首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this paper is to report the impact of the addition of cellulose nanocrystals on the barrier properties and on the migration behaviour of poly(lactic acid), PLA, based nano-biocomposites prepared by the solvent casting method. Their microstructure, crystallinity, barrier and overall migration properties were investigated. Pristine (CNC) and surfactant-modified cellulose nanocrystals (s-CNC) were used, and the effect of the cellulose modification and content in the nano-biocomposites was investigated. The presence of surfactant on the nanocrystal surface favours the dispersion of CNC in the PLA matrix. Electron microscopy analysis shows the good dispersion of s-CNC in the nanoscale with well-defined single crystals indicating that the surfactant allowed a better interaction between the cellulose structures and the PLA matrix. Reductions of 34% in water permeability were obtained for the cast films containing 1wt.% of s-CNC while good oxygen barrier properties were detected for nano-biocomposites with both 1wt.% and 5wt.% of modified and un-modified cellulose nanocrystals, underlining the improvement provided by cellulose on the PLA films. Moreover, the migration level of the studied nano-biocomposites was below the overall migration limits required by the current normative for food packaging materials in both non-polar and polar simulants.  相似文献   

2.
Bacterial cellulose obtained from Gluconacetobacter xylinus in the form of long fibers were acid hydrolyzed under controlled conditions to obtain cellulose nanocrystals. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) confirmed the formation of rod like cellulose nanocrystals having an average diameter and length of 20 ± 5 nm and 290 ± 130 nm respectively. These nanocrystals were used to prepare gelatin nanocomposite films and characterized for elucidating its performance. The formation of percolated networks of cellulose nanocrystals within gelatin matrix resulted in improving the mechanical properties of nanocomposites. The moisture sorption and water vapor permeability (WVP) studies revealed that the addition of cellulose nanocrystals reduced the moisture affinity of gelatin, which is very favorable for edible packaging applications. Results of this study demonstrated the use of bacterial cellulose nanocrystals (BCNCs) in the fabrication of edible, biodegradable and high-performance nanocomposite films for food packaging applications at relatively low cost.  相似文献   

3.
Metallic oxides have been successfully investigated for the recycling of polylactide (PLA) via catalyzed unzipping depolymerization allowing for the selective recovery of lactide monomer. In this contribution, a metallic oxide nanofiller, that is, ZnO, has been dispersed into PLA without detrimental polyester degradation yielding PLA/ZnO nanocomposites directly suitable for producing films and fibers. The nanocomposites were produced by melt-blending two different grades of PLA with untreated ZnO and surface-treated ZnO nanoparticles. The surface treatment by silanization proved to be necessary for avoiding the decrease in molecular weight and thermal and mechanical properties of the filled polyester matrix. Silane-treated ZnO nanoparticles yielded nanocomposites characterized by good mechanical performances (tensile strength in the interval from 55 to 65 MPa), improved thermal stability, and fine nanofiller dispersion, as evidenced by microscopy investigations. PLA/ZnO nanocomposites were further extruded in films and fibers, respectively, characterized by anti-UV and antibacterial properties.  相似文献   

4.
Cao X  Dong H  Li CM 《Biomacromolecules》2007,8(3):899-904
New nanocomposite films were prepared from a suspension of cellulose nanocrystals as the filler and a polycaprolactone-based waterborne polyurethane (WPU) as the matrix. The cellulose nanocrystals, prepared by acid hydrolysis of flax fiber, consisted of slender rods with an average length of 327 +/- 108 nm and diameter of 21 +/- 7 nm, respectively. After the two aqueous suspensions were mixed homogeneously, the nanocomposite films were obtained by casting and evaporating. The morphology, thermal behavior, and mechanical properties of the films were investigated by means of attenuated total reflection Fourier transform infrared spectroscopy, wide-angle X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and tensile testing. The results indicated that the cellulose nanocrystals could disperse in the WPU uniformly and resulted in an improvement of microphase separation between the soft and hard segments of the WPU matrix. The films showed a significant increase in Young's modulus and tensile strength from 0.51 to 344 MPa and 4.27 to 14.86 MPa, respectively, with increasing filler content from 0 to 30 wt %. Of note is that the Young's modulus increased exponentially with the filler up to a content of 10 wt %. The synergistic interaction between fillers and between the filler and WPU matrix played an important role in reinforcing the nanocomposites. The superior properties of the new nanocomposite materials could have great potential applications.  相似文献   

5.
Preparation of nanocomposites was carried out using microcrystalline cellulose, CaCl2, and NaH2PO4 in N,N-dimethylacetamide (DMAc) solvent by a microwave-assisted method at 150 °C. XRD results showed that the nanocomposites consisted of cellulose and hydroxyapatite (HA). The cellulose existed as a matrix in the nanocomposites. SEM and TEM analysis showed that HA nanorods were homogeneously dispersed in the cellulose matrix. The effects of the microwave heating time on the products were investigated. This method has advantages of being simple, rapid, low-cost, and environmentally friendly.  相似文献   

6.
Nanocrystals prepared from bacterial cellulose are considered as 'green nanomaterials' depending on their renewable nature and ease of production without the involvement of hazardous chemical treatments. In this investigation, a top down approach was followed for the preparation of bacterial cellulose nanocrystals (BCNC) using a commercially available cellulase enzyme so as to retain native properties of bacterial cellulose even in its nanodimensional form. The morphological and dimensional parameters of BCNC were studied using atomic force microscope (AFM) and transmission electron microscope (TEM). Thermal properties of BCNC produced using the novel enzyme treatment and conventional sulfuric acid hydrolysis were compared. The thermal stability of enzyme processed BCNC was almost two fold higher than sulfuric acid processed ones. Further, the activation energy required for decomposition of enzyme processed BCNC was much higher than the other. Using this enzyme processed BCNC, Polyvinylalcohol (PVA) nanocomposite films were prepared and characterized. Incorporation of these nanocrystals in polymer matrix resulted in a remarkable improvement in the thermal stability as well as mechanical properties of nanocomposite films. These nanocomposites exhibited higher melting temperature (Tm) and enthalpy of melting (ΔHm) than those of pure PVA, suggesting that the addition of nanocrystals modified the thermal properties of PVA. The effective load transfer from polymer chains to the BCNC resulted in an improved tensile strength from 62.5 MPa to 128 MPa, by the addition of just 4 wt% of BCNC. Furthermore, the elastic modulus was found to increase from 2 GPa to 3.4 GPa. The BCNC obtained through cellulose treatment under controlled conditions were associated with several desirable properties and appear to be superior over the conventional methods of nanocrystals production. The enzymatic method followed in this study is expected to contribute the fabrication of high performance polymer nanocomposites in a much greener and innovative manner.  相似文献   

7.
In the present work, cellulose nanowhiskers (CNWs), extracted from ramie fibers, were incorporated in polylactide (PLA)-based composites. Prior to the blending, PLA chains were chemically grafted on the surface of CNW to enhance the compatibilization between CNW and the hydrophobic polyester matrix. Ring-opening polymerization of l-lactide was initiated from the hydroxyl groups available at the CNW surface to yield CNW-g-PLA nanohybrids. PLA-based nanocomposites were prepared by melt blending to ensure a green concept of the study thereby limiting the use of organic solvents. The influence of PLA-grafted cellulose nanoparticles on the mechanical and thermal properties of the ensuing nanocomposites was deeply investigated. The thermal behavior and mechanical properties of the nanocomposites were determined using differential scanning calorimetry (DSC) and dynamical mechanical and thermal analysis (DMTA), respectively. It was clearly evidenced that the chemical grafting of CNW enhances their compatibility with the polymeric matrix and thus improves the final properties of the nanocomposites. Large modification of the crystalline properties such as the crystallization half-time was evidenced according to the nature of the PLA matrix and the content of nanofillers.  相似文献   

8.
The aim of this study was to characterize and determine the bi-functional efficacy of active packaging films produced with starch (4%) and glycerol (1.0%), reinforced with cellulose nanocrystals (0–1%) and activated with alcoholic extracts of red propolis (0.4 to 1.0%). The cellulose nanocrystals used in this study were extracted from licuri leaves. The films were characterized using moisture, water-activity analyses and water vapor-permeability tests and were tested regarding their total phenolic compounds and mechanical properties. The antimicrobial and antioxidant efficacy of the films were evaluated by monitoring the use of the active films for packaging cheese curds and butter, respectively. The cellulose nanocrystals increased the mechanical strength of the films and reduced the water permeability and water activity. The active film had an antimicrobial effect on coagulase-positive staphylococci in cheese curds and reduced the oxidation of butter during storage.  相似文献   

9.
Multi-layered films based on tilapia skin gelatin and poly(lactic acid) (PLA) were characterized, in comparison with the control gelatin and PLA films. Three different layers of multi-layered films (PLA/Gelatin/PLA) were visualized by scanning electron microscopic (SEM) analysis. The synergetic effect of lamination was evidenced by the increased mechanical properties (P < 0.05). Multi-layered films had higher water vapor barrier property and water resistance, compared to control gelatin film (P < 0.05). Gelatin films showed increased lightness (L*) with coincidental decrease in total color difference (?E*) in the presence of PLA layers (P < 0.05). Transparency and solubility of films decreased with increasing ratio of PLA (P < 0.05). In addition, multi-layered films showed the enhanced hydrophobicity and thermal stability as evidenced by increased water contact angle and degradation temperature, respectively. Thus, PLA/Gelatin/PLA multi-layered film with improved water vapour barrier property could serve as bio-degradable packaging material for wider applications.  相似文献   

10.
Aqueous layer-by-layer (LbL) processing was used to create polyelectrolyte multilayer (PEM) nanocomposites containing cellulose nanocrystals and poly(allylamine hydrochloride). Solution-dipping and spin-coating assembly methods gave smooth, stable, thin films. Morphology was studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM), and film growth was characterized by X-ray photoelectron spectroscopy (XPS), ellipsometry, and optical reflectometry. Relatively few deposition cycles were needed to give full surface coverage, with film thicknesses ranging from 10 to 500 nm. Films prepared by spin-coating were substantially thicker than solution-dipped films and displayed radial orientation of the rod-shaped cellulose nanocrystals. The relationship between film color and thickness is discussed according to the principles of thin film interference and indicates that the iridescent properties of the films can be easily tailored in this system.  相似文献   

11.
Biocompatible waterborne polyurethane (WPU) based on castor oil (CO)/polyethylene glycol (PEG) filled with low level loadings of Eucalyptus globulus cellulose nanocrystals (ECNs) was prepared. The ECNs obtained by sulfuric hydrolysis, consisted of ‘rod-like’ crystals with an average length and diameter of 518.0 ± 183.4 nm and 21.7 ± 13.0 nm, respectively. The nanocomposites with low level loadings of ECNs showed significant enhancement in tensile strength and Young's modulus from 5.43 to 12.22 MPa and from 1.16 to 4.83 MPa, respectively. SEM results showed well dispersion of ECNs in the WPU matrix. Furthermore, it was verified that the nanosized ECNs favored the hard-segments (HSs)/soft-segments (SSs) microphase separation of the WPU, causing shifts of the SS glass transition temperature (Tg,s) and the HS melting temperature (Tm,h) toward higher temperatures.  相似文献   

12.

Background

Polylactic acid (PLA) is considered to be a sustainable alternative to petroleum-based polymers for many applications. Using cellulose fiber to reinforce PLA is of great interest recently due to its complete biodegradability and potential improvement of the mechanical performance. However, the dispersion of hydrophilic cellulose fibers in the hydrophobic polymer matrix is usually poor without using hazardous surfactants. The goal of this study was to develop homogenously dispersed cellulose nanowhisker (CNW) reinforced PLA composites using whole milk casein protein, which is an environmentally compatible dispersant.

Results

In this study, whole milk casein was chosen as a dispersant in the PLA-CNW system because of its potential to interact with the PLA matrix and cellulose. The affinity of casein to PLA was studied by surface plasmon resonance (SPR) imaging. CNWs were functionalized with casein and used as reinforcements to make PLA composites. Fluorescent staining of CNWs in the PLA matrix was implemented as a novel and simple way to analyze the dispersion of the reinforcements. The dispersion of CNWs in PLA was improved when casein was present. The mechanical properties of the composites were studied experimentally. Compared to pure PLA, the PLA composites had higher Young’s modulus. Casein (CS) functionalized CNW reinforced PLA (PLA-CS-CNW) at 2 wt% filler content maintained higher strain at break compared to normal CNW reinforced PLA (PLA-CNW). The Young’s modulus of PLA-CS-CNW composites was also higher than that of PLA-CNW composites at higher filler content. However, all composites exhibited lower strain at break and tensile strength at high filler content.

Conclusions

The presence of whole milk casein improved the dispersion of CNWs in the PLA matrix. The improved dispersion of CNWs provided higher modulus of the PLA composites at higher reinforcement loading and maintained the strain and stress at break of the composites at relatively low reinforcement loading. The affinity of the dispersant to PLA is important for the ultimate strength and stiffness of the composites.
  相似文献   

13.
Fibrous cellulose nanocomposites scaffolds were developed and evaluated for their potential as ligament or tendon substitute. The nanocomposites were prepared by partial dissolution of cellulose nanofiber networks using ionic liquid at 80 °C for different time intervals. Scanning electron microscopy study indicated that partial dissolution resulted in fibrous cellulose nanocomposites where the dissolved cellulose nanofibers formed the matrix phase and the undissolved or partially dissolved nanofibers formed the reinforcing phase. Mechanical properties of the composites in simulated body conditions (37 °C and 95% RH) after sterilization using gamma rays was comparable to those of natural ligaments and tendons. Stress relaxation studies showed stable performance towards cyclic loading and unloading, further confirming the possibility for using these composites as ligament/tendon substitute. In vitro biocompatibility showed a positive response concerning adhesion/proliferation and differentiation for both human ligament and endothelial cells. Prototypes based on the cellulose composite were developed in the form of tubules to be used for further studies.  相似文献   

14.
In this study CdS-Ag2S nanocomposites for antibacterial activity were synthesized via facile co-precipitation method using PVP as capping agent. The prepared nanocomposites have particle sizes in the range of 50–100 nm (SEM) and PVP addition has good influence on the morphology of nanocomposites. The antimicrobial activity of pure Ag2S, CdS and CdS-Ag2S composites was evaluated against Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. The results demonstrate that antibacterial activity was significantly improved due to increasing ratio of CdS into CdS-Ag2S nanocomposites in comparison to pure Ag2S and CdS.  相似文献   

15.
In this report, we describe the effect of Gemini surfactants1, 6-Bis (N, N-hexadecyldimethylammonium) adipate (16-6-16) on synthesis, stability and antibacterial activity of silver nanoparticles (AgNPs). The stabilizing effect of Gemini surfactant and aggregation behavior of AgNPs was evaluated by plasmonic property and morphology of the AgNPs were characterized by UV–vis spectroscopy, Dynamic Light Scattering (DLS), X-ray diffraction (XRD), High resolution transmission electron microscopy (HRTEM) and Energy dispersive X-ray analysis (EDX) techniques. Interestingly, the formation of quite mono-dispersed spherical particles was found. Apart from the stabilizing role, the Gemini surfactant has promoted the agglomeration of individual AgNPs in small assemblies whose Plasmon band features differed from those of the individual nanoparticles. The antibacterial activity of the synthesized AgNPs on Gram-negative and Gram-positive bacterium viz., E. coli and S. aureus was carried out by plate count, growth kinetics and cell viability assay. Furthermore, the mechanism of antibacterial activity of AgNPs was tested by Zeta potential and DLS analysis, to conclude that surface charge of AgNPs disrupts the cells causing cell death.  相似文献   

16.
The properties of a polymer synthesized by the Gluconacetobacter hansenii strain GH-1/2008 were investigated. The studied bacterial cellulose polymer films are characterized by a mesh nanostructure composed of micro- and macrofibrils, a high water absorption capacity 556 ± 16.8%, and high strength and elasticity. Analysis of the spectrum recorded by 13С CP/MAS NMR spectroscopy showed that the bacterial cellulose synthesized by G. hansenii GH-1/2008 is a pure compound composed of Iα (65–70%) and Iβ (30–35%) allomorphs without any other impurities. It was found that the bacterial cellulose films with adsorbed antibiotics such as amoxiclav and fluconazole can be used as antibacterial and antifungal wound healing materials.  相似文献   

17.
As a biodegradable polyester, polylactide (PLA) has applications as a packaging material, in biomedical fields and tissue engineering. With the dual aim of improving its properties and biodegradability, PLA was blended with other polymers such as gum arabic, thermoplastic starch, microcrystalline cellulose, polyethylene glycol and polyhydroxy butyrate in 1:1 (w/w) by melt-blending technique. The thermal properties of the blends were compared with that of unblended PLA by thermo-gravimetric analysis. Biodegradation using Lentzea waywayandensis was in the order of PLA–gum arabic?>?PLA–thermoplastic starch?>?PLA(virgin)?>?PLA–microcrystalline cellulose?>?PLA–polyethylene glycol?>?PLA–polyhydroxy butyrate. Weight loss of 99?% (w/w) was noted within 4?days for PLA–thermoplastic starch and PLA-gum arabic blends.  相似文献   

18.
New nanocomposite films were prepared with atactic polypropylene as the matrix and either of three types of cellulose whiskers, with various surface and dispersion characteristics, as the reinforcing phase: aggregated without surface modification, aggregated and grafted with maleated polypropylene or individualized and finely dispersed with a surfactant. Films obtained by solvent casting from toluene were investigated by means of scanning electron microscopy, dynamic mechanical analysis, and tensile testing. In the linear region, the mechanical properties above the glass-rubber transition were found to be drastically enhanced for the nanocomposites as compared to the neat polypropylene matrix. These effects were ascribed to the formation of a rigid network with filler/filler interactions. In addition, interactions between the filler and the matrix as well as the dispersion quality were found to play a major role on the mechanical properties of the composites when investigation of the films was performed in the nonlinear region.  相似文献   

19.
Metronidazole (MZ) and levofloxacin (LF) are widely employed for treatment of periodontitis, but high oral dose and resistance development after long-term oral administration limit their use. The aim of this study was to alleviate shortcomings in the treatment of periodontitis by fabrication of intrapocket, biodegradable films of chitosan (CS) loaded with MZ and LF meant for inserting into periodontal pockets to treat infections. The films were developed by solvent casting technique using propylene glycol as plasticizer and glutaraldehyde as crosslinking agent. Their physical characteristics, such as drug content, surface pH, swelling index, and folding endurance, exhibited results within limit. Further, FTIR and DSC studies revealed stability of films and compatibility between drugs and excipients. SEM images of films showed the presence of free drug particles on the surface causing burst effect. In vitro release in McIlvaine buffer pH 6.6 was of sustained nature assisted by the burst effect. CS and crosslinking agent concentrations negatively affected drug release and positively affected T90 (time for releasing 90% of the drug) due to altered matrix density. In contrast, the plasticizer concentration increases membrane permeability and hence increased drug release, lowering T90. Crosslinked films demonstrated sustained release up to 7 days. The antibacterial efficacy of films was tested on Staphylococcus aureus and Escherichia coli, indicating good antibacterial activity. Clinical trials on patients proved the therapeutic efficacy of the films by a significant (p?<?0.05) decrease in the clinical markers of periodontitis, i.e. gingival index, plaque index and pocket depth. Conclusively, the films of MZ and LF were successful tools for the management of periodontitis.  相似文献   

20.
The present study was aimed at investigating bactericidal properties of polylactide (PLA) films containing three different polyhexamethylene guanidine hydrochloride (PHMG) derivatives and effect of the derivatives on extracellular hydrolytic enzymes and intracellular dehydrogenases. All PHMG derivatives had a slightly stronger bactericidal effect on Staphylococcus aureus than on E. coli but only PHMG granular polyethylene wax (at the concentration of at least 0.6 %) has a bactericidal effect. PHMG derivatives introduced into PLA affected the activity of microbial hydrolases to a small extent. This means that the introduction of PHMG derivatives into PLA will not reduce its enzymatic biodegradation significantly. On the other hand, PHMG derivatives introduced into PLA strongly affected dehydrogenases activity in S. aureus than in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号