing horses with pelleted or steam-flaked instead of ground barley forms may limit the negative impact of starch on fibre digestibility in horses fed a high level of starch in the morning meal (0.27% BW). Moreover, the fibre-to-starch ratio fed in this experiment did not cause any digestive upset.  相似文献   

14.
This paper reviews the literature concerning digestion and nutrient content of pollen. Four topics are addressed in detail: 1) The mechanism of pollen digestion by animals; 2) The efficiency of mechanical and digestive removal of pollen content by various animals; 3) Range and taxonomic distribution of pollen nutrients, and 4) Adaptive hypotheses proposed to associate pollen chemistry with pollinator reward. Studies on the mechanism(s) of pollen digestion remain inconclusive, but suggest that differences in digestibility among pollen types may reflect differences in pollen wall porosity, thickness, and composition. Although hummingbirds reportedly digest pollen very poorly, most animals studied, including those that do not regularly consume pollen, can digest 50–100% of ingested grains. Overlooked and recent research of pollen protein content shows that pollen grains may contain over 60% protein, double the amount cited in some studies of pollen-feeding animals. Adaptive hypotheses that associate pollen starch and pollen caloric content with pollinator reward remain unsubstantiated when critically viewed through the lens of phylogeny.  相似文献   

15.
Calf milk replacers (MR) commonly contain 40% to 50% lactose. For economic reasons, starch is of interest as a lactose replacer. Compared with lactose, starch digestion is generally low in calves. It is, however, unknown which enzyme limits the rate of starch digestion. The objectives were to determine which enzyme limits starch digestion and to assess the maximum capacity for starch digestion in milk-fed calves. A within-animal titration study was performed, where lactose was exchanged stepwise for one of four starch products (SP). The four corn-based SP differed in size and branching, therefore requiring different ratios of starch-degrading enzymes for their complete hydrolysis to glucose: gelatinised starch (α-amylase and (iso)maltase); maltodextrin ((iso)maltase and α-amylase); maltodextrin with α-1,6-branching (isomaltase, maltase and α-amylase) and maltose (maltase). When exceeding the animal’s capacity to enzymatically hydrolyse starch, fermentation occurs, leading to a reduced faecal dry matter (DM) content and pH. Forty calves (13 weeks of age) were assigned to either a lactose control diet or one of four titration strategies (n=8 per treatment), each testing the stepwise exchange of lactose for one SP. Dietary inclusion of each SP was increased weekly by 3% at the expense of lactose and faecal samples were collected from the rectum weekly to determine DM content and pH. The increase in SP inclusion was stopped when faecal DM content dropped below 10.6% (i.e. 75% of the average initial faecal DM content) for 3 consecutive weeks. For control calves, faecal DM content and pH did not change over time. For 87% of the SP-fed calves, faecal DM and pH decreased already at low inclusion levels, and linear regression provided a better fit of the data (faecal DM content or pH v. time) than non-linear regression. For all SP treatments, faecal DM content and pH decreased in time (P<0.001) and slopes for faecal DM content and pH in time differed from CON; P<0.001 for all SP), but did not differ between SP treatments. Faecal DM content of SP-fed calves decreased by 0.57% and faecal pH by 0.32 per week. In conclusion, faecal DM content and pH sensitively respond to incremental inclusion of SP in calf MR, independently of SP characteristics. All SP require maltase to achieve complete hydrolysis to glucose. We therefore suggest that maltase activity limits starch digestion and that fermentation may contribute substantially to total tract starch disappearance in milk-fed calves.  相似文献   

16.
17.
The starches separated from two different Dioscorea opposita Thunb. cultivars were investigated for morphological, thermal and crystal properties. The shape of starch granules separated from different D. opposita Thunb. cultivars varied from round to oval or irregular. The surface of the starch granules appeared to be smooth without any fissures. The average particle diameter of starches from different D. opposita Thunb. cultivars was 40.3 and 38.7mum for D. 47 and D. SXY starch, respectively. The transition temperatures (T(o), T(p) and T(c)) and enthalpy of gelatinization (DeltaH(gel)) were determined using differential scanning calorimetry (DSC). The D. SXY starch showed the lower T(o) (74.2 degrees C) and the broader R (12.4). T(p) and T(c) of starch from D. 47 were higher than that of D. SXY starch. DeltaH(gel) values (11.37J/g) of D. 47 was higher than that of D. SXY starch (10.78J/g). The crystal type of starches separated from two different D. opposita cultivars was a typical C-type pattern. The degree of crystallinity of two D. opposita cultivars starches was about 45.9% and 31.5%, respectively.  相似文献   

18.
Carbohydrate research increasingly is focused on changing the biochemical nature of starch to create more efficient substrates for biofuel production; parallel work is aimed at healthier foods for human consumption. A key factor in both of these efforts is the rate at which starch is digested by amylases. Starch digestibility is influenced heavily by genetically controlled factors including starch granular and molecular structure and composition. Maize mutant varieties with increased starch digestibility would help to make more cost-efficient biofuels. To identify such mutants among segregating families of ethyl methane sulfonate-mutagenized maize, we developed a miniaturized, high-throughput single kernel preparation and starch digestion assay that can process over 500 samples per week. In a preliminary screen of 480 families, we have identified 62 mutants with faster rates of digestion as compared to wild type and, in the same screen, an additional 53 lines with slower rates of digestion, thus tremendous potential health benefits. These mutants can be used for detailed structural analysis of starch and flour physical and chemical properties, factors that interact with starch in the cell and analysis of an apparently large number of genes that can impact rates of starch digestion.  相似文献   

19.
Four Slovakian Black‐and‐white bulls (LW 410 ± 12 kg; Exp. 1) and four Slovakian Black‐and‐white non lactating dairy cows (LW 475 ± 14 kg; Exp. 2) with permanent ruminal cannulas, duodenal T‐cannulas and ileal re‐entrant cannulas were used in a 4 × 4 Latin square design to determine the postruminal capacity of starch digestion.

In Exp. 1 bulls received 5.4 kg DM from corn silage and 3.6 kg DM from alfalfa hay, in Exp. 2 cows consumed only 2.1 kg DM corn silage and 1.9 kg DM alfalfa hay. Additionally, either 750 or 1500 g (Exp. 1) or resp. 1000 or 2000 g (Exp. 2) gelatinized corn or wheat starch per animal and day were applied as pulse doses or as infusion into the proximal duodenum.

In both experiments the duodenal and ileal nutrient flow, as well as the faecal excretion without starch application, were measured in a pre‐period. After starting starch application ileal digesta and faeces were sampled over 120 h after 9 or 23 days of adaptation respectively. Cr2O3 was used as a flow marker.

It was shown, that the capacity of starch utilisation in the small intestine was limited. The effect of different doses of bypass‐starch was more pronounced than the effect of different starch sources. Starch digestibility decreased with increasing amounts of starch in the intestine (Exp. 1: corn starch: from 74.3 to 68.0%, P < 0.001; wheat starch: from 76.7 to 67.4%, P <0.001; Exp. 2: corn starch: from 71.4 to 50.3%, P <0.001; wheat starch: from 73.8 to 53.1%, P <0.001). Corn starch was 0.6 to 2.4% units (P <0.05) and 2.4 to 2.8% units (P < 0.001) less digested than wheat starch in Exp. 1 and Exp. 2, respectively.

The decreased starch digestibility in the small intestine with increasing amounts of starch at the duodenum was not totally compensated in the large intestine. The starch digestibility in the total intestine for the low and high amounts of applied starch was: 83.7 and 81.0% (P < 0.001, corn starch, Exp. 1), 86.0 and 81.7% (P < 0.001, wheat starch, Exp. 1), 95.5 and 79.1% (P < 0.001, corn starch, Exp. 2), 99.8 and 81.7% (P < 0.001, wheat starch, Exp. 2).

Corn starch was 0.7 to 2.3% units (P <0.001) and 2.6 to 4.3% units (P <0.001) less digested than wheat starch in Exp. 1 and Exp. 2, respectively.

Model calculations were used to quantify the efficiency of starch utilisation. The recommended maximal amount of bypass‐starch is supposed to be 1.3 to 1.8 kg per animal and day.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号