首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to investigate if voluntary activation and force variability during maximal voluntary contraction (MVC) depends more on muscle (local) or body (core) temperature. Ten volunteers performed a 2-min MVC of the knee extensors under the control (CON) conditions (ambient temperature (21 °C), relative humidity (30%), and air velocity (∼0.1 m/s)) as well as after heating (HT) and cooling (CL) of the lower body. During water manipulation procedure lower body was immersed up to the waist in a water bath at ∼44 °C for 45 min for HT experiment, and ∼15 °C for 30 min for CL experiment. Peak torque, torque variability, muscle voluntary activation and half-relaxation time were assessed during the exercise. HT increased muscle (2.8±0.2 °C) and rectal (1.9±0.1 °C) temperatures while CL lowered muscle (2.2±0.2 °C) temperature, but did not affect rectal temperature. During 2-min MVC, peak torque decreased (P<0.05; SP>90%) and to a lower level in HT compared to CON and CL experiments (52.6±2.3% versus 69.0±2.3% and 65.6±1.9% MVC, respectively, P<0.05; SP>90%). Torque variability increased significantly during exercise and was significantly larger in HT and lower in CL compared to CON experiment. Voluntary activation of exercising muscle was more depressed in HT (i.e. greater central fatigue) and the smallest effect was found in CL compared to CON. In conclusion increased core and muscle temperature impairs voluntary activation and increases force variability of the exercising muscles while a local muscle cooling decrease force variability but has a small effect on central fatigue.  相似文献   

2.
Multiphoton microscopy (MPM) holds promise as a noninvasive imaging technique for characterizing collagen structure, and thus mechanical properties, through imaging second harmonic generation (SHG) and two-photon fluorescence in engineered and real connective tissues. Controlling polymerization pH to manipulate collagen gel microstructure, we quantified pore and fiber dimensions using both standard methods and image correlation spectroscopy (ICS) on MPM, scanning electron, and darkfield microscopy images. The latter two techniques are used to confirm microstructural measurements made from MPM images. As polymerization pH increased from 5.5 to 8.5, mean fiber diameter decreased from 3.7 ± 0.7 μm to 1.6 ± 0.3 μm, the average pore size decreased from 81.7 ± 3.7 μm2 to 7.8 ± 0.4 μm2, and the pore area fraction decreased from 56.8% ± 0.8% to 18.0% ± 1.3% (measured from SHG images), whereas the storage modulus G′ and loss modulus G′, components of the shear modulus, increased ∼33-fold and ∼16-fold, respectively. A characteristic length scale measured using ICS, WICS, correlates well with the mean fiber diameter from SHG images (R2 = 0.95). Semiflexible network theory predicts a scaling relationship of the collagen gel storage modulus (G′) depending upon mesh size and fiber diameter, which are estimated from SHG images using ICS. We conclude that MPM and ICS are an effective combination to assess bulk mechanical properties of collagen hydrogels in a noninvasive, objective, and systematic fashion and may be useful for specific in vivo applications.  相似文献   

3.
Mechanical properties of cells play an important role in their interaction with the extracellular matrix as well as the mechanotransduction process. Several in vitro techniques have been developed to determine the mechanical properties of cells, but none of them can measure the viscoelastic properties of an individual adherent cell in fluid flow non-invasively. In this study, techniques of fluid–structure interaction (FSI) finite element method and quasi-3-dimensional (quasi-3D) cell microscopy were innovatively applied to the frequently used flow chamber experiment, where an adherent cell was subjected to fluid flow. A new non-invasive approach, with cells at close to physiological conditions, was established to determine the viscoelastic properties of individual cells. The results showed an instantaneous modulus of osteocytes of 0.49±0.11 kPa, an equilibrium modulus of 0.31±0.044 kPa, and an apparent viscosity coefficient of 4.07±1.23 kPa s. This new quantitative approach not only provides an excellent means to measure cell mechanical properties, but also may help to elucidate the mechanotransduction mechanisms for a variety of cells under fluid flow stimulation.  相似文献   

4.
Interstrain differences in thermoregulation of rats are important in biomedical research because subtleties in thermoregulatory sensitivities may greatly affect data collected. Little is known regarding how individual rodent strains differentially utilize behavioral thermal preference to regulate core temperature (Tc). Sprague-Dawley (SD) and Fischer 344 (F344) rats are known to have differences in thermoregulation including heat tolerance and are useful models to study interstrain differences in thermoregulation. Adult male SD and F344 rats of similar body size were implanted with radiotelemetry thermoprobes (DSI) to measure Tc and MA and housed in either a longitudinal temperature gradient with an ambient temperature (Ta) range of ∼15–40 °C to measure selected Ta (STa) or control environment maintained at a Ta of 23 °C. When continuously monitored for 48 h, Tc and MA increased at night, while STa decreased, according to their normal circadian cycle in both strains. SD rats were more active than F344 rats throughout the circadian cycle (SD gradient: day=12.9±1.2 m/h, night=32.1±2.4 m/h; F344 gradient: day=4.1±0.6 m/h, night=16.8±1.8 m/h; p<0.05 interstrain and circadian effects). The STa of each strain was greater during the daytime (SD: 26.4±0.2 °C; F344: 27.8±0.3 °C) than at night (SD: 24.7±0.3 °C; F344: 25.7±0.3 °C) confirming past studies that thermopreference during the day and night is greater than standard room temperature (∼23 °C). Correlations between MA and Tc suggest that MA has a greater effect on Tc in the F344 but not the SD strain when housed in a temperature gradient. There were significant strain differences in Tc depending on whether rats were housed in a temperature gradient. That is, the control F344 rats had a lower Tc during the transition from dark to light compared to rats housed in a gradient. Tc of the SD strain was unaffected by housing in the gradient. Rats are typically housed at a standard room temperature of 23 °C. However, the results demonstrate that when given the opportunity to behaviorally thermoregulate in a temperature gradient, the F344 strain selects a warmer environment that affects the regulation of Tc. This may be important in the experimenters' choice of ambient temperatures to house and study rats and other rodents.  相似文献   

5.
6.
Although biochemical signals that modulate stem cell self-renewal and differentiation were extensively studied, only recently were the mechanical properties of a stem cell's microenvironment shown to regulate its behavior. It would be desirable to have independent control over biochemical and mechanical cues, to analyze their relative and combined effects on stem-cell function. We developed a synthetic, interfacial hydrogel culture system, termed variable moduli interpenetrating polymer networks (vmIPNs), to assess the effects of soluble signals, adhesion ligand presentation, and material moduli from 10-10,000 Pa on adult neural stem-cell (aNSC) behavior. The aNSCs proliferated when cultured in serum-free growth media on peptide-modified vmIPNs with moduli of ≥100 Pa. In serum-free neuronal differentiation media, a peak level of the neuronal marker, β-tubulin III, was observed on vmIPNs of 500 Pa, near the physiological stiffness of brain tissue. Furthermore, under mixed differentiation conditions with serum, softer gels (∼100-500 Pa) greatly favored neurons, whereas harder gels (∼1,000-10,000 Pa) promoted glial cultures. In contrast, cell spreading, self-renewal, and differentiation were inhibited on substrata with moduli of ∼10 Pa. This work demonstrates that the mechanical and biochemical properties of an aNSC microenvironment can be tuned to regulate the self-renewal and differentiation of aNSCs.  相似文献   

7.
Within muscle fibers, desmin intermediate filaments (IFs) are major constituents of the extrasarcomeric cytoskeleton. However, their contribution to the mechanical properties of myocytes has remained elusive. We present an experimental approach to measure the extensibility and the tensile strength of in vitro reconstituted desmin IFs adsorbed to a solid support. The tip of an atomic force microscope (AFM) was used to push on single filaments perpendicular to the filament axis. The torque of the AFM cantilever was monitored during the pushing events to yield an estimate of the lateral force necessary to bend and stretch the filaments. Desmin IFs were stretched up to 3.4-fold with a maximum force of ∼3.5 nN. Fully stretched filaments exhibited a much smaller diameter than did native IFs, i.e., ∼3.5 nm compared to 12.6 nm, both by AFM and electron microscopy. Moreover, we combined the morphological and lateral force data to compute an average stress-strain curve for a single desmin filament. The main features were a pronounced strain-hardening regime above 50% extension and a tensile strength of at least 240 MPa. Because of these nonlinear tensile properties, desmin IFs may dissipate mechanical energy and serve as a physical link between successive sarcomeres during large deformation.  相似文献   

8.
Micromechanical bending experiments using atomic force microscopy were performed to study the mechanical properties of native and carbodiimide-cross-linked single collagen fibrils. Fibrils obtained from a suspension of insoluble collagen type I isolated from bovine Achilles tendon were deposited on a glass substrate containing microchannels. Force-displacement curves recorded at multiple positions along the collagen fibril were used to assess the bending modulus. By fitting the slope of the force-displacement curves recorded at ambient conditions to a model describing the bending of a rod, bending moduli ranging from 1.0 GPa to 3.9 GPa were determined. From a model for anisotropic materials, the shear modulus of the fibril is calculated to be 33 ± 2 MPa at ambient conditions. When fibrils are immersed in phosphate-buffered saline, their bending and shear modulus decrease to 0.07-0.17 GPa and 2.9 ± 0.3 MPa, respectively. The two orders of magnitude lower shear modulus compared with the Young's modulus confirms the mechanical anisotropy of the collagen single fibrils. Cross-linking the collagen fibrils with a water-soluble carbodiimide did not significantly affect the bending modulus. The shear modulus of these fibrils, however, changed to 74 ± 7 MPa at ambient conditions and to 3.4 ± 0.2 MPa in phosphate-buffered saline.  相似文献   

9.
Raman spectroscopy was used to determine the conformation of the disulfide linkage between cysteine residues in the homodimeric construct of the N-terminal alpha helical domain of surfactant protein B (dSP-B1-25). The conformation of the disulfide bond between cysteine residues in position 8 of the homodimer of dSP-B1-25 was compared with that of a truncated homodimer (dSP-B8-25) of the peptide having a disulfide linkage at the same position in the alpha helix. Temperature-dependent Raman spectra of the S-S stretching region centered at ∼ 500 cm− 1 indicated a stable, although highly strained disulfide conformation with a χ(CS-SC) dihedral angle of ± 10° for the dSP-B1-25 dimer. In contrast, the truncated dimer dSP-B8-25 exhibited a series of disulfide conformations with the χ(CS-SC) dihedral angle taking on values of either ± 30° or 85± 20°. For conformations with χ(CS-SC) close to the ± 90° value, the Raman spectra of the 8-25 truncated dimers exhibited χ(SS-CC) dihedral angles of 90/180° and 20-30°. In the presence of a lipid mixture, both constructs showed a ν(S-S) band at ∼ 488 cm− 1, corresponding to a χ(CS-SC) dihedral angle of ± 10°. Polarized infrared spectroscopy was also used to determine the orientation of the helix and β-sheet portion of both synthetic peptides. These calculations indicated that the helix was oriented primarily in the plane of the surface, at an angle of ∼ 60-70° to the surface normal, while the β structure had ∼ 40° tilt. This orientation direction did not change in the presence of a lipid mixture or with temperature. These observations suggest that: (i) the conformational flexibility of the disulfide linkage is dependent on the amino acid residues that flank the cysteine disulfide bond, and (ii) in both constructs, the presence of a lipid matrix locks the disulfide bond into a preferred conformation.  相似文献   

10.
Irreversible inactivation of α-thrombin (T) by the serpin, heparin cofactor II (HCII), is accelerated by ternary complex formation with the glycosaminoglycans (GAGs) heparin and dermatan sulfate (DS). Low expression of human HCII in Escherichia coli was optimized by silent mutation of 27 rare codons and five secondary Shine-Dalgarno sequences in the cDNA. The inhibitory activities of recombinant HCII, and native and deglycosylated plasma HCII, and their affinities for heparin and DS were compared. Recombinant and deglycosylated HCII bound heparin with dissociation constants (KD) of 6 ± 1 and 7 ± 1 μM, respectively, ∼6-fold tighter than plasma HCII, with KD 40 ± 4 μM. Binding of recombinant and deglycosylated HCII to DS, both with KD 4 ± 1 μM, was ∼4-fold tighter than for plasma HCII, with KD 15 ± 4 μM. Recombinant HCII, lacking N-glycosylation and tyrosine sulfation, inactivated α-thrombin with a 1:1 stoichiometry, similar to plasma HCII. Second-order rate constants for thrombin inactivation by recombinant and deglycosylated HCII were comparable, at optimal GAG concentrations that were lower than those for plasma HCII, consistent with its weaker GAG binding. This weaker binding may be attributed to interference of the Asn169N-glycan with the HCII heparin-binding site.  相似文献   

11.
An experiment was conducted from May to November in Lake Hampen, Denmark, to study the effect of higher CO2 concentration on the biomass of filamentous algae. Three enclosures (1.5 m diameter) were enriched with free CO2 to ∼10 times atmospheric equilibrium (∼170 μM) and three enclosures were kept at atmospheric equilibrium (∼17 μM). The isoetid Littorella uniflora dominated the vegetation in the enclosures. Low concentrations of nitrate and phosphate in the water were observed, especially in the summer months. During the summer, a high biomass of filamentous algae (dominated by Zygnema sp.) developed in both types of enclosures (18–58 g dry wt. m−2 in July and August), but the biomass of algae was significantly higher (1.9–38 times) in the CO2 enriched enclosures than in enclosures with low CO2 concentration. L. uniflora biomass, especially leaf biomass, also showed a significant positive response to increased CO2 concentration (75.0 ± 10.4 and 133.3 ± 42.5 g dry wt. m−2 at low and high CO2 concentrations, respectively) even though the massive filamentous algal growth decreased the light intensity. Both filamentous algae (in August) and L. uniflora showed lower tissue concentrations of N and P at high CO2 concentration.  相似文献   

12.
We have performed molecular dynamics simulations to investigate the structure and dynamics of charged bilayers as well as the distribution of counterions at the bilayer interface. For this, we have considered the negatively charged di-myristoyl-phosphatidyl-glycerol (DMPG) and di-myristoyl-phosphatidyl-serine (DMPS) bilayers as well as a protonated di-myristoyl-phosphatidyl-serine (DMPSH) bilayer. We were particularly interested in calcium ions due to their important role in biological systems. Simulations performed in the presence of calcium ions (DMPG, DMPS) or sodium ions (DMPS) were run for 45-60 ns. Simulation results for DMPG are compared with fluorescence measurements. The average areas per molecule were 47.4 ± 0.5 Å2 (DMPG with calcium), 47.3 ± 0.5 Å2 (DMPS with calcium), 51.3 ± 1.0 Å2 (DMPS with sodium) and 45.3 ± 0.5 Å2 (DMPSH). The structure of the negatively charged lipids is significantly affected by the counterions, where calcium ions have a more pronounced effect than sodium ions. Calcium ions were found to be tightly bound to the anionic groups of the lipid molecules and as such appear to constitute an integral part of the membrane interface on nanoseconds time scales. In contrast to sodium ions, calcium ions are localised in a narrow (∼ 10 Å) band around the phosphate group. The interaction of calcium with the lipid molecules enhances the molecular packing of the PG and PS lipids. This observation is in good agreement with emission spectra of the membrane partitioning probe Laurdan in DMPG multilamellar vesicles that indicate an increase in the ordering of the DMPG bilayer due to the presence of calcium. Our results indicate that calcium ions, which often function as a second messengers in living cells have a pronounced effect on membrane structures, which may have implications during signal transduction events.  相似文献   

13.
A current popular model to explain phosphorylation of smooth muscle myosin (SMM) by myosin light-chain kinase (MLCK) proposes that MLCK is bound tightly to actin but weakly to SMM. We found that MLCK and calmodulin (CaM) co-purify with unphosphorylated SMM from chicken gizzard, suggesting that they are tightly bound. Although the MLCK:SMM molar ratio in SMM preparations was well below stoichiometric (1:73 ± 9), the ratio was ∼ 23-37% of that in gizzard tissue. Fifteen to 30% of MLCK was associated with CaM at ∼ 1 nM free [Ca2+]. There were two MLCK pools that bound unphosphorylated SMM with Kd ∼ 10 and 0.2 μM and phosphorylated SMM with Kd ∼ 20 and 0.2 μM. Using an in vitro motility assay to measure actin sliding velocities, we showed that the co-purifying MLCK-CaM was activated by Ca2+ and phosphorylation of SMM occurred at a pCa50 of 6.1 and at a Hill coefficient of 0.9. Similar properties were observed from reconstituted MLCK-CaM-SMM. Using motility assays, co-sedimentation assays, and on-coverslip enzyme-linked immunosorbent assays to quantify proteins on the motility assay coverslip, we provide strong evidence that most of the MLCK is bound directly to SMM through the telokin domain and some may also be bound to both SMM and to co-purifying actin through the N-terminal actin-binding domain. These results suggest that this MLCK may play a role in the initiation of contraction.  相似文献   

14.
Inhibition of Rho-associated coiled-coil kinase (ROCK) activity promoted recovery and growth of frozen-thawed human embryonic stem cells. The primary objective was to determine if a ROCK inhibitor (Y-27632) in post-thaw culture medium improved revivability of vitrified IVP bovine blastocysts. Expanding or expanded blastocysts (7 d after IVF) were vitrified (minimum volume cooling procedure, using a Cryotop) in 15% ethylene glycol, 15% DMSO and 0.5 M sucrose. When post-warm blastocysts were cultured in mSOF medium, survival rate (re-expansion of blastocoel at 24 h of culture) was improved (P < 0.05) by the addition of 10 μM Y-27632 (94.9 ± 2.4%, mean ± SEM) compared to a control (78.0 ± 6.0%). Conversely, after 48 h of culture, there were no significant differences in hatching rate (62.8 ± 11.1 vs. 59.6 ± 9.4%) and mean total cell number (135.2 ± 13.1 vs. 146.7 ± 13.3). In non-vitrified IVP bovine blastocysts, the hatching rate on Day 9 was improved by Y-27632 (91.7 ± 3.8 vs. 54.7 ± 8.9%, P < 0.05), with no difference in mean total cell number of blastocysts (230.0 ± 23.0 vs. 191.2 ± 22.2, P = 0.23). In an additional experiment, Y-27632 was added to culture medium on either Day 0, Day 2, or Day 4 (and remained present until Day 8), resulting in no improvement in blastocyst yield compared to a control group (7.5 ± 2.1, 31.4 ± 2.3, 36.2 ± 3.2, and 28.6 ± 6.9%, respectively). In conclusion, adding a ROCK inhibitor to post-thaw culture medium improved revivability of IVP bovine blastocysts after vitrification and warming.  相似文献   

15.
This study focused on increasing the freezing rate in cell vitrification cryopreservation by using a cryopreservation container possessing rigid mechanical properties and high heat-transfer efficiency. Applying a fast freezing rate in vitrification cryopreservation causes a rapid temperature change in the cryopreservation container and has a substantial impact on mechanical properties; therefore, a highly rigid cryopreservation container that possesses a fast freezing rate must be developed. To produce a highly rigid cryopreservation container possessing superior heat transfer efficiency, this study applies an electrochemical machining (ECM) method to an ANSI 316L stainless steel tube to treat the surface material by polishing and roughening, thereby increasing the freezing rate and reducing the probability of ice crystal formation. The results indicated that the ECM method provided high-quality surface treatment of the stainless steel tube. This method can reduce internal surface roughness in the stainless steel tube, thereby reducing the probability of ice crystal formation, and increase external surface roughness, consequently raising convection heat-transfer efficiency. In addition, by thinning the stainless steel tube, this method reduces heat capacity and thermal resistance, thereby increasing the freezing rate. The freezing rate (3399 ± 197 °C/min) of a stainless steel tube after interior and exterior polishing and exterior etching by applying ECM compared with the freezing rate (1818 ± 54 °C/min) of an original stainless steel tube was increased by 87%, which also exceeds the freezing rate (2015 ± 49 °C/min) of an original quartz tube that has a 20% lower heat capacity. However, the results indicated that increasing heat-transferring surface areas and reducing heat capacities cannot effectively increase the freezing rate of a stainless steel tube if only one method is applied; instead, both techniques must be implemented concurrently to improve the freezing rate.  相似文献   

16.
This study aimed to investigate the effects of heat acclimatisation on thermoregulatory responses and work tolerance in trained individuals residing in the tropics. Eighteen male trained soldiers, who are native to a warm and humid climate, performed a total of four heat stress tests donning the Skeletal Battle Order (SBO, 20.5 kg) and Full Battle Order (FBO, 24.7 kg) before (PRE) and after (POST) a 10-day heat acclimatisation programme. The trials were conducted in an environmental chamber (dry bulb temperature: 32 °C, relative humidity: 70%, solar radiation: 400 W/m2). Excluding the data sets of which participants fully completed the heat stress tests (210 min) before and after heat acclimatisation, work tolerance was improved from 173±30 to 201±18 min (∼21%, p<0.05, n=9) following heat acclimatisation. Following heat acclimatisation, chest skin temperature during exercise was lowered in SBO (PRE=36.7±0.3 vs. POST=36.5±0.3 °C, p<0.01) and FBO (PRE=36.8±0.4 vs. POST=36.6±0.3 °C, p<0.01). Ratings of perceived exertion were decreased with SBO and FBO (PRE=11±2; POST=10±2; p<0.05) after heat acclimatisation. Heat acclimatisation had no effects on baseline body core temperature, heart rate and sweat rate across trials (p>0.05). A heat acclimatisation programme improves work tolerance with minimal effects on thermoregulation in trained tropical natives.  相似文献   

17.
Cationic liposomes preferentially target tumor vasculature compared to vessels in normal tissues. The distribution of cationic liposomes along vascular networks is, however, patchy and heterogeneous. To target vessels more uniformly we combined the electrostatic properties of cationic liposomes with the strength of an external magnet. We report part I of development. We evaluated bilayer physical properties of our preparations. We investigated interaction of liposomes with target cells including the role of PEG (polyethylene-glycol), and determined whether magnetic cationic liposomes can respond to an external magnetic field. The inclusion of relatively high concentration of MAG-C (magnetite) at 2.5 mg/ml significantly increased the size of cationic liposomes from 105 ± 26.64 to 267 ± 27.43 nm and reduced the zeta potential from 64.55 ± 16.68 to 39.82 ± 5.26 mv. The phase transition temperature of cationic liposomes (49.97 ± 1.34 °C) reduced with inclusion of MAG-C (46.05 ± 0.21 °C). MAG-C cationic liposomes were internalized by melanoma (B16-F10 and HTB-72) and dermal endothelial (HMVEC-d) cells. PEG partially shielded cationic charge potential of MAG-C cationic liposomes, reduced their ability to interact with target cells in vitro, and uptake by major RES organs. Finally, application of external magnet enhanced tumor retention of magnetic cationic liposomes.  相似文献   

18.
Although many synthetic calcium indicators are available, a search for compounds with improved characteristics continues. Here, we describe the synthesis and properties of Asante Calcium Red-1 (ACR-1) and its low affinity derivative (ACR-1-LA) created by linking BAPTA to seminaphthofluorescein. The indicators combine a visible light (450–540 nm) excitation with deep-red fluorescence (640 nm). Upon Ca2+ binding, the indicators raise their fluorescence with longer excitation wavelengths producing higher responses. Although the changes occur without any spectral shifts, it is possible to ratio Ca2+-dependent (640 nm) and quasi-independent (530 nm) emission when using visible (<490 nm) or multiphoton (∼780 nm) excitation. Therefore, both probes can be used as single wavelength or, less dynamic, ratiometric indicators. Long indicator emission might allow easy [Ca2+]i measurement in GFP expressing cells. The indicators bind Ca2+ with either high (Kd = 0.49 ± 0.07 μM; ACR-1) or low affinity (Kd = 6.65 ± 0.13 μM; ACR-1-LA). Chelating Zn2+ (Kd = 0.38 ± 0.02 nM) or Mg2+ (Kd ∼ 5 mM) slightly raises and binding Co2+ quenches dye fluorescence. New indicators are somewhat pH-sensitive (pKa = 6.31 ± 0.07), but fairly resistant to bleaching. The probes are rather dim, which combined with low AM ester loading efficiency, might complicate in situ imaging. Despite potential drawbacks, ACR-1 and ACR-1-LA are promising new calcium indicators.  相似文献   

19.
The Xiaogushan cave site is one of the most important prehistoric sites in North China. The stone and bone artifacts found in the cave are similar to European contemporaneous artifacts. Cave deposits consist of five layers that have been dated from 46,353 ± 1179 to 4229 ± 135 cal. yr BP, using radiocarbon dating techniques on charcoal and bone samples collected from Layers 2-5. In this paper, optically stimulated luminescence (OSL) techniques were applied to date six samples taken from Layers 1-3. The luminescence properties of the fine-grained and coarse-grained quartz extracts indicate that the materials are suitable for OSL dating using a single-aliquot regeneration-dose (SAR) protocol. The OSL ages obtained are broadly consistent with the stratigraphy and the associated calibrated radiocarbon ages. The dating results show that the cave was first occupied by humans about 70 ka. The human occupation of the cave may be related to climate change. An occupation hiatus is inferred to between ∼17 to ∼10 ka. The stone and bone artifacts found in Layers 2 and 3 may indicate the Middle to Upper Paleolithic transitions in the region.  相似文献   

20.
This study investigated the potential use of static osmotic loading as a cartilage tissue engineering strategy for growing clinically relevant grafts from either synovium-derived stem cells (SDSCs) or chondrocytes. Bovine SDSCs and chondrocytes were individually encapsulated in 2% w/v agarose and divided into chondrogenic media of osmolarities 300 (hypotonic), 330 (isotonic), and 400 (hypertonic, physiologic) mOsM for up to 7 weeks. The application of hypertonic media to constructs comprised of SDSCs or chondrocytes led to increased mechanical properties as compared to hypotonic (300 mOsM) or isotonic (330 mOsM) media (p<0.05). Constant exposure of SDSC-seeded constructs to 400 mOsM media from day 0 to day 49 yielded a Young's modulus of 513±89 kPa and GAG content of 7.39±0.52%ww on day 49, well within the range of values of native, immature bovine cartilage. Primary chondrocyte-seeded constructs achieved almost as high a Young's modulus, reaching 487±187 kPa and 6.77±0.54%ww (GAG) for the 400 mOsM condition (day 42). These findings suggest hypertonic loading as a straightforward strategy for 3D cultivation with significant benefits for cartilage tissue engineering strategies. In an effort to understand potential mechanisms responsible for the observed response, cell volume measurements in response to varying osmotic conditions were evaluated in relation to the Boyle–van't Hoff (BVH) law. Results confirmed that chondrocytes behave as perfect osmometers; however SDSCs deviated from the BVH relation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号