首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel biodegradable sodium carboxymethyl cellulose (NaCMC)-based hydrogel was synthesized by using fumaric acid (FA) as a crosslinking agent at various ratios. Hydrogels (CMCF) were characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Swelling behaviors of hydrogels were investigated in distilled water, various salt, and pH solutions. The FTIR results indicated the crosslinking between carboxyl groups of FA with hydroxyl group of NaCMC through ester formation. AFM analyses showed that roughness of hydrogel surface decreased with increasing crosslinker concentration. The swelling capacity decreased with an increase in charge of the metal cation (Al(3+)相似文献   

2.
A series of hybrid hydrogels based on glycidyl methacrylated chitosan (CS-GMA) and N-isopropylacrylamide (NIPAAm) were designed and prepared via photopolymerization technology. The hydrogels were characterized by Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC) and optical transmittance. The interior morphology of hydrogels was investigated by scanning electron microscopy (SEM). The swelling experiment results revealed that hybrid hydrogel exhibited combined pH and temperature sensitivities. Acid orange 8 (AO8) and 5-flurouracil (5-Fu) were selected as model drugs for examining their release from hydrogels. The results suggested that hydrogel composition and pH value of buffer solution had great influences on release profiles.  相似文献   

3.
Novel polyelectrolyte hydrogels (coded as GA) based on cationic guar gum (CGG) and acrylic acid monomer by photoinitiated free-radical polymerization were synthesized with various feed compositions. Fourier transform infrared spectra (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC) confirmed that the formation of the polyelectrolyte hydrogels was attributed to the strong electrostatic interaction between cationic groups in CGG and anionic groups in poly (acrylic acid) (PAA). Swelling experiments provided important information on drug diffusion properties, which indicated the GA hydrogels were highly sensitive to pH environments. Potential applications of the hydrogels matrices in controlled drug delivery were also examined. The ketoprofen-loaded CGG/PAA matrices were prepared by hydrogels and directly compressed tablets, respectively. Release behavior of ketoprofen relied on the preparative methods of matrices, ratios of CGG/AA and pH environments. The release mechanism was studied by fitting experimental data to a model equation and calculating the corresponding parameters. The result showed that the kinetics of drug release from the hydrogels in pH 7.4 buffer solution was mainly non-Fickian diffusion. However, for tablets, the drug release in pH 7.4 buffer solution was mainly affected by polymer erosion. The pH of the dissolution medium appeared to have a strong effect on the drug transport mechanism. At more basic pH values, Case II transport was observed, indicating a drug release mechanism highly influenced by macromolecular chain relaxation. The ketoprofen release is also tested in the conditions chosen to simulate gastrointestinal tract conditions. The results implied that the GA hydrogels can be exploited as potential carriers for colon-specific drug delivery.  相似文献   

4.
Various interpenetrating polymer network (IPN) hydrogels with sensitivity to temperature and pH were prepared by introducing the pH-sensitive polymer polyaspartic acid (PASP) hydrogel, into the poly(N-isopropylacrylamide) (PNIPAAm) hydrogel system for the purpose of improving its response rate to temperature. The morphologies and thermal behavior of the prepared IPN hydrogels were studied by both scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The IPN hydrogels showed a large and uneven porous network structure, without showing the common PNIPAAm hydrogel structure. The paper moreover studied their swelling properties, such as temperature dependence of equilibrium swelling ratio, shrinking kinetics, re-swelling kinetics and oscillatory swelling behavior in water. The swelling experiment results revealed that IPN hydrogels exhibited much faster shrinking and re-swelling in function of the composition ratio of the two network components. These fast responsive hydrogels foster potential applications in biomedical and biotechnology fields.  相似文献   

5.
Temperature and pH-responsive hydrogels based on chitosan grafted with poly acrylic acid (PAAc), poly hydroxy propyl methacrylate (PHPMA), poly (vinyl alcohol) (PVA) and gelatin were prepared for controlled drug delivery. These stimuli-responsive hydrogels were synthesized by gamma irradiation technique. The degree of gelation was over 90% and increased as chitosan, AAc and PVA content increased, while the degree of gelation decrease with the increase of gelatin content. The equilibrium swelling studies of hydrogels prepared in various conditions were carried out in an aqueous solution, and the pH sensitivity in the range of 2–9 was investigated. An increase of swelling degree with an increase in the pH was noticed and showed the highest value at pH 9. Also antibiotic drug Oxttetracycline was loaded into the hydrogels and the release studies were carried out at different pH and temperature. The in vitro release profiles of the drug showed that, the release of the drug increased as the time, temperature and pH increased and reached to maximum after 48 h at pH 9. The prepared hydrogels were characterized by using SEM, FTIR, and DSC.  相似文献   

6.
A series of starch/methacrylic acid (MAAc) copolymer hydrogels of different compositions were synthesized using γ-rays induced polymerization and crosslinking. The effects of the preparation conditions such as the feed solution concentration, feed solution composition and irradiation dose on the gelation process of the synthesized copolymer were investigated. The swelling behavior of the starch/methacrylic acid (MAAc) copolymer hydrogels was characterized by studying the effect of the hydrogel composition on the time- and pH-dependent swelling. Swelling kinetics showed that the synthesized hydrogels possessed Fickian diffusion behavior at pH 1 and non-Fickian diffusion at pH 7 which recommend them as good candidate for colon specific drug delivery systems. The synthesized hydrogels were loaded with ketoprofen as a model drug to investigate the release behavior of the synthesized hydrogels. The results showed the ability of the hydrogels to keep the loaded drug at pH 1 and release it at pH 7. The data also showed that the release rate can be controlled by controlling the preparation conditions such as comonomer concentration and composition and irradiation dose.  相似文献   

7.
Summary A simple method is described for the synthesis of a material for immobilization, Poly(carbamoylsulfonate) (PCS). PCS is based on the synthesis of a hydrophilic polyether polyol and a polyisocyanate to the isocyanate-pre-polymer. The real diffusion coefficients of the PCS hydrogel are comparable with the values of Ca-alginate, the molecular weight cut-off can be found between myoglobine (MW 17000 g/mol) and albumine (MW 67000 g/mol). PCS hydrogels have optimal elastic properties (higher elongation at break and lower modulus of elasticity than other natural hydrogels) and therefore can be used for a matrix of biocatalysts in an agitated reactor as well as in a fluid-bed reactor.  相似文献   

8.
Biocompatible hydrogels based on water-soluble chitosan–ethylene glycol acrylate methacrylate (CS–EGAMA) and polyethylene glycol diamethacrylate (PEGDMA) were synthesized by photopolymerization. Characterization of morphology, weight loss, water state of hydrogel, pH-sensitivity and cytotoxicity were investigated by scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), swelling test and methylthiazolydiphenyl-tetrazolium bromide (MTT) assay. The results indicated that the hydrogels were sensitive to pH of the medium, no cytotoxicity for L929 and SW1353, satisfactory for the composite to be used in bioapplications.  相似文献   

9.
Hydrogels have become a promising research focus because of their potential for biomedical application. Here we explore the long-range, electrostatic interactions by following the effect of trans-acting (pH) and cis-acting factors (peptide mutation) on the formation of Au-phage hydrogels. These bioinorganic hydrogels can be generated from the bottom-up assembly of Au nanoparticles (Au NP) with either native or mutant bacteriophage (phage) through electrostatic interaction of the phage pVIII major capsid proteins (pVIII). The cis-acting factor consists of a peptide extension displayed on the pVIII that mutates the phage. Our results show that pH can dictate the direct-assembly and stability of Au-phage hydrogels in spite of the differences between the native and the mutant pVIII. The first step in characterizing the interactions of Au NP with phage was to generate a molecular model that identified the charge distribution and structure of the native and mutant pVIII. This model indicated that the mutant peptide extension carried a higher positive charge relative to the native pVIII at all pHs. Next, by monitoring the Au-phage interaction by means of optical microscopy, elastic light scattering, fractal dimension analysis as well as Uv-vis and surface plasmon resonance spectroscopy, we show that the positive charge of the mutant peptide extension favors the opposite charge affinity between the phage and Au NP as the pH is decreased. These results show the versatility of this assembly method, where the stability of these hydrogels can be achieved by either adjusting the pH or by changing the composition of the phage pVIII without the need of phage display libraries.  相似文献   

10.
A novel interpenetrating network hydrogel for drug controlled release, composed of modified poly(aspartic acid) (KPAsp) and carboxymethyl chitosan (CMCTS), was prepared in aqueous system. The surface morphology and composition of hydrogels were characterized by SEM and FTIR. The swelling properties of KPAsp, KPAsp/CMCTS semi-IPN and KPAsp/CMCTS IPN hydrogels were investigated and the swelling dynamics of the hydrogels was analyzed based on the Fickian equation. The pH, temperature and salt sensitivities of hydrogels were further studied, and the prepared hydrogels showed extremely sensitive properties to pH, temperature, the ionic salts kinds and concentration. The results of controlled drug release behaviors of the hydrogels revealed that the introduction of IPN observably improved the drug release properties of hydrogels, the release rate of drug from hydrogels can be controlled by the structure of the hydrogels and pH value of the external environment, a relative large amount of drug released was preferred under simulated intestinal fluid. These results illustrated high potential of the KPAsp/CMCTS IPN hydrogels for application as drug carriers.  相似文献   

11.
The influence of the conditions of the formation of chitosan hydrogels crosslinked with glutaraldehyde (GA) or genipin (the polysaccharide molecular weight, pH level, and concentration of the chitosan solution) on the gel time and the properties of biopolymer scaffolds for tissue engineering obtained by the freeze-drying of hydrogels was studied. The resulting scaffolds had different structures (morphology, degree of anisotropy, average pore size) and moisture-retaining capacities. The cytotoxicity of biodegradable scaffolds based on chitosan with a low content of genipin and GA was studied for the first time. Using the L929 mouse fibroblasts model line, we demonstrated that scaffolds based on chitosan with a molecular weight of 320 and 190 kDa crosslinked with genipin and GA (0.005 and 0.01 mol/mol of chitosan amino groups) are biocompatible. Using confocal laser microscopy, we demonstrated that the cells are uniformly distributed in all scaffold samples and they successfully grew and proliferated when cultured in vitro for 4 days.  相似文献   

12.
In order to utilize the psyllium husk, a medicinally important natural polysaccharide, to develop the hydrogels meant for the drug delivery, we have prepared psyllium and polyacrylic acid based polymeric networks by radiation-induced crosslinked copolymerization. Polymeric networks (hydrogels) thus formed were characterized with SEMs, FTIR and swelling studies. Swelling behavior of the hydrogels was studied as a function of monomer concentration in the hydrogels and temperature, pH and [NaCl] of the swelling medium. This paper discusses the swelling kinetics of the hydrogels and release dynamics of anticancer model drug 5-fluorouracil from the hydrogels for the evaluation of swelling and drug release mechanisms. It has been observed from the release dynamics of drug that diffusion exponent ‘n’ have 0.7, 0.8 and 0.7 values and gel characteristics constant ‘k’ have 9.13 × 10−3, 6.22 × 10−3 and 9.01 × 10−3 values for the release of 5-fluorouracil, respectively, in distilled water, pH 2.2 buffer and pH 7.4 buffer. The values of the diffusion exponent show that the release of drug from drug-loaded hydrogels has occurred through Non-Fickian diffusion mechanism. It has also been observed from the swelling and release of drug in the different pH buffer that the polymer matrix is pH responsive and can be exploited for the delivery of anticancer drug to the colon.  相似文献   

13.
G He  Z Wang  H Zheng  Y Yin  X Xiong  R Lin 《Carbohydrate polymers》2012,90(4):1614-1619
Aminoethyl chitins (AEC) with different amino contents were synthesized from chitin and 2-chlorethylamine hydrochloride, and the AEC hydrogels were prepared by crosslinking with glutaraldehyde. The microstructures, swelling behaviors and antibacterial activities of the hydrogels were investigated. The results of Fourier transform infrared spectroscopy (FTIR), (1)H nuclear magnetic resonance ((1)H NMR) spectrum and scanning electron microscopy (SEM) showed that the hydrogels were prepared by forming the Schiff base from AEC and glutaraldehyde. The aminoethyl chitin hydrogels were sensitive to acidic environment. The swelling ratio changed with the amino content of AEC, declined with the increase of the crosslinking agent concentration and increased with the increase of the AEC concentration. In addition, the antibacterial results of the hydrogels against Staphylococcus aureus (S. aureus) indicated that the hydrogels had good antibacterial activities, and the antibacterial properties were affected by the amino content of AEC and the crosslinking agent concentration.  相似文献   

14.
Yang J  Xu C  Wang C  Kopecek J 《Biomacromolecules》2006,7(4):1187-1195
A novel hybrid hydrogel system based on N-(2-hydroxypropyl)methacrylamide copolymers was proposed. It consisted of the hydrophilic polymer backbone and a pair of oppositely charged peptide grafts. Two distinct pentaheptad peptides (CCE and CCK) were anticipated to create a dimerization motif and serve as physical cross-linkers. Consequently, the graft copolymers CCE-P and CCK-P self-assembled into hybrid hydrogels in situ; the process was modulated by the formation of antiparallel heterodimeric coiled-coils. This approach possesses an advantage to decrease the steric hindrance of the polymer backbone on the "in-register" alignment of peptide grafts. Indeed, equimolar mixtures of the graft copolymers, CCE-P/CCK-P, have been observed to self-assemble into hydrogels in PBS solution at neutral pH at concentrations as low as 0.1 wt %. Circular dichroism spectroscopy, sedimentation equilibrium experiments, and microrheology revealed that the self-assembly process corresponded to the two-stranded alpha-helical coiled-coil formation between CCE and CCK. Moreover, the formation of hybrid hydrogels was reversible. Denaturation of the coiled-coil domains with guanidine hydrochloride (GdnHCl) solutions resulted in disassembly of the hydrogels. Removal of GdnHCl by dialysis caused coiled-coil refolding and hydrogel reassembly. Scanning electron microscopy results demonstrated that the concentration of the graft copolymers had a significant impact on the structure and morphology of self-assembled hydrogels.  相似文献   

15.
In this study, hydrogels for DNA-controlled release was prepared with konjac glucomannan (KGM), a water-soluble non-ionic polysaccharide, by means of deacetylated reaction and physically cross-linking method under mild conditions. The properties of the KGM hydrogels were analyzed by FTIR spectra and scanning electron microscopy (SEM). The integrality of the released DNA was investigated by circular dichroism (CD). The DNA release kinetics was performed using the DNA-loaded KGM gels in buffer solutions of pH 7.4 at 37+/-0.5 degrees C. Peppas model and Higuchi model were used to analysis the DNA release mechanism; the data indicated that the DNA release can be controlled by changing the preparation conditions and the structure parameters of the gels. This study suggested that the KGM hydrogels have a potential use for advanced controlled release.  相似文献   

16.
Fang J  Zhang X  Cai Y  Wei Y 《Biomacromolecules》2011,12(5):1578-1584
Biocompatible hydrogels have great potentials in biomedical and biotechnological applications. In the current study, we reported a new naturally occurring protein motif that formed a transparent hydrogel when heated to 90 °C at a concentration as low as 0.4 mg/mL. The protein motif is the C-terminal soluble domain of an Escherichia coli inner membrane protein YajC (YajC-CT). We investigated the conformational change and self-assembly of the protein that lead to the formation of hydrogels using multiple methods. Atomic force microscopy studies of dilute gel samples revealed the presence of β-sheet-rich fibrils that were 2 to 3 nm in height and micrometers in length, which appeared to originate from homogeneous particles. On the basis of these observations, we proposed a three-step pathway of YajC-CT gelation. Hydrogels formed at different pH contained slightly different fibril structures. To our knowledge, this is the smallest hydrogel-forming globular protein module that has been characterized in detail. It may be useful as a model system in the elucidation of the mechanisms of protein fibrillation and gelation processes.  相似文献   

17.
Temoporfin (mTHPC) is a potent second-generation synthetic photosensitizer. Topical delivery of mTHPC is of great interest for the photodynamic therapy of psoriasis and superficial skin cancer lesions. The aim of this study was to evaluate the stability of hydrophilic gels containing mTHPC-loaded liposomes. Two different mTHPC-loaded liposome dispersions, composed of 15 % (w/w) nonhydrogenated soybean lecithin of different phosphatidylcholine content, were prepared and incorporated (2:1 w/w) into hydrogels of different carbomer concentrations (1.5, 2.25, and 3%; w/w). Obtained liposomal hydrogels, containing 0.15% (w/w) mTHPC, 10% (w/w) phospholipids, and 0, 0.5, or 1% (w/w) carbomer, were analyzed for flow properties, liposome particle size, and polydispersity index (PDI), pH value, and mTHPC content after their preparation and at predetermined time intervals during 6 months of storage at 4 and 23°C. All hydrogels showed, during the whole period of investigation, adequate characteristics for topical application (i.e., they revealed shear-thinning plastic flow behavior). Rheological parameters, particle size, and PDI of liposomes in hydrogels, mTHPC content, and pH value did not show remarkable changes during the storage of gels, which could make them unacceptable for topical use. The obtained results indicated physical and chemical stability of liposomal gels containing mTHPC during 6 months of storage at both temperatures.  相似文献   

18.
Chawla K  Yu TB  Liao SW  Guan Z 《Biomacromolecules》2011,12(3):560-567
Saccharide-peptide hydrogels have been developed in our laboratory as new synthetic extracellular matrices for regenerative medicine applications. In this work, we have expanded on our previously reported system and applied copolymerization of cysteine (Cys) and vinyl sulfone (VS)-functionalized saccharide-peptide polymers via Michael-type addition for encapsulation and 3D culture of cells. Specifically, our aims were to (1) develop a novel hydrogel platform, which could be applied for encapsulating and culturing mesenchymal stem cells (MSCs) in a 3D environment, (2) characterize the tunable properties of the hydrogel, specifically, degradation, mechanical, and gel network properties, and (3) determine the biocompatibility of the saccharide-peptide hydrogel material with MSCs. Hydrogel mechanical properties were tunable by varying the VS:Cys ratio (= 0.5, 1, or 2) as well as the pH (6, 7, or 8) of the cross-linking components. Stiffer gels were formed at VS:Cys = 1 and pH 6 or 7. Gels formed at pH 8 or with excess Cys (VS:Cys = 0.5) or VS (VS:Cys = 2) were significantly softer. Cross-linking pH and VS:Cys ratio also had an effect on the degradation behavior of the VS:Cys gels, with higher cross-linking pH resulting in an accelerated loss of mass. On the basis of environmental scanning electron microscopy (ESEM) analysis and fluorescence microscopy, all hydrogels appeared to exhibit porous gel networks. MSCs cultured in monolayer and exposed to soluble Cys or VS copolymers (0.1-5 mg/mL) did not exhibit measurable cytotoxicity. In addition, MSCs were cultured in 3D for up to 14 days in vitro without deleterious effects on cell viability. In summary, we have established and characterized a tunable 3D saccharide-peptide hybrid copolymer hydrogel platform for culturing MSCs. Future studies will focus on utilizing the hydrogel system for controlling the differentiation of MSCs.  相似文献   

19.
Spontaneously forming hydrogels composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) copolymers, poly(MPC-co-methacrylic acid) (PMA), and poly(MPC-co-n-butyl methacrylate) (PMB) were examined. The MPC copolymer hydrogel was observed to have a spontaneous gelation property. To determine the properties of the hydrogels and why the gelation takes place, we have studied the properties of the hydrogels by scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), and differential scanning calorimetry (DSC). The morphologies of the hydrogels were spongelike with a homogeneous structure. By XPS analysis in terms of the molecular distributions in the hydrogels, it was observed that a stabilization time was required for the hydrogel to undergo chain rearrangement. DSC thermograms of the hydrogels were different from their components, PMA and PMB. For the hydrogel, a crystallization peak around -30 degrees C was observed. This result indicated that some ordered structures existed in the hydrogels. To determine the role of the MPC groups, aqueous solutions of poly(methacrylic acid) (PMAc) and PMB were mixed. The mixture of PMAc-PMB turned into a sol state, and the sol state remained for a week. When the mixture was cooled, a very weak hydrogel was prepared. This result suggested that the MPC groups were the dominant unit for spontaneously forming the hydrogels.  相似文献   

20.
Fe(II)-loaded pectin based hydrogels were used to remove As(V) from water. The hydrogels were synthesized by crosslinking pectin 'as such' or in the presence of 2-acrylamido-2-methylpropanesulphonic acid and three crosslinkers. The hydrogels crosslinked with 5% glutaraldehyde showed the maximum uptake of both Fe(II) and As(V). The sorption of As(V) was found to be sensitive to pH and temperature changes, as the maximum sorption was observed at 35 degrees C and 7.0-9.2 pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号