首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) is constituted by subunits containing heme groups with molecular masses (M) in the range of 15 to 19 kDa, monomers of 16 kDa (d), and trimers of 51 to 52 kDa (abc) linked by nonheme structures named linkers of 24 to 32 kDa (L). HbGp is homologous to Lumbricus terrestris hemoglobin (HbLt). Several reports propose M of HbLt in the range of 3.6 to 4.4 MDa. Based on subunits M determined by mass spectrometry and assuming HbGp stoichiometry of 12(abcd)3L3 (Vinogradov model) plus 144 heme groups, a value of M for HbGp oligomer of 3560 kDa can be predicted. This value is nearly 500 kDa higher than the unique HbGp M value reported in the literature. In the current work, sedimentation velocity analytical ultracentrifugation (AUC) experiments were performed to obtain M for HbGp in oxy and cyano-met forms. s020,w values of 58.1 ± 0.2 S and 59.6 ± 0.2 S, respectively, for the two oxidation forms were obtained. The ratio between sedimentation and diffusion coefficients supplied values for M of approximately 3600 ± 100 and 3700 ± 100 kDa for oxy and cyano-met HbGp forms, respectively. An independent determination of the partial specific volume, Vbar, for HbGp was performed based on density measurements, providing a value of 0.764 ± 0.008, in excellent agreement with the estimates from SEDFIT software. Our results show total consistency between M obtained by AUC and recent partial characterization by mass spectrometry. Therefore, HbGp possesses M very close to that of HbLt, suggesting an oligomeric assembly in agreement with the Vinogradov model.  相似文献   

2.
A new trimeric hispidin derivative, phellinstatin, was isolated from a culture broth of the medicinal fungus Phellinus linteus and its structure was established by various spectral analysis. Phellinstatin strongly inhibited Staphylococcus aureus enoyl-ACP reductase with an IC50 of 6 μM and also showed antibacterial activity against S. aureus and MRSA.  相似文献   

3.
Hominicin, antimicrobial peptide displaying potent activity against Staphylococcus aureus ATCC 25923, methicillin-resistant S. aureus (MRSA) ATCC 11435 and vancomycin-intermediate S. aureus (VISA) CCARM 3501, was purified by chloroform extraction, ion-exchange column chromatography and reverse-phase HPLC from culture supernatant of Staphylococcushominis MBBL 2-9. Hominicin exhibited heat stability up to 121 °C for 15 min and activity under both acidic and basic conditions (from pH 2.0 to 10.0). Hominicin was cleaved into two fragments after treatment with proteinase K, resulting in the loss of its antibacterial activity, while it was resistant to trypsin, α-chymotrypsin, pepsin and lipase. The molecular mass of hominicin determined by mass spectrometry was 2038.4 Da. LC-mass spectrometry and NMR spectroscopy analyses of the two fragments revealed the sequence of hominicin as DmIle-Dhb-Pro-Ala-Dhb-Pro-Phe-Dhb-Pro-Ala-Ile-Thr-Glu-Ile-Dhb-Ala-Ala-Val-Ile-Ala-Dmp, which had no similarity with other antimicrobial peptides previously reported. The present study is the first report of this novel antimicrobial peptide, which has uncommon amino acid residues like the ones in Class I group and shows potent activity against clinically relevant S. aureus, MRSA and VISA.  相似文献   

4.
Fucogalactans from edible Agaricus bisporus (RFP-Ab) and wild Lactarius rufus (RFP-Lr) mushrooms were obtained on aqueous extraction followed by purification. RFP-Ab had Mw 43.8 × 104 g mol−1 and RFP-Lr Mw 1.4 × 104 g mol−1. RFP-Lr had a (1 → 6)-linked α-d-Galp main-chain partially substituted at O-2 by nonreducing end-units of α-l-Fucp (29%). While RFP-Ab had a similar main chain, it was partially substituted at O-2 by nonreducing end-units of α-l-Fucp (2.8%) and β-d-Galp (14.5%), and partially methylated at HO-3. Both RFP-Lr and RFP-Ab were tested in mice against polymicrobial sepsis. Lethality rate, myeloperoxidase (MPO) activity and cytokine levels were determined. It was observed a reduction in late mortality rate by 62.5% and 50%, respectively, prevention of neutrophil accumulation in ileum and decreasing in TNF-α and IL-1β serum levels.  相似文献   

5.
Thermally induced aggregates of α-chymotrypsinogen A and bovine granulocyte-colony stimulating factor in acidic solutions were characterized by a combination of static and dynamic light scattering, spectroscopy, transmission electron microscopy, and monomer loss kinetics. The resulting soluble, high-molecular weight aggregates (∼103-105 kDa) are linear, semiflexible polymer chains that do not appreciably associate with one another under the conditions at which they were formed, with classic power-law scaling of the radius of gyration and hydrodynamic radius with weight-average molecular weight (Mw). Aggregates in both systems are composed of nonnative monomers with elevated levels of β-sheet secondary structure, and bind thioflavine T. In general, the aggregate size distributions showed low polydispersity by light scattering. Together with the inverse scaling of Mw with protein concentration, the results clearly indicate that aggregation proceeds via nucleated (chain) polymerization. For α-chymotrypsinogen A, the scaling behavior is combined with the kinetics of aggregation to deduce separate values for the characteristic timescales for nucleation (τn) and growth (τg), as well as the stoichiometry of the nucleus (x). The analysis illustrates a general procedure to noninvasively and quantitatively determine τn, τg, and x for soluble (chain polymer) aggregates, as well as the relationship between τn/τg and aggregate Mw.  相似文献   

6.
Bacterial cellulose-chitosan (BC-C) films were developed by immersing purified BC pellicles in 1.5 ~ 2.0% (w/v) acetic acid solutions containing chitosan of varying molecular weights. Effects of different molecular weight of chitosan on physical, biological and antimicrobial properties of the composite films were investigated. The cumulative chitosan absorption capacities with Mw of 141,000, 199,000, and 263,000 were 38.43, 24.65, and 23.89 mg/cm3 of dry BC film, respectively. The cumulative release profiles of chitosan from the films strongly depended on molecular weight of chitosan and pH of solution. The order of release of chitosan from the BC-C films was dependent on molecular weight as follows: Mw 141,000 > Mw 199,000 > Mw 263,000. All BC-C films showed the antimicrobial abilities against Staphylococcus aureus and Aspergillus niger but had no inhibitory effect on the growth of Escherichia coli. The BC-C films supported for adhesion, spreading and proliferation of both human skin keratinocytes and fibroblasts. The antibacterial activity against S. aureus of the BC-C with the highest Mw chitosan (263,000) was higher than those of the others. On the other hand, the BC-C films with the lowest Mw chitosan (141,000) promoted the growth of human skin cells more than those of the others.  相似文献   

7.
Size exclusion chromatography coupled with triple detection (online laser light scattering, refractometry, and viscosimetry) (SEC-TDA) was applied for the study of hyaluronan (HA) fragments produced during hydrolysis catalyzed by bovine testicular hyaluronidase (BTH). The main advantage this approach provides is the complete hydrodynamic characterization without requiring further experiments. HA was hydrolyzed using several BTH amounts and for increasing incubation times. Fragments were characterized in terms of weight and number average molecular weights (Mw and Mn, respectively), polydispersity index (Mw/Mn), hydrodynamic radius (Rh), and intrinsic viscosity ([η]). The Mark-Houwink-Sakurada (MHS) curves (log [η] versus log Mw) were then derived directly. Fragments covering a whole range of Mw (10-900 kDa) and size (Rh = 4-81 nm) and presenting a rather narrow distribution of molar masses (Mw/Mn = 1.6-1.7) were produced. From the MHS curves, HA conformation resulted in a change from a random coil toward a rigid rod structure while decreasing the Mw. HA enzymatic hydrolysis in the presence of a BTH inhibitor was also monitored, revealing that inhibition profiles are affected by ionic strength. Finally, a comparison of the kinetic data derived from SEC-TDA with the data from rheological measurements suggested different strengths of the two methods in the determination of the depolymerization rate depending on the hydrolysis conditions.  相似文献   

8.
Oscar Goñi 《Phytochemistry》2011,72(9):844-854
A 1,3-β-glucanase with potent cryoprotective activity was purified to homogeneity from the mesocarp of CO2-treated cherimoya fruit (Annona cherimola Mill.) stored at low temperature using anion exchange and chromatofocusing chromatography. This protein was characterized as a glycosylated endo-1,3-β-glucanase with a Mr of 22.07 kDa and a pI of 5.25. The hydrolase was active and stable in a broad acidic pH range and it exhibited maximum activity at pH 5.0. It had a low optimum temperature of 35 °C and it retained 40% maximum activity at 5 °C. The purified 1,3-β-glucanase was relatively heat unstable and its activity declined progressively at temperatures above 50 °C. Kinetic studies revealed low kcat (3.10 ± 0.04 s−1) and Km (0.32 ± 0.03 mg ml−1) values, reflecting the intermediate efficiency of the protein in hydrolyzing laminarin. Moreover, a thermodynamic characterization revealed that the purified enzyme displayed a high kcat at both 37 and 5 °C, and a low Ea (6.99 kJ mol−1) within this range of temperatures. In vitro functional studies indicated that the purified 1,3-β-glucanase had no inhibitory effects on Botrytis cinerea hyphal growth and no antifreeze activity, as determined by thermal hysteresis analysis using differential scanning calorimetry. However, a strong cryoprotective activity was observed against freeze-thaw inactivation of lactate dehydrogenase. Indeed, the PD50 was 8.7 μg ml−1 (394 nM), 9.2-fold higher (3.1 on a molar basis) than that of the cryoprotective protein BSA. Together with the observed accumulation of glycine-betaine in CO2-treated cherimoya tissues, these results suggest that 1,3-β-glucanase could be functionally implicated in low temperature-defense mechanism activated by CO2.  相似文献   

9.
A Bacillus sp., isolated from sludge and sediments of pulp and paper mill, was found to produce xylanase in a synthetic culture media containing oat spelt xylan (1% w/v) and 10% black liquor as inducers along with 2.5% (w/v) sucrose as additional carbon source. The purified enzyme was highly thermostable with half-life of 10 min at 90 °C and pH 8. The enzyme was stable over a broad range of pH (pH 6-10) and showed good thermal stability when incubated at 70 °C. Chemicals like EDTA, Hg2+, Cu2+ and solvents like glycerol and acetonitrile completely inhibited enzyme activity at high concentration. The molecular weights of the purified enzyme, determined by matrix-assisted laser desorption/ionization coupled with time-of-flight mass spectrometry (MALDI-TOF/MS) analysis was analogous to the results obtained from SDS-PAGE, i.e. 55 kDa. Kinetic parameters were determined by using oat spelt xylan as substrate. The KM and Vmax values of the enzyme were 4.4 mg/ml and 287 U/mg respectively. At high xylan concentrations (>70 mg/ml) a substrate inhibition phenomenon of the enzyme was observed. In addition, crude xylanase showed enormous potential for decolorization of various recalcitrant dyes.  相似文献   

10.
Trichoderma asperellum produces two extracellular 1,3-β-d-glucanase upon induction with cell walls from Rhizoctonia solani. A minor 1,3-β-d-glucanase was purified to homogeneity by ion exchange chromatography on Q-Sepharose and gel filtration on Sephacryl S-100. A typical procedure provided 13.8-fold purification with 70% yield. SDS-PAGE of the purified enzyme showed a single protein band of molecular weight 27 kDa. The enzyme exhibited optimum catalytic activity at pH 3.6 and 45 °C. It was thermostable at 40 °C, and retained 75% activity after 60 min at 45 °C. The Km and Vmax values for 1,3-β-d-glucanase, using laminarin as substrate, were 0.323 mg ml−1 and 0.315 U min−1, respectively. The enzyme was strongly inhibited by Hg2+ and SDS. The enzyme was only active toward glucans containing β-1,3-linkages. Peptide sequences showed similarity with two endo-1,3(4)-β-d-glucanases from Aspergillus fumigatus Af293when compared against GenBank non-redundant database.  相似文献   

11.
Ex vivo antioxidant, anti-inflammatory, anticancer and antibacterial activities of the essential oil from Tunisian Nigella sativa seeds and its main terpenes (p-cymene, γ-terpinene, thymoquinone, β-pinene, carvacrol, terpinen-4-ol and longifolene) were determined. The essential oil exhibited strong ex vivo antioxidant activity, inhibiting DCFH oxidation with an IC50 of 1.0 µg/ml, and high anti-inflammatory activity, inhibiting NO radical excretion with an IC50 value of 6.3 µg/ml. Thymoquinone was found to be the most active to decrease DCFH oxidation and NO excretion. The oil was found to significantly inhibit the growth of A-549 and DLD-1 cancer cell lines (IC50 values of 43.0 and 46.0 µg/ml, respectively) and to exert antibacterial activity against Staphylococcus aureus and Escherichia coli with IC50 values of 12.0 and 62.0 µg/ml. The anticancer and antibacterial activities could be mainly due to the action of thymoquinone and longifolene.  相似文献   

12.
A newly isolated indigenous bacterium Pseudomonas sp. CL3 was able to produce novel cellulases consisting of endo-β-1,4-d-glucanase (80 and 100 kDa), exo-β-1,4-d-glucanase (55 kDa) and β-1,4-d-glucosidase (65 kDa) characterized by enzyme assay and zymography analysis. In addition, the CL3 strain also produced xylanase with a molecular weight of 20 kDa. The optimal temperature for enzyme activity was 50, 45, 45 and 55 °C for endo-β-1,4-d-glucanase, exo-β-1,4-d-glucanase, β-1,4-d-glucosidase and xylanase, respectively. All the enzymes displayed optimal activity at pH 6.0. The cellulases/xylanase could hydrolyze cellulosic materials very effectively and were thus used to hydrolyze natural agricultural waste (i.e., bagasse) for clean energy (H2) production by Clostridiumpasteurianum CH4 using separate hydrolysis and fermentation process. The maximum hydrogen production rate and cumulative hydrogen production were 35 ml/L/h and 1420 ml/L, respectively, with a hydrogen yield of around 0.96 mol H2/mol glucose.  相似文献   

13.
A glucose-tolerant β-glucosidase was purified to homogeneity from prune (Prunus domestica) seeds by successive ammonium sulfate precipitation, hydrophobic interaction chromatography and anion-exchange chromatography. The molecular mass of the enzyme was estimated to be 61 kDa by SDS-PAGE and 54 kDa by gel permeation chromatography. The enzyme has a pI of 5.0 by isoelectric focusing and an optimum activity at pH 5.5 and 55 °C. It is stable at temperatures up to 45 °C and in a broad pH range. Its activity was completely inhibited by 5 mM of Ag+ and Hg2+. The enzyme hydrolyzed both p-nitrophenyl β-d-glucopyranoside with a Km of 3.09 mM and a Vmax of 122.1 μmol/min mg and p-nitrophenyl β-d-fucopyranoside with a Km of 1.65 mM and a Vmax of 217.6 μmol/min mg, while cellobiose was not a substrate. Glucono-δ-lactone and glucose competitively inhibited the enzyme with Ki values of 0.033 and 468 mM, respectively.  相似文献   

14.
A hydrolytic enzyme designated as a 1,3-β-d-glucanase having an antifungal activity was purified and characterized from Streptomyces torulosus PCPOK-0324. Fungal growth inhibitors in the culture filtrates from an antagonistic S. torulosus PCPOK-0324 exhibited higher antifungal activity against the hyphal growth of Phytophthora capsici and Rhizoctonia solani. The 1,3-β-d-glucanase was purified by four chromatographic steps from culture supernatant. The molecular weight of the purified enzyme was estimated to be 31.5 kDa. The optimal pH and temperature were 7.5 and 50 °C. Both the purified enzyme and the antibiotic extract inhibited R. solani and P. capsici with minimal inhibitory concentration values of 12.50 and 6.25 mU ml−1 and 3.95 and 1.94 μg ml−1, respectively. Our findings collectively show that the 1,3-β-d-glucanase in combination with the antibiotic extract have strong synergistic antifungal activity against the hyphal growth of both fungi causing root rot disease in pepper plants.  相似文献   

15.
Two extracellular chitinases (designated as Chi-56 and Chi-64) produced by Massilia timonae were purified by ion-exchange chromatography, ammonium sulfate precipitation, and gel-filtration chromatography. The molecular mass of Chi-56 was 56 kDa as determined by both SDS-PAGE and gel-filtration chromatography. On the other hand, Chi-64 showed a molecular mass of 64 kDa by SDS-PAGE and 28 kDa by gel-filtration chromatography suggesting that its properties may be different from those of Chi-56. The optimum temperature, optimum pH, pI, Km, and Vmax of Chi-56 were 55 °C, pH 5.0, pH 8.5, 1.1 mg mL−1, and 0.59 μmol μg−1 h−1, respectively. For Chi-64, these values were 60 °C, pH 5.0, pH 8.5, 1.3 mg mL−1, and 1.36 μmol μg−1 h−1, respectively. Both enzymes were stimulated by Mn2+ and inhibited by Hg2+, and neither showed exochitinase activity. The N-terminal sequences of Chi-56 and Chi-64 were determined to be Q-T-P-T-Y-T-A-T-L and Q-A-D-F-P-A-P-A-E, respectively.  相似文献   

16.
A bacterial strain designated as BPM3 isolated from mud of a natural hot water spring of Nambar Wild Life Sanctuary, Assam, India, strongly inhibited growth of phytopathogenic fungi (Fusarium oxysporum f. sp. ciceri, F. semitectum, Magnaporthe grisea and Rhizoctonia oryzae) and gram-positive bacterium (Staphylococcus aureus). The maximum growth and antagonistic activity was recorded at 30 °C, pH 8.5 when starch and peptone were amended as carbon and nitrogen sources, respectively. In greenhouse experiment, this bacterium (BPM3) suppressed blast disease of rice by 30-67% and protected the weight loss by 35-56.5%. The maximum disease protection (67%) and weight loss protection (56.5%) were recorded when the bacterium was applied before 2 days of the pathogen inoculation. Antifungal and antibacterial compounds were isolated from the bacterium which also inhibited the growth of these targeted pathogens. The compounds were purified and on spectroscopic analysis of a purified fraction having Rf 0.22 which showed strong antifungal and antibacterial activity indicated the presence of C-H, carbonyl group, dimethyl group, -CH2 and methyl group. The bacterium was characterized by morphological, biochemical and molecular approaches and confirmed that the strain BPM3 is Brevibacillus laterosporus.  相似文献   

17.
The paper reports the purification and characterization of the first penicillin acylase from Bacillus subtilis. YxeI, the protein annotated as hypothetical, coded by the gene yxeI in the open reading frame between iol and hut operons in B. subtilis was cloned and expressed in Eshcherichia coli, purified and characterized. The purified protein showed measurable penicillin acylase activity with penicillin V. The enzyme was a homotetramer of 148 kDa. The apparent Km of the enzyme for penicillin V and the synthetic substrate 2-nitro-5-(phenoxyacetamido)-benzoic acid was 40 mM and 0.63 mM, respectively, and the association constants were 8.93 × 102 M−1 and 2.51 × 105 M−1, respectively. It was inhibited by cephalosporins and conjugated bile salts, substrates of the closely related bile acid hydrolases. It had good sequence homology with other penicillin V acylases and conjugated bile acid hydrolases, members of the Ntn hydrolase family. The N-terminal nucleophile was a cysteine which is revealed by a simple removal of N-formyl-methionine. The activity of the protein was affected by high temperature, acidic pH and the presence of the denaturant guanidine hydrochloride.  相似文献   

18.
A new β-mannosidase gene, designated as man2S27, was cloned from Streptomyces sp. S27 using the colony PCR method and expressed in Escherichia coli BL21 (DE3). The full-length gene consists of 2499 bp and encodes 832 amino acids with a calculated molecular mass of 92.6 kDa. The amino acid sequence shares highest identity of 62.6% with the mannosidase Man2A from Cellulomonas fimi which belongs to the glycoside hydrolase family 2. Purified recombinant Man2S27 showed optimal activity at pH 7.0 and 50 °C. The specific activity, Km, and kcat values for p-nitrophenyl-β-d-mannopyranoside (p-NP-β-MP) were 35.3 U mg-1, 0.23 mM, and 305 s-1, respectively. Low transglycosylation activity was observed when Man2S27 was incubated with p-NP-β-MP (glycosyl donor) and methyl-α-d-mannopyranoside (p-NP-α-MP) (acceptor) at 50 °C and pH 7.0, and a small amount of methylmannobioside was synthesized. Using locust bean gum as the substrate, more reducing sugars were liberated by the synergistic action of Man2S27 and β-mannanase (Man5S27), and the synergy degree in sequential reactions with Man5S27 firstly and Man2S27 secondly was higher than that in the simultaneous reactions.  相似文献   

19.
The hemostatic and immunostimulating activity and cytotoxicity were determined for a number of chitosans differing in molecular weight (from 3 to 510 kDa) and degree of acetylation (from 1 to 25 mol%) that were used as adjuvants in inactivated poliomyelitic, influenza, and live influenza vaccines. It has been shown that the hemostatic activity of chitosan increased sharply with an increase in its molecular weight. In oligochitosan with a molecular weight of <16 kDa, it was smaller by a factor of 15–100 than in chitosan with a molecular weight of 20–510 kDa. The level of increase in the immunogenicity of vaccines containing oligochitosan as adjuvants was not lower than that for the vaccine including high-molecular chitosan. However, the immunostimulatory activity of oligochitosan depended on the degree of acetylation, reaching a maximum value at 6 mol%. It was shown that all oligochitosans and chitosans with a molecular mass below ~50 kDa showed almost no cytotoxicity at a concentration of ≤2.5 mg/mL, which enable their use as adjuvants for inactivated and live vaccines at the optimal ratio of molecular weight to the degree of acetylation.  相似文献   

20.
The present study reports the recombinant expression, purification, and partial characterization of a typical aspartic proteinase from Arabidopsis thaliana (AtAP A1). The cDNA encoding the precursor of AtAP A1 was expressed as a functional protein using the yeast Pichia pastoris. The mature form of the rAtAP A1 was found to be a heterodimeric glycosylated protein with a molecular mass of 47 kDa consisting of heavy and light chain components, approx. 32 and 16 kDa, respectively, linked by disulfide bonds. Glycosylation occurred via the plant specific insert in the light chain. The catalytic properties of the rAtAP A1 were similar to other plant aspartic proteinases with activity in acid pH range, maximal activity at pH 4.0, Km of 44 μM, and kcat of 55 s−1 using a synthetic substrate. The enzyme was inhibited by pepstatin A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号