首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uniform fibers composed of poly(methyl methacrylate) (PMMA) reinforced with progressively increasing contents of cellulose nanocrystals (CNCs), up to 41 wt% CNCs, have been successfully produced by electrospinning. The morphological, thermal and nanomechanical properties of the composite sub-micron fibers were investigated. The CNCs derived from wood pulp by sulfuric acid hydrolysis were well dispersed in solutions of PMMA and the processing solvent N,N-dimethylformamide prior to fiber formation. Well-formed fibers with controllable diameters were generated reproducibly at all CNC contents investigated including 41 wt%. The orientation of the CNCs along the fiber axis was facilitated by the electrospinning process and observed directly from microscopy examination. Shifts in thermal transitions of PMMA with increasing CNC content suggest hydrogen bonding interactions between CNC hydroxyl groups and carbonyl groups on the PMMA matrix. Nanoscale dynamic mechanical analysis (nano-DMA) was performed using nanoindentation on single fibers perpendicular to the fiber axis. Many of the current challenges associated with single fiber nanoindentation are addressed, such as fiber diameter range and minimum, depth to diameter ratio, and valid depth range under these experimental conditions. Fibers that contained 17 wt% CNCs showed a modest increase of 17% in the storage modulus of PMMA, a high modulus polymer of interest for transparent composite applications.  相似文献   

2.
This is the first report on the derivation and structures of cellulose nanocrystals from grape skins. Pure cellulose was isolated from chardonnay grape skins at a 16.4% yield by a process involving organic extraction, acid and base dissolutions, and basic and acidic oxidation. The as-extracted cellulose was 54.9% crystalline and microfibrillar. Acid hydrolysis (64-65% H2SO4 45 °C, 30 min) of grape skin cellulose produced the more crystalline (64.3%) cellulose nanocrystals (CNCs) that appeared mostly as spherical nanoparticles with diameters ranging from 10 to 100 nm and a mean diameter of 48.1 (±14.6) nm as observed by TEM. AFM further disclosed the spherical nanoparticles actually consist of a nano-rod core (seed) surrounded by numerous tiny cellulose fragments as the shell. Interestingly, the spherical core-shell nanoparticles resemble the shape of grape bundles, the starting biomass, may be assembled via interfacial hydrogen bonds.  相似文献   

3.
Tang LR  Huang B  Ou W  Chen XR  Chen YD 《Bioresource technology》2011,102(23):10973-10977
Cellulose nanocrystals (CNC) were prepared from microcrystalline cellulose (MCC) by hydrolysis with cation exchange resin (NKC-9) or 64% sulfuric acid. The cation exchange resin hydrolysis parameters were optimized by using the Box–Behnken design and response surface methodology. An optimum yield (50.04%) was achieved at a ratio of resin to MCC (w/w) of 10, a temperature of 48 °C and a reaction time of 189 min. Electron microscopy (EM) showed that the diameter of CNCs was about 10–40 nm, and the length was 100–400 nm. Regular short rod-like CNCs were obtained by sulfuric acid hydrolysis, while long and thin crystals of cellulose were obtained with the cation exchange resin. X-ray diffraction (XRD) showed that, compared with MCC, the crystallinity of H2SO4-CNC and resin-CNC increased from 72.25% to 77.29% and 84.26%, respectively. The research shows that cation exchange resin-catalyzed hydrolysis of cellulose could be an excellent method for manufacturing of CNC in an environmental-friendly way.  相似文献   

4.
Effects of grinding processes on enzymatic degradation of wheat straw   总被引:1,自引:0,他引:1  
The effectiveness of wheat straw fine to ultra-fine grindings at pilot scale was studied. The produced powders were characterised by their particle-size distribution (laser diffraction), crystallinity (WAXS) and enzymatic degradability (Trichoderma reesei enzymatic cocktail). A large range of wheat-straw powders was produced: from coarse (median particle size ∼800 μm) to fine particles (∼50 μm) using sieve-based grindings, then ultra-fine particles ∼20 μm by jet milling and ∼10 μm by ball milling. The wheat straw degradability was enhanced by the decrease of particle size until a limit: ∼100 μm, up to 36% total carbohydrate and 40% glucose hydrolysis yields. Ball milling samples overcame this limit up to 46% total carbohydrate and 72% glucose yields as a consequence of cellulose crystallinity reduction (from 22% to 13%). Ball milling appeared to be an effective pretreatment with similar glucose yield and superior carbohydrate yield compared to steam explosion pretreatment.  相似文献   

5.
Bacterial cellulose obtained from Gluconacetobacter xylinus in the form of long fibers were acid hydrolyzed under controlled conditions to obtain cellulose nanocrystals. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) confirmed the formation of rod like cellulose nanocrystals having an average diameter and length of 20 ± 5 nm and 290 ± 130 nm respectively. These nanocrystals were used to prepare gelatin nanocomposite films and characterized for elucidating its performance. The formation of percolated networks of cellulose nanocrystals within gelatin matrix resulted in improving the mechanical properties of nanocomposites. The moisture sorption and water vapor permeability (WVP) studies revealed that the addition of cellulose nanocrystals reduced the moisture affinity of gelatin, which is very favorable for edible packaging applications. Results of this study demonstrated the use of bacterial cellulose nanocrystals (BCNCs) in the fabrication of edible, biodegradable and high-performance nanocomposite films for food packaging applications at relatively low cost.  相似文献   

6.
Lü J  Zhou P 《Bioresource technology》2011,102(13):6966-6971
In this study, Box-Behnken design (BBD) and response surface methodology (RSM) were used to optimize microwave-assisted FeCl3 pretreatment conditions of rice straw with respect to FeCl3 concentration, microwave intensity, irradiation time and substrate concentration. When rice straw was pretreated at the optimal conditions of FeCl3 concentration, 0.14 mol/L; microwave intensity, 160 °C; irradiation time, 19 min; substrate concentration, 109 g/L; and inoculated with Trichoderma viride and Bacillus pumilus, the production of reducing sugars was 6.62 g/L. This yield was 2.9 times higher than that obtained with untreated rice straw. The microorganisms degraded 37.8% of pretreated rice straw after 72 h. The structural characteristic analyses suggest that microwave-assisted FeCl3 pretreatment damaged the silicified waxy surface of rice straw, disrupted almost all the ether linkages between lignin and carbohydrates, and removed lignin.  相似文献   

7.
Carboxymethyl cellulose was prepared using a continuous, reduced solvent, reactive extrusion process with a short reaction time. The effects of the amounts of NaOH (30 g, 40 g and 50 g), water:ethanol ratio (100%, 70%, 50%, 30% and 10% H2O) and their interactions on the physical, chemical and morphological properties of carboxymethyl cellulose were studied. Experiments were conducted using to a 5 × 3 blocked factorial design. X-ray diffraction analyses revealed higher degrees of crystallinity and fractions of cellulose-II crystalline structure when 100% H2O was used as compared to that for 70%, 50%, 30% and 10% H2O and a commercially available brand of carboxymethyl cellulose, AQUASORB A500. Statistical analysis revealed a significant interaction between the effects of NaOH and H2O on the degrees of substitutions. The degrees of substitutions decreased with increasing amounts of NaOH and tended to increase with increasing alcohol concentrations. Liquid uptake measurements revealed that the extent of saline uptake, measured at intervals of 1 min, 5 min and 10 min, by carboxymethyl cellulose prepared with 100% H2O, especially when 40 g and 50 g NaOH was used, was higher than that for 70%, 50%, 30% and 10% H2O and AQUASORB A500. This may have been because of the higher crystallinity in carboxymethyl cellulose prepared with 100% H2O. Carboxymethyl cellulose prepared with 70% H2O and 30 g and 50 g NaOH had the highest saline absorption, using the soak method, before and after centrifugation, respectively. Scanning electron microscopy for carboxymethyl cellulose prepared with 100% and 10% H2O, through images at 120X magnification, revealed fibers 100 μ to >800 μ in length and 0.8-3.3 μ in breadth. Some non fibrous particles, 0.8-6.7 μ in dimensions, also were observed for 100% H2O. Images at 900× magnification revealed partially damaged fiber surfaces.  相似文献   

8.
Natural cellulose fibers from soybean straw   总被引:1,自引:0,他引:1  
This paper reports the development of natural cellulose technical fibers from soybean straw with properties similar to the natural cellulose fibers in current use. About 220 million tons of soybean straw available in the world every year could complement the byproducts of other major food crops as inexpensive, abundant and annually renewable sources for natural cellulose fibers. Using the agricultural byproducts as sources for fibers could help to address the concerns on the future price and availability of both the natural and synthetic fibers in current use and also help to add value to the food crops. A simple alkaline extraction was used to obtain technical fibers from soybean straw and the composition, structure and properties of the fibers was studied. Technical fibers obtained from soybean straw have high cellulose content (85%) but low% crystallinity (47%). The technical fibers have breaking tenacity (2.7 g/den) and breaking elongation (3.9%) higher than those of fibers obtained from wheat straw and sorghum stalk and leaves but lower than that of cotton. Overall, the structure and properties of the technical fibers obtained from soybean straw indicates that the fibers could be suitable for use in textile, composite and other industrial applications.  相似文献   

9.
Surface modification of natural fibers has been made using different methods. In this paper, cellulose fibers from sugarcane bagasse were bleached and modified by zirconium oxychloride in situ. The chemically modified cellulose fibers were compared to those of bleached ones. Cellulose fibers were modified with ZrO2·nH2O nanoparticles through the use of zirconium oxychloride in acidic medium in the presence of cellulose fibers using urea as the precipitating agent. The spatial distribution characterization of hydrous zirconium oxide on cellulose fibers was carried out by combining both processing and image analyses obtained by SEM and statistical methodologies. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TG) were also used to characterize the nanocomposite. Results indicated that ZrO2·nH2O nanoparticles of about 30-80 nm diameter deposited on cellulose fibers were heterogeneously dispersed.  相似文献   

10.
Crystalline cellulose nanocrystals (CNCs) have emerged as novel materials for a wide variety of important applications such as nanofillers, nanocomposites, surface coatings, regenerative medicine and potential drug delivery. CNCs have a needle-like structure with sizes in the range of 100–200 nm long and 5–20 nm wide and a mean aspect ratio 10–100. Despite the great potential applicability of CNCs, very little is known about their potential immunogenicity. Needle-like materials have been known to evoke an immune response in particular to activate the (NOD-like receptor, pyrin domain-containing 3)-inflammasome/IL-1β (Interleukin 1β) pathway. In this study we evaluated the capacity of unmodified CNC and its cationic derivatives CNC-AEM (aminoethylmethacrylate)1, CNC-AEM2, CNC-AEMA(aminoethylmethacrylamide)1 and CNC-AEMA2 to stimulate NLRP3-inflammasome/IL-1β pathway and enhance the production of mitochondrial reactive oxygen species (ROS). Mouse macrophage cell line (J774A.1) was stimulated for 24 h with 50 µg/mL with unmodified CNC and its cationic derivatives. Alternatively, J774A1 or PBMCs (peripheral blood mononuclear cells) were stimulated with CNC-AEMA2 in presence or absence of LPS (lipopolysaccharide). IL-1β secretion was analyzed by ELISA, mitochondrial function by JC-1 staining and ATP content. Intracellular and mitochondrial reactive oxygen species (ROS) were assessed by DCF-DA (2′,7′-dichlorodihydrofluorescein diacetate) and MitoSOX, respectively. Mitochondrial ROS and extracellular ATP were significantly increased in cells treated with CNC-AEMA2, which correlates with the strongest effects on IL-1β secretion in non-primed cells. CNC-AEMA2 also induced IL-1βsecretion in LPS-primed and non-primed PBMCs. Our data suggest that the increases in mitochondrial ROS and ATP release induced by CNC-AEMA2 may be associated with its capability to evoke immune response. We demonstrate the first evidence that newly synthesized cationic cellulose nanocrystal derivative, CNC-AEMA2, has immunogenic properties, which may lead to the development of a potential non-toxic and safe nanomaterial to be used as a novel adjuvant for vaccines.  相似文献   

11.
Wan C  Zhou Y  Li Y 《Bioresource technology》2011,102(10):6254-6259
Soybean straw was pretreated with either liquid hot water (LHW) (170-210 °C for 3-10 min) or alkaline soaking (4-40 g NaOH/100 g dry straw) at room temperature to evaluate the effects on cellulose digestibility. Nearly 100% cellulose was recovered in pretreated solids for both pretreatment methods. For LHW pretreatment, xylan dissolution from the raw material increased with pretreatment temperature and time. Cellulose digestibility was correlated with xylan dissolution. A maximal glucose yield of 70.76%, corresponding to 80% xylan removal, was obtained with soybean straw pretreated at 210 °C for 10 min. NaOH soaking at ambient conditions removed xylan up to 46.37% and the subsequent glucose yield of pretreated solids reached up to 64.55%. Our results indicated LHW pretreatment was more effective than NaOH soaking for improving cellulose digestibility of soybean straw.  相似文献   

12.
The aim of this study was to develop a new inorganic-organic hybrid film. Nanohydroxyapaptite (nHAP) particles as the inorganic phase was mixed with cellulose in 7 wt.% NaOH/12 wt.% urea aqueous solution with cooling to prepare a blend solution, and then inorganic-organic hybrid films were fabricated by coagulating with Na2SO4 aqueous solution. The structure and properties of the hybrid films were characterized by high resolution transmitting electron microscopy (HRTEM), field emission scanning electron microscopy (FESEM), thermo-gravimetric analysis (TGA), Fourier transform infra-red (FT-IR) spectra, wide angle X-ray diffraction (WAXD) and tensile testing. The results revealed that the HAP nanoparticles with mean diameter of about 30 nm were uniformly dispersed and well immobilized in the hybrid film as a result of the role of the nano-and micropores in the cellulose substrate. A strong interaction existed between HAP and cellulose matrix, and their thermal stability and mechanical strength were improved as a result of good miscibility. Furthermore, the results of 293T cell viability assay indicated that the HAP/cellulose films had excellent biocompatibility and safety, showing potential applications in biomaterials.  相似文献   

13.
Regenerated films were successfully prepared from cellulose/NaOH/urea solution by coagulating with water at temperature from 25 to 45 °C. The results of solid 13C NMR, wide angle X-ray diffraction, scanning electron microscopy (SEM) and tensile testing revealed that the cellulose films possessed homogeneous structure and cellulose II crystalline, similar to that prepared previously by coagulating with 5 wt% H2SO4. By changing the coagulation temperature from 25 to 45 °C, tensile strength of the films was in the range of 85-139 MPa. Interestingly, the RC35 film coagulated at 35 °C exhibited the highest tensile strength (σb = 139 MPa). The inclusion complex associated with cellulose, NaOH and urea hydrates in the cellulose solution were broken by adding water (non-solvent), leading to the self-association of cellulose to regenerate through rearrangement of the hydrogen bonds. This work provided low-cost and “green” pathway to prepare cellulose films, which is important in industry.  相似文献   

14.
A central composite design of response surface method was used to optimize H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw, in respect to acid concentration (0.5–2%), treatment time (5–20 min) and solid content (10–20%) at 180 °C. Enzymatic hydrolysis and fermentation were also measured to evaluate the optimal pretreatment conditions for maximizing ethanol production. The results showed that acid concentration and treatment time were more significant than solid content for optimization of xylose release and cellulose recovery. Pretreatment with 1% sulfuric acid and 20% solid content for 10 min at 180 °C was found to be the most optimal condition for pretreatment of rapeseed straw for ethanol production. After pretreatment at the optimal condition and enzymatic hydrolysis, 75.12% total xylan and 63.17% total glucan were converted to xylose and glucose, respectively. Finally, 66.79% of theoretical ethanol yielded after fermentation.  相似文献   

15.
Untreated and urea-treated straw and straw fractions of seven rice varieties from three cultivation seasons have been evaluated on their DM, OM loss and degradation characteristics from in sacco disappearance and in vitro gas production measurements. Drying temperatures from 45°C to 100°C did not seem to influence the degradability of urea-treated rice straw, whereas urea-treated straw dried at freezing temperatures (−35°C) gave slightly higher degradability than higher temperatures. Untreated early season rice straw showed higher degradability than straw of middle and later season rice. There was a significant increase in the degradation of straw after urea treatment, and greatest for late and middle season rice straw. On average, urea-treatment of rice straw increased the DM and OM in sacco losses after 48 h of incubation (48 h) by 24.0% and 30.7%, respectively. In order to study the kinetics of the degradation of fibre fractions, the disappearance in sacco was also estimated for the loss of hemicellulose, cellulose and extractable biogenic silica (EBSi). There was a great variation in the content of silica between varieties. Rice straw degradation seemed to be related to the biogenic silica content (acid detergent insoluble silica (ADISi)). Urea treatment increased the extraction of biogenic silica and hence increased the degradation of hemicellulose and cellulose. The improvement in sacco disappearance of cellulose due to urea treatment was 36.8%, 19.5% and 5.3% for late, middle, and early rice straw, respectively. The degradability was higher for the stem than for the leaf blades and leaf sheaths. The response to urea treatment, however, was higher for leaf sheaths and leaf blades than for the stems, evening out differences in degradability. Urea treatment tended to increase the production of acetic acid whereas there was no effect on propionic and butyric acid production.  相似文献   

16.
Two biocompatible and biodegradable polyampholyte microgels, namely chitosan-carboxymethyl cellulose (CS-CMC) and chitosan-modified methyl cellulose (CS-ModMC) were synthesized by an inverse microemulsion technique. The CS-CMC microgel system was pH-responsive while the CS-ModMC system possessed both pH and thermo-responsive properties. For CS-CMC system, the number of -OCH2COOH and -NH2 groups was determined to be 1.5 and 1.1 meq/g of microgel, respectively. In the pH range of 4-9, the zeta potential values varied from +10 to −40 mV, while the hydrodynamic radius varied from 160 nm in the swollen state (acidic and basic pH) to 110 nm in the “collapse” state (neutral pH). Furthermore, TEM micrographs confirmed the swelling/deswelling behaviour of CS-CMC microgel particles at acidic, neutral and basic conditions. For CS-ModMC system, the number of -OCH2COOH and -NH2 groups was determined to be 0.8 and 0.6 meq/g microgel, respectively. In the pH range of 4-9, the surface charge on the microgels varied from +25 to −60 mV and the hydrodynamic radii were 190 nm at low pH, 80 nm at neutral pH, to 120 nm at a high pH. In vitro drug release studies confirmed that CS-CMC microgels could encapsulate and release a model drug, thus they could potentially be used as biocompatible and biodegradable drug carriers.  相似文献   

17.
Zhou C  Chu R  Wu R  Wu Q 《Biomacromolecules》2011,12(7):2617-2625
An electrospinning process was successfully used to fabricate polyethylene oxide/cellulose nanocrystal (PEO/CNC) composite nanofibrous mats. Transition of homogeneous to heterogeneous microstructures was achieved by tailoring the concentration of PEO/CNC mixture in the solution from 5 to 7 wt %. Morphology investigation of the obtained nanofibers demonstrated that rod-shaped CNCs were well-dispersed in the as-spun nanofibers and highly aligned along the nanofiber long-axis. PEO/CNC nanofibers became more uniform and smaller in diameter with increased CNC-loading level. The heterogeneous composite mats were composed of rigid-flexible bimodal nanofibers. Results of structure characterization indicated that the incorporated CNCs interacted strongly with the PEO matrix through hydrogen bonding. Mechanical properties of both types of mats were effectively improved by using CNCs, with heterogeneous mats being stronger than their homogeneous counterparts for all compositions (0-20 wt % CNC contents). When a smaller diameter needle was used to form homogeneous mats, enhanced thermal and mechanical properties were obtained.  相似文献   

18.
Different agricultural wastes, namely tobacco stalk (TS), cotton stalk (CS), sunflower stalk (SS), and wheat straw (WS), were used for the production of xylooligosaccharide (XO). XO production was performed by acid hydrolysis of xylan, which was obtained by alkali extraction from these agricultural wastes. The major component of these agricultural wastes was determined as cellulose (30-42%), followed by xylan (20%) and lignin (20-27%). Xylans from these wastes had mainly xylose (85-96%) with small amount of glucose, while wheat straw xylan contained also arabinose. The best xylan conversion into XOs was achieved with 0.25 M H2SO4 with 30-min reaction time. Under these conditions, the XO yield was between 8% and 13%. The yield of XOs depends on both acid concentration and hydrolysis time, but the yield of monosaccharide depends on the structure and composition of xylan besides acid concentration and the time. The more branched xylan, WSX, gave the highest monosaccharide (∼16%) and furfural (∼49 mg/100 g xylan) yield. This research showed that all xylans from selected agricultural wastes generated XOs with similar profiles, and these oligosaccharides could be used as functional food ingredients or soluble substrates for xylanases.  相似文献   

19.
A simple process (the direct-saccharification-of-culms (DiSC) process) to produce ethanol from rice straw culms, accumulating significant amounts of soft carbohydrates (SCs: glucose, fructose, sucrose, starch and β-1,3-1,4-glucan) was developed. This study focused on fully mature culms of cv. Leafstar, containing 69.2% (w/w of dried culms) hexoses from SCs and cellulose. Commercially-available wind-separation equipment successfully prepared a culm-rich fraction with a SC recovery of 83.1% (w/w) from rice straw flakes (54.1% of total weight of rice straw). The fraction was suspended in water (20%, w/w) for starch liquefaction, and the suspension was subjected to a simultaneous saccharification and fermentation with yeast, yielding 5.6% (w/v) ethanol (86% of the theoretical yield from whole hexoses in the fraction) after 24 h fermentation. Thus, the DiSC process produced highly-concentrated ethanol from rice straw in a one vat process without any harsh thermo-chemical pretreatments.  相似文献   

20.
本论文探讨了不同浓度的稀H_2SO_4和稀NaOH预处理对大豆秸秆、水稻秸秆、象草和狼尾草四种不同生物质酶解制备还原糖的影响。结果表明,大豆秸秆、水稻秸秆、象草和狼尾草具有较高的纤维素和半纤维素含量,是制备还原糖的理想原料。与稀H_2SO_4预处理相比,经稀NaOH预处理后的样品表现出较好的酶解性能。通过使用4%的NaOH对大豆秸秆和狼尾草进行预处理,还原糖产量分别为145.8 mg/mL和319.2 mg/mL。此外,以1%NaOH预处理后的水稻秸秆和象草为原料,可以分别获得385.2 mg/mL和231.6 mg/mL还原糖产量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号