首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A glycosaminoglycan from sea cucumber Thelenata anana (THG) was isolated as a polymer of molecular weight of around 70 kDa. Its low molecular weight derivatives were first prepared by free radical depolymerization with hydrogen peroxide in the presence of copper(II) ion. The parameters of the process were investigated by a high-performance gel permeation chromatography. Analyses of chemical composition and molecular weight distribution indicated that the fragmentation of the main-chain of THG occurred randomly, obeyed pseudo first-order kinetics, and produced species with rather narrow and unimodal distribution of molar mass. The characterization of different molecular weight fractions was investigated by using viscometry and atomic force microscopy (AFM). Analysis of molecular weight and intrinsic viscosity in terms of the known theories for unperturbed wormlike cylinder yielded 1201 ± 110 nm−1, 15.3 ± 1.5 nm, and 1.5 ± 0.3 nm for molar mass per unit contour length ML, persistence length q, and diameter d, respectively. The ML and d values were approximately consistent with those observed by AFM. The present data suggest that THG may dissolve in 0.1 M aqueous NaCl as single-stranded helical chains.  相似文献   

2.
Glycans comprise perhaps the largest biomass in nature, and more and more glycans are used in a number of applications, including those as pharmaceutical agents in the clinic. However, defining glycan molecular weight distributions during and after their preparation is not always straightforward. Here, we use pulse field gradient (PFG) 1H NMR self-diffusion measurements to assess molecular weight distributions in various glycan preparations. Initially, we derived diffusion coefficients, D, on a series of dextrans with reported weight-average molecular weights from about 5 kDa to 150 kDa. For each dextran sample, we analyzed 15 diffusion decay curves, one from each of the 15 major 1H resonance envelopes, to provide diffusion coefficients. By measuring D as a function of dextran concentration, we determined D at infinite dilution, Dinf, which allowed estimation of the hydrodynamic radius, Rh, using the Stokes-Einstein relationship. A plot of log Dinf versus log Rh was linear and provided a standard calibration curve from which Rh is estimated for other glycans. We then applied this methodology to investigate two other glycans, an α-(1→2)-l-rhamnosyl-α-(1→4)-d-galacturonosyl with quasi-randomly distributed, mostly terminal β(1→4)-linked galactose side-chains (GRG) and an α(1→6)-d-galacto-β(1→4)-d-mannan (Davanat), which is presently being tested against cancer in the clinic. Using the dextran-derived calibration curve, we find that average Rh values for GRG and Davanat are 76 ± 6 × 10−10 m and 56 ± 3 × 10−10 m, with GRG being more polydispersed than Davanat. Results from this study will be useful to investigators requiring knowledge of polysaccharide dispersity, needing to study polysaccharides under various solution conditions, or wanting to follow degradation of polysaccharides during production.  相似文献   

3.
Dextran, a homopolyner consisting almost solely of 1,6-α- linked glucose units, was separated into five well defined, narrow range, low molecular weight fractions by sequential ultrafiltration, after controlled lydrolysis. A commercially available purified dextran preparation, D 10, with a weight average molecular weight (Mw) of 10,980, was hydrolyzed with HCl to an average molecular weight of 4200. By ultrafiltration through a series of graded anisotropic cellulose acetate membranes of decreasing sore sizes, molecular weight fractions having Mw's of 7100, 6175, 4320, 2810 and 1565 were obtained. From Mw and sedimentation (S) values, the frictional coefficients were calculated for each fraction and the asymmetry ratios obtained therefrom.  相似文献   

4.
It is known that the fractional absorption of extrinsic iron from human milk is higher in infants and adults. A low molecular weight milk fraction has been proposed to increase the bioavailability of iron from human milk. Nevertheless, the mechanisms remained elusive. Here in we demonstrate ferric reductase activity (Km 7.73 × 10−6 M) in low molecular weight human milk fraction (10kF, filtrate derived from ultra filtration of milk whey through 10 kDa cutoff membrane), which increased ferric iron solubility and iron uptake in Caco-2 cells. The 10kF fraction was as effective as ascorbic acid (1:20 iron to ascorbic acid) in increasing the ferric iron solubility and uptake in Caco-2 cells. Further, gel filtration chromatography on peptide column led to co-elution of ferric reductase and iron solubilization activities at an apparent molecular mass of <1500 Da. Interestingly, only these fractions containing ferric reductase activity also stimulated the uptake of iron in Caco-2 cells. Thus, it is concluded that human milk possesses ferric reductase activity and is associated with ferric iron solubilization and enhanced absorption.  相似文献   

5.
In fish, amphibians and mammals, gap junctions of some cells allow passage of elongate molecules as large as 18 kDa, while excluding smaller, less elongate molecules. Fluorescently labeled Calmodulin (17 kDa) and fluorescently labeled Troponin-C (18 kDa), when microinjected into oocytes of Danio rerio, Xenopus laevis or Mus domestica, were able to transit the gap junctions between these oocytes and the granulosa cells which surrounded them. Co-microinjected with these Ca2+-binding proteins, Texas-red-labeled dextran (10 kDa) remained in the microinjected cell. Osteocalcin (6 kDa), also a Ca2+-binding protein, but with a wide “V” shape proved unable to transit these gap junctions. Calmodulin, but not Troponin-C, was able to transit gap junctions of gonadotropin treated WB cells in culture. We show evidence that molecules as large as 18 kDa can pass through some vertebrate gap junctions, both homologous and heterologous, and that it is primarily molecular configuration which governs gap junctional permeability.  相似文献   

6.
Colorectal cancer (CRC) is a major cause of mortality in Western populations. Growing evidence from human and rodent studies indicate that nonsteroidal anti-inflammatory drugs (NSAIDs) cause regression of existing colon tumors and act as effective chemopreventive agents in sporadic colon tumor formation. Although much is known about the action of the NSAID sulindac, especially its role in inducing apoptosis, mechanisms underlying these effects is poorly understood. In previous secretome-based proteomic studies using 2D-DIGE/MS and cytokine arrays we identified over 150 proteins released from the CRC cell line LIM1215 whose expression levels were dysregulated by treatment with 1 mM sulindac over 16 h; many of these proteins are implicated in molecular and cellular functions such as cell proliferation, differentiation, adhesion, angiogenesis and apoptosis (Ji et al., Proteomics Clin. Appl. 2009, 3, 433–451). We have extended these studies and describe here an improved protein/peptide separation strategy that facilitated the identification of 987 proteins and peptides released from LIM1215 cells following 1 mM sulindac treatment for 8 h preceding the onset of apoptosis. This peptidome separation strategy involved fractional centrifugal ultrafiltration of concentrated cell culture media (CM) using nominal molecular weight membrane filters (NMWL 30 K, 3 K and 1 K). Proteins isolated in the > 30 K and 3–30 K fractions were electrophoretically separated by SDS-PAGE and endogenous peptides in the 1–3 K membrane filter were fractioned by RP-HPLC; isolated proteins and peptides were identified by nanoLC-MS–MS. Collectively, our data show that LIM1215 cells treated with 1 mM sulindac for 8 h secrete decreased levels of proteins associated with extracellular matrix remodeling (e.g., collagens, perlecan, syndecans, filamins, dyneins, metalloproteinases and endopeptidases), cell adhesion (e.g., cadherins, integrins, laminins) and mucosal maintenance (e.g., glycoprotein 340 and mucins 5 AC, 6, and 13). A salient finding of this study was the increased proteolysis of cell surface proteins following treatment with sulindac for 8 h (40% higher than from untreated LIM1215 cells); several of these endogenous peptides contained C-terminal amino acids from transmembrane domains indicative of regulated intramembrane proteolysis (RIP). Taken together these results indicate that during the early-stage onset of sulindac-induced apoptosis (evidenced by increased annexin V binding, dephosphorylation of focal adhesion kinase (FAK), and cleavage of caspase-3), 1 mM sulindac treatment of LIM1215 cells results in decreased expression of secreted proteins implicated in ECM remodeling, mucosal maintenance and cell–cell-adhesion. This article is part of a Special Issue entitled: An Updated Secretome.  相似文献   

7.
In this paper, the composition and biological activities of polysaccharides from tea seed (TSPS) obtained by water extraction were investigated. The properties and chemical compositions of TSPS were analyzed with HPGPC, IC, and IR methods. The results showed that TSPS consisted of three kinds of polysaccharides with the molecular weight of 500 kDa, 130 kDa, and 5 kDa. TSPS consisted of rhamnose, xylose, arabinose, glucose and galactose, GalA, GulA, with a molar ratio of 4.9:1.7:11.1:27.2:14.0:3.4:1, sugar backbone of TSPS might consist of glucose, but branched chain may consist of rhamnose, xylose, arabinose, and galactose. The IR spectrum of TSPS revealed the typical characteristics of polysaccharides and protein. TSPS significantly inhibited the growth of K562 cells, especially, at the concentration of 50 μg/ml; the inhibition activity of TSPS was the highest with an inhibition ratio beyond 38.44 ± 2.22% (P < 0.01). TSPS with high concentrations (100, 200 and 400 μg/ml) had higher proliferation effect on lymphocyte. Results of these studies demonstrated that the polysaccharide had a potential application as natural antitumor drugs.  相似文献   

8.
对微生物谷氨酰胺转胺酶(MTG)超滤浓缩的工艺条件进行了探讨及优化。实验采用截留分子量为30 kDa的聚醚砜(PES)膜,当发酵液初始pH为7,超滤浓缩倍数为4倍时,可以得到理想的MTG回收率。同时对超滤液中蛋白酶的变化进行了分析,发现随着超滤倍数的提高蛋白酶也逐渐提高,但在浓缩4倍以后达到较稳定的水平。聚醚砜(PES)超滤膜使用后用稀释的NaOH溶液浸泡清洗处理50 min后,膜通量可以恢复98.12%。  相似文献   

9.
Fan WX  Ma XH  Ge D  Liu TQ  Cui ZF 《Cryobiology》2009,58(1):28-36
The objective of this work was to select and test systematically possible cryoprotective agents (CPAs) and to obtain a suitable formula for vitrification of corneal endothelial cells (CECs). Fresh bovine CECs were isolated and tested with an optimized vitrification protocol with multi-step CPA loading and removal. Three types of CPAs components, i.e. the penetrating CPAs, sugars and macromolecular compounds, were experimentally evaluated using the viability assayed by trypan blue. Dimethyl sulfoxide, ethylene glycol (EG), 1,2-propanediol, 2,3-butanediol, acetamide and ethylene glycol monomethyl ether were chosen as the penetrating CPA components. Sugars including xylose, fructose, mannose, glucose, maltose, sucrose and trehalose were tested. Ficoll (MW 7 kDa), dextran (MW 7 kDa), chondroitin sulfate (CS, MW 18-30 kDa), bovine serum albumin (MW 68 kDa) and polyethylene glycol (MW 6 kDa, 10 kDa and 20 kDa) were chosen as the macromolecular compounds. CECs were also preserved by slow freezing as a control. The results showed that EG was the most suitable penetrating CPA component and glucose the most suitable sugar, and CS the most suitable macromolecule. The optimized concentrations for each component in the vitrification solution were 52% (w/w) EG, 8% (w/w) glucose and 3% (w/w) CS. The CEC survival rate of 89.4 ± 2.1% (mean ± SD) was obtained using this formula and established vitrification protocol which was comparable to that by slow freezing.  相似文献   

10.
Hou B  Sun J  Hu YY 《Bioresource technology》2011,102(6):4433-4438
Different microfiltration membrane (MFM), proton exchange membrane (PEM) and ultrafiltration membranes (UFMs) with different molecular cutoff weights of 1 K (UFM-1K), 5 K (UFM-5K) and 10 K (UFM-10K) were incorporated into air-cathode single-chamber microbial fuel cells (MFCs) which were explored for simultaneous azo dye decolorization and electricity generation to investigate the effect of membrane on the performance of the MFC. Batch test results showed that the MFC with an UFM-1K produced the highest power density of 324 mW/m2 coupled with an enhanced coulombic efficiency compared to MFM. The MFC with UMF-10K achieved the fastest decolorization rate (4.77 mg/L h), followed by MFM (3.61 mg/L h), UFM-5K (2.38 mg/L h), UFM-1K (2.02 mg/L h) and PEM (1.72 mg/L h). These results demonstrated the possibility of using various membranes in the system described here, and showed that UFM-1K was the best one based on the consideration of both cost and performance.  相似文献   

11.
Complex heterogeneous polysaccharides that comprise pectin were partially depolymerized by a photochemical reaction using ultraviolet light in the presence of titanium dioxide catalyst. In a period of 6 h at pH 7, this UV/TiO2 process decreased the average molecular weight of pectin from 400 kDa to 200 kDa. The characterization of the partially depolymerized pectin, which was fractionated by size-exclusion chromatography, was performed by 1H NMR spectroscopy, and the spectra obtained showed that the resulting oligosaccharides and polysaccharides maintained the intact core structure of pectin. The monosaccharide content and depolymerization profile were determined by high-performance anion-exchange chromatography coupled with pulsed amperometric detection. This controlled photochemical depolymerization technique might be useful for preparation of pectin oligosaccharides as an ingredient in food and pharmaceutical products.  相似文献   

12.
In some insect species, certain substances in the seminal fluid of males induce egg production and laying in females. We determined the effects of male-derived substances on female oviposition behaviour in two Callosobruchus species, C. chinensis and C. maculatus. Aqueous extracts of the accessory gland; testis; and seminal vesicle, including the ejaculatory duct, were prepared. The injection of these extracts into abdomen of females induced oviposition in both species. Oviposition was induced by the testis and seminal vesicle extracts in C. chinensis and by the accessory gland extracts in C. maculatus. The extracts were separated into three fractions by ultrafiltration: fractions I, molecular weight (MW) <3 kDa; fraction II, 3-14 kDa; and fraction III, >14 kDa. Fraction III induced oviposition in both species. These results suggest that in these two species, the substances that induce oviposition have similar MW but are present in different organs. Oviposition was induced by high-MW (>14 kDa) substances in the testis and seminal vesicle in C. chinensis, and by high-MW substances in accessory gland in C. maculatus. Here, we have discussed the relationship between oviposition and the abovementioned male-derived substances.  相似文献   

13.
A chromogenic assay using RB5-dGA, Reactive Black 5 (RB5) dye covalently coupled to de-arabinosylated gum arabic (dGA), was developed for rapid screening of β-galactanases. dGA was prepared by partial acid hydrolysis (0.25 M trifluoroacetic acid for 2 h at 90-95 °C) of gum Arabic (GA) from Acacia senegal. The dGA exhibited a median molecular mass of ∼10 kDa, corresponding to a degree of polymerisation (DP) ∼60. It was devoid of Ara residues, and contained mostly Galp (68 mol %) together with GlcpA (30 mol %). The Galp residues were (1,6)- (34 mol %), (1,3)- (3 mol %) and (1,3,6)- (26 mol %) linked, and the GlcAp residues were primarily terminal (28 mol %) together with a small amount of (1,4)-linked (2 mol %), as expected for a type II (3,6)-galactan. The new chromogenic assay is simple, cost effective, relatively sensitive, and is specific for either β-(1→3)- and/or β-(1→6)-d-galactanases. It will enable routine large-scale screening of β-galactanases from crude enzyme preparations and microorganism cultures, and is suitable for profiling activity during purification processes.  相似文献   

14.
A study was made to find out maximum partitioning of Bacillus licheniformis alkaline phosphatase in different ATPSs composed of different molecular weight of PEG X (X = 2000, 4000, 6000) with salts (magnesium sulphate, sodium sulphate, sodium citrate) and polymers (dextran 40, dextran T500). Physicochemical factors such as effect of system pH, system temperature and production media were evaluated for partitioning of alkaline phosphatase. PEG 4000 [9.0% (w/v)] and dextran T500 [9.6% (w/v)] were selected as most suitable system components for alkaline phosphatase production by B. licheniformis based on greater partition coefficient (k = 5.23). The two-phase system produced fewer enzymes than the homogeneous fermentation (control) in early stage of fermentation, but after 72 h the enzyme produced in the control system was less than that in the ATPS. Total alkaline phosphatase yield in ATPS fermentation was 3907.01 U/ml and in homogeneous fermentation 2856.50 U/ml.  相似文献   

15.
The major operational problem associated with membrane bioreactors (MBR) is membrane fouling, for which extracellular polymeric substances (EPS) are primarily responsible. In this work both the soluble and bound EPS (i.e. SMP and EPS) produced in an MBR system operating under sludge retention times (SRT) of 10, 15, 20 and 33 days were fractionized by means of membranes having variable molecular weight cutoffs (300 kDa, 100 kDa, 10 kDa & 1 kDa). The results show that increasing the SRT leads to a reduction of SMP and EPS and that these reductions are more pronounced for the SRTs in the range 10–20 days. This reduction is more significant for carbohydrates than for proteins. The decrease of SMP and EPS with increasing SRT from 10 to 20 days led to a significant decrease of the level of fouling. The further increase of SRT to 33 days did not significantly impact on the level of fouling as the SMP and EPS concentrations did not change much.  相似文献   

16.
A gene encoding a putative rhamnogalacturonan I (RGI) Lyase (EC 4.2.2.-) from Bacillus licheniformis (DSM13) was selected after a homology search and phylogenetic analysis and optimized with respect to codon usage. The designed gene was transformed into Pichia pastoris and the enzyme was produced in the eukaryotic host with a high titer in a 5 l bioreactor. The RGI Lyase was purified by Cu2+ affinity chromatography and 1.1 g pure enzyme was achieved pr. L. When the denatured protein was deglycosylated with EndoH, the molecular weight of the protein decreased to 65 kDa, which correlated with the predicted molecular weight of the mature RGI Lyase of 596 amino acids. By use of a statistical design approach, with potato rhamnogalacturonan as the substrate, the optimal reaction conditions for the RGI Lyase were established to be: 61 °C, pH 8.1, and 2 mM of both Ca2+ and Mn2+ (specific activity 18.4 U/mg; KM 1.2 mg/ml). The addition of both Ca2+ and Mn2+ was essential for enzyme activity. The enzyme retained its catalytic activity at higher temperatures and the enzyme has a half life at 61 °C of 15 min. The work thus demonstrated the workability of in silico based screening coupled with a synthetic biology approach for gene synthesis for identification and production of a thermostable enzyme.  相似文献   

17.
Investigation into the effect of the reducing sugar of dextran on formation and stability of dextran-coated ultrasmall superparamagnetic iron oxides (USPIO) has demonstrated that reduction of the terminal reducing sugar can have a significant effect on particle size, coating stability, and magnetic properties. Four aspects of polysaccharide-coated USPIO particle synthesis were investigated: (i) the effect reduction of the terminal polysaccharide sugar has upon polysaccharide usage, particle size, stability, and magnetic susceptibility; (ii) the effect an exogenous reducing sugar can have upon particle synthesis; (iii) the effect the molecular weight of the reduced polysaccharide has on particle synthesis; and (iv) the effectiveness of reduced and native dextrans in stabilizing a preformed magnetic sol. For low molecular weight dextrans (MW 20,000 x 10(-6) cgs). Similar results were obtained with a 12 kDa pullulan. The effect of polysaccharide molecular weight on particle size was studied, wherein higher molecular weight reduced dextrans produced larger particles. The effectiveness of the reduced and native dextrans in stabilizing a preformed magnetic sol was compared. Reduced dextrans were found to be superior for stabilizing the magnetic sol. The observed effects of reduction of the terminal sugar in dextran compared with the native dextran were modeled using the Langmuir adsorption isotherm. A good fit of experimental data with this model was found.  相似文献   

18.
Summary A tumor model system of clones of myeloproliferative sarcoma virus (MPV)-transformed rat fibroblasts (NRK) with different growth properties and metastatic potential was studied. The relationship between metastatic behavior and composition of carbohydrate-binding proteins (lectins) was analyzed by affinity chromatography. The metastatic variant differs qualitatively from its parental clone in the presence of galactoside-binding proteins at apparent molecular weights of 80 kDa, 70 kDa, 22 kDa, 18 kDa and 16 kDa and of a fucose-binding protein at apparent molecular weight of 42 kDa. The -glucosyl-binding proteins at apparent molecular weights of 67 kDa and 53 kDa and a galactoside-binding protein of apparent molecular weight of 34 kDa, however, are not detectable in the metastatic variant in comparison to its parental clone. In this respect the parental clone shows closer resemblance to the clone 5–8#1 with different growth properties and low metastatic potential than to its own metastatic variant. Furthermore, only the parental clone has a melibiose- and a mannan-binding protein of an apparent molecular weight of 64 kDa and 14 kDa, respectively. Rosette formation as model system for intercellular interaction reveals differences in the inhibition pattern with sugar between the two clones 5–8#1 and 5–20#20, whereas the metastatic variant 5–20#20 (s) exhibits drastically reduced capability to form rosettes. Initial experiments demonstrate the feasibility of drug targeting to transformed fibroblasts via carbohydrate-binding proteins.  相似文献   

19.
Neutral protease was immobilized on chitosan (CS), carboxymethyl chitosan (CMCS), and N-succinyl chitosan (NSCS) hydrogel beads. And the biocatalysts obtained were used to prepare low molecular weight chitosan (LMWC) and chitooligomers. Weight-average molecular weight of LMWC produced by neutral protease immobilized on CS, CMCS and NSCS hydrogel beads were 3.4 kDa, 3.2 kDa and 1.9 kDa, respectively. The effects of immobilization support and substrate on enzymatic reaction were analyzed by measuring classical Michaelis-Menten kinetic parameters. The FT-IR, XRD and potentiometric determination results indicated decrease of molecular weight led to transformation of crystal structure, but the degree of N-deacetylation and chemical structures of residues were not changed compared to initial chitosan. The degree of polymerization of chitooligomers was mainly from 2 to 7. We observed a strong dependence of the immobilized enzyme properties on the chemical nature of the supports, which leads to different microenvironment of neutral protease and changes the hydrolyzing process.  相似文献   

20.
Fibronectin (FN) is a major component of the extracellular matrix which plays important roles in a variety of cellular processes including cell adhesion, and migration. The soluble cellular form of FN has a monomer molecular weight of approximately 250 kDa, and generally exists as a dimer of 500 kDa. We have isolated a different form of soluble FN from mouse breast cancer cell line SC115 conditioned medium (CM) and purified it to homogeneity as evidenced by both native polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate PAGE. It still exhibits a monomeric form of about 250 kDa while its form in the CM is stable and soluble with an apparent tetrameric molecular weight in the range of 800-1000 kDa. This form of FN is a potent cell adhesion factor (AF) that induces adhesion to polystyrene, elongation, spreading, alignment or “track” formation, and migration of mouse erythroleukemia cells. Column fractions homogeneous for AF protein were able to stimulate 10% cell adhesion at concentrations of 23 ng/ml and 1.9 ng/cm2. Purified AF induced 50% cell adhesion at 94 ng/ml and 7.5 ng/cm2. AF also increased the migration of human aortic smooth muscle and vascular endothelial cells. However, this form of FN differs from other forms as it does not bind tightly to either gelatin or heparin. Studies of this AF should shed light on adhesion of cells to extracellular matrix molecules and on cell migration, both of which are critical in several biological processes such as wound healing, metastasis, matrix formation and structure, and organ development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号