首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermo-responsive nanogels from poly(l-lactide)-g-pullulan (PLP1 and 2) copolymers with different lactide contents were investigated as an anticancer drug delivery carrier. The phase transition temperature of PLP 1 with lower lactide content in distilled water showed around 35 °C. Upon adding 0.15 M NaCl to PLP 1, a significant difference in the transmittance was observed when comparing the non-additive salt condition. The total amount of released doxorubicin (DOX) from the DOX-loaded PLP nanogels increased with increasing temperature for 50 h. A noticeable difference in the initial release by PLP 1 was observed between 37 and 42 °C. In the 50% inhibitory concentration (IC50) analysis, the IC50 values of DOX released from PLP 1 were approximately 5.9 and 9.3 μg/mL at 37 and 42 °C, respectively. The results suggest that self-assembled PLP nanogels, by means of a triggering temperature, can be used as a long-term drug delivery system in cancer treatments.  相似文献   

2.
Block copolymers containing stimuli-responsive segments provide important new opportunities for controlling the activity and aggregation properties of protein-polymer conjugates. We have prepared a RAFT block copolymer of a biotin-terminated poly(N-isopropylacrylamide) (PNIPAAm)-b-poly(acrylic acid) (PAA). The number-average molecular weight (M(n)) of the (PNIPAAm)-b-(PAA) copolymer was determined to be 17.4 kDa (M(w)/M(n) = 1.09). The PNIPAAm block had an M(n) of 9.5 kDa and the poly(acrylic acid) (PAA) block had an M(n) of 7.9 kDa. We conjugated this block copolymer to streptavidin (SA) via the terminal biotin on the PNIPAAm block. We found that the usual aggregation and phase separation of PNIPAAm-SA conjugates that follow the thermally induced collapse and dehydration of PNIPAAm (the lower critical solution temperature (LCST) of PNIPAAm is 32 degrees C in water) is prevented through the shielding action of the PAA block. In addition, we show that the cloud point and aggregation properties (as measured by loss in light transmission) of the [(PNIPAAm)-b-(PAA)]-SA conjugate also depended on pH. At pH 7.0 and at temperatures above the LCST, the block copolymer alone was found to form particles of ca. 60 nm in diameter, while the bioconjugate exhibited very little aggregation. At pH 5.5 and 20 degrees C, the copolymer alone was found to form large aggregates (ca. 218 nm), presumably driven by hydrogen bonding between the -COOH groups of PAA with other -COOH groups and also with the -CONH- groups of PNIPAAm. In comparison, the conjugate formed much smaller particles (ca. 27 nm) at these conditions. At pH 4.0, however, large particles were formed from the conjugate both above and below the LCST (ca. 700 and 540 nm, respectively). These results demonstrate that the aggregation properties of the block copolymer-SA conjugate are very different from those of the free block copolymer, and that the outer-oriented hydrophilic block of PAA shields the intermolecular aggregation of the block copolymer-SA bioconjugate at pH values where the -COOH groups of PAA are significantly ionized.  相似文献   

3.
The title complexes, [M(Diap)2(OAc)2] · H2O (M = Zn,Cd; Diap = 1,3-diazepane-2-thione; OAc = acetate) with an MO2S2 configuration, have been characterized by X-ray crystallography as well as FT-IR, 1H and 13C NMR spectroscopy. In these complexes, the metal atoms lie in a pseudo-tetrahedral environment and are coordinated by the thione sulfur atoms of two neutral 1,3-diazepane-2-thione ligands and one oxygen atom from each of two monodentate acetate anions. In both complexes, there are two intramolecular N-H?O hydrogen bonds, each being between one NH group of a Diap ligand and the uncoordinated O atom of an OAc ligand. The water molecule is also involved in hydrogen bonds, as an acceptor and as a donor twice, linking together three symmetry-related complexes. The Cd complex undergoes a structural phase transition from a monoclinic form at 150 K with Z′ = 2 to a smaller monoclinic cell at room temperature with Z′ = 1 without loss of crystallinity. The Zn complex does not exhibit an equivalent phase transition, and at 150 K is isostructural with the room-temperature form of the Cd complex. All three crystallographically independent molecules found for the Cd complex (two at low temperature and one at room temperature) have essentially the same structure except for small changes in the conformations of the ligands. Tetrahedral coordination with monodentate carboxylate ligands is common for Zn complexes of this kind, but is unusual for Cd complexes, and is the result of the bulky Diap ligands.  相似文献   

4.
Chen Y  Ding D  Mao Z  He Y  Hu Y  Wu W  Jiang X 《Biomacromolecules》2008,9(10):2609-2614
To develop a novel type of semi-IPN particles using biocompatible materials, hydroxypropylcellulose-poly(acrylic acid) (HPC-PAA) particles with semi-interpenetrating polymer network structure and a porosity-structural surface were prepared by direct polymerization of acrylic acid monomer in the reaction system comprised of HPC and AA monomer and N,N'-methylenebisacrylamide (MBAAm). The properties of HPC-PAA gel particles were characterized by dynamic light scattering, FT-IR, transmission electron microscopy, and atomic force microscope. It is found that the formation of HPC-PAA gel particles is driven by the hydrogen bonding interaction between proton-donating PAA and proton-accepting HPC. These HPC-PAA gel particles exhibit thermo and pH dual-responsive behaviors. Depending on the chemical composition and the degree of cross-linking, the thermo-responsive property of HPC-PAA gel particles can be shifted from the UCST to the LCST property, and particle sizes can be changed from 100 to 1 microm in a controllable way. Successful loading of the gel particles with oxaliplatin, a hydrophilic antitumor drug, was achieved by take advantage of the complex interaction between the platinum atom of oxaliplatin and the carboxylic group of PAA in the gel particles. In vitro cytotoxicity assay indicates that the oxalipatin-loaded HPC-PAA gel particles have high anticancer activity. Considering the good biosafety, simple and mild preparation strategy and tunable size as well as the stimuli-responsive properties, the HPC-PAA gel particles should be a promising candidate for the drug delivery system.  相似文献   

5.
Purified flax waste was obtained from flax processing wastes via subjecting the latter to alkali treatment followed by peracetic acid bleaching. The so obtained purified flax wastes were chemically modified via reacting with propylene oxide in alkaline medium. The resultant hydroxypropyl cellulose (HPC) was incorporated in a polymerization medium containing acrylic acid and potassium bromate/thiourea mixture as initiation system. The polymerization reaction was monitored by determining the total conversion percent and the rheological properties of the resultant polyacrylic acid–hydroxypropyl cellulose composite [poly(AA)–HPC]. Results obtained indicate that the optimum conditions of polymerization process were: 12 mmole KBrO3, 4 mmole thiourea and 100 g acrylic acid/100 g HPC at 50 °C for 2 h using a material to liquor ratio of 1:5.  相似文献   

6.
Herein we report the synthesis of cellulose nanocrystals (CNCs) grafted with poly(acrylic acid) (PAA) chains of different lengths using Cu-mediated surface initiated-controlled radical polymerization (SI-CRP). First, poly(tert-butylacrylate) (PtBA) brushes were synthesized; then, subsequent acid hydrolysis was used to furnish PAA brushes tethered onto the CNC surfaces. The CNCs were chemically modified to create initiator moieties on the CNC surfaces using chemical vapor deposition (CVD) and continued in solvent phase in DMF. A density of initiator groups of 4.6 bromine ester groups/nm(2) on the CNC surface was reached, suggesting a dense functionalization and a promising starting point for the controlled/living radical polymerization. The SI-CRP of tert-butylacrylate proceeded in a well-controlled manner with the aid of added sacrificial initiator, yielding polymer brushes with polydispersity values typically well below 1.12. We calculated the polymer brush grafting density to almost 0.3 chains/nm(2), corresponding to high grafting densities and dense polymer brush formation on the nanocrystals. Successful rapid acid hydrolysis to remove the tert-butyl groups yielded pH-responsive PAA-polyelectrolyte brushes bound to the CNC surface. Individually dispersed rod-like nanoparticles with brushes of PtBA or PAA were clearly visualized by AFM and TEM imaging.  相似文献   

7.
Reaction of 2 equiv of the sodium salt of ethyl pyrazole-4-carboxylate, with 1 equiv of 2,6-dibromopyridine, in diglyme at 130 °C for 5 days yields 2,6-di[4-(ethylcarboxy)pyrazol-1-yl]pyridine (L1), with 2-bromo-6-[4-(ethylcarboxy)pyrazol-1-yl]pyridine (L2) as a significant byproduct. Reduction of L1 with excess NaBH4 in thf affords 2,6-di[4-(hydroxymethyl)pyrazol-1-yl]pyridine (L3) in low yield. The crystalline complex [Fe(L1)2][BF4]2 · 2CF3CH2OH is low-spin at 150 K, while bulk samples with this formula are approximately 10% high-spin and 90% low-spin at room temperature. This ratio does not vary significantly on cooling from its magnetic susceptibility, suggesting that the material might be contaminated by a second, minor high-spin phase. Single crystals of [Fe(L3)2][BF4]2·1.4CH3CN have a mixed spin-state population, with the low-spin state predominating at 150 K. The [Fe(L3)2(BF4)]+ moieties in the lattice associate into 1-D chains through intermolecular O-H?O and O-H?F hydrogen bonding. Bulk samples of [Fe(L3)2][BF4]2 · H2O are fully low-spin below 200 K, but the magnetic data imply the onset of a gradual thermal spin-transition centred above room temperature. DSC and TGA measurements imply that this transition is centred at 322 K, and involves loss of lattice water. Both complexes undergo spin-crossover in (CD3)2CO solution, with transition midpoints near 250 K.  相似文献   

8.
Two high-pressure polymorphs of sulfuric acid monohydrate (oxonium hydrogensulfate) have been obtained at ambient temperature by crystallisation at high pressure from the liquid at 1.3 GPa (form III) and by direct compression of the ambient-pressure form I first to 1.26 GPa (form II) and then to 1.72 GPa (form III). The structure of form III was solved by single crystal X-ray diffraction and this structure was used as the basis for the refinement of hydrogen positions using high-pressure neutron powder diffraction data. Form III crystallises in the orthorhombic crystal system at 1.97 GPa, and features parallel chains of hydrogensulfate ions linked by oxonium ions to form a three-dimensional hydrogen-bonded network. On further compression to 3.05 GPa, the direction of maximum compressibility is found to be along the a-axis and is associated with the shortening of a hydrogen bond between a hydrogensulfate ion and an oxonium ion. The structure of form II remains elusive although at ambient temperature it is stable (or metastable) at pressures as low as 0.42 GPa, perhaps indicating that it could be recoverable to ambient-pressure at low temperature.  相似文献   

9.
The goal of this article is to summarize what has been learned about the major forces stabilizing proteins since the late 1980s when site-directed mutagenesis became possible. The following conclusions are derived from experimental studies of hydrophobic and hydrogen bonding variants. (1) Based on studies of 138 hydrophobic interaction variants in 11 proteins, burying a –CH2− group on folding contributes 1.1 ± 0.5 kcal/mol to protein stability. (2) The burial of non-polar side chains contributes to protein stability in two ways: first, a term that depends on the removal of the side chains from water and, more importantly, the enhanced London dispersion forces that result from the tight packing in the protein interior. (3) Based on studies of 151 hydrogen bonding variants in 15 proteins, forming a hydrogen bond on folding contributes 1.1 ± 0.8 kcal/mol to protein stability. (4) The contribution of hydrogen bonds to protein stability is strongly context dependent. (5) Hydrogen bonds by side chains and peptide groups make similar contributions to protein stability. (6) Polar group burial can make a favorable contribution to protein stability even if the polar group is not hydrogen bonded. (7) Hydrophobic interactions and hydrogen bonds both make large contributions to protein stability.  相似文献   

10.
Construction of a new artificial biomineralization system   总被引:1,自引:0,他引:1  
Hydroxyapatite (HAP) was mineralized in poly(vinyl alcohol) (PVA)/poly(acrylic acid) (PAA) complex hydrogel immersed in a salt solution containing PAA. The transparent HAP/polymer composite swelled in water depending on the HAP content; high HAP content gave small swelling and vice versa. The HAP content reached about 80 wt % at most. Observation of the cross section of the composite by energy-dispersive analysis of X-ray (EDAX) revealed that the composite consisted of two phases, i.e., a hard HAP-rich phase and a soft polymer-rich phase. In the HAP-rich phase, the space inside the hydrogel was occupied by HAP, while HAP was not mineralized in the polymer-rich phase. The nucleation seemed to take place, at first, at the middle depth of the hydrogel where the HAP-rich phase was formed. The HAP-rich phase grew its size toward the surface of the hydrogel at the cost of the polymer-rich phase. The presence of phosphorus, P, in the polymer-rich phase indicated the adsorption of HPO(4)(2-) on the polymer chain of the hydrogel via hydrogen bonding, accompanied with Ca(2+) because of electrostatic constraints. This adsorption of ions in addition to Donnan distribution of ions leads to the formation of a hypercomplex that can be regarded as a precursor of the HAP-rich phase. The change of the hypercomplex into the HAP-rich phase is discontinuous and hence concluded as a phase transition. By comparison of our mineralization system with the biomineralization system of HAP and CaCO(3), the physicochemical mechanism of the mineralization process in the present system was found to be similar to that in biological systems. In this sense, we termed the present system an artificial biomineralization system.  相似文献   

11.
Chitosan membranes modified by contact with poly(acrylic acid)   总被引:1,自引:0,他引:1  
In this work chitosan membranes modified by contact with poly(acrylic acid) (PAA) aqueous solution at two different temperatures (25 °C and 60 °C) were obtained. The pure chitosan (CS) membranes, as well as those treated with PAA (CSPAA_25 and CSPAA_60) were characterized by FTIR-ATR, water sorption capacity, thermal analysis (TG/DTG), and scanning electron microscopy (SEM). In addition, in vitro permeation experiments were carried out using metronidazol and sodium sulfamerazine aqueous solutions at 0.1% and 0.2% as model drugs. FTIR-ATR results showed the presence of absorption bands of and COO indicating the formation of a polyelectrolyte complex between chitosan and poly(acrylic acid). The results also indicated that PAA penetrates deeper into the membrane at higher temperature (60 °C), forming a thicker complex layer. Polyelectrolyte complex formation as well as the influence of treatment temperature was confirmed by lower hydrophilicity, higher thermal stability, and lower permeability of the treated membranes. The results show that the methodology used is a simple and very efficient way to drastically change some membrane properties, especially their permeability.  相似文献   

12.
A novel chlorophyll a containing pigment–protein complex expressed by cells of Chromera velia adapted to growth under red/far-red illumination [1]. Purification of the complex was achieved by means of anion-exchange chromatography and gel-filtration. The antenna is shown to be an aggregate of ~ 20 kDa proteins of the light–harvesting complex (LHC) family, unstable in the isolated form. The complex possesses an absorption maximum at 705 nm at room temperature in addition to the main chlorophyll a maximum at 677 nm producing the major emission band at 714 nm at room temperature. The far-red absorption is shown to be the property of the isolated aggregate in the intact form and lost upon dissociation. The purified complex was further characterized by circular dichroism spectroscopy and fluorescence spectroscopy. This work thus identified the third different class of antenna complex in C. velia after the recently described FCP-like and LHCr-like antennas. Possible candidates for red antennas are identified in other taxonomic groups, such as eustigmatophytes and the relevance of the present results to other known examples of red-shifted antenna from other organisms is discussed. This work appears to be the first successful isolation of a chlorophyll a-based far-red antenna complex absorbing above 700 nm unrelated to LHCI.  相似文献   

13.
Poly ethylene glycol (PEG)-poly acrylic acid (PAA) based aqueous two-phase system (ATPS) was selected as a practical model to recover glycosaminoglycans (GAGs) from tannery wastewater. The influence of PEG molecular weight, tie line length (TLL), pH, temperature and NaCl concentration on the partition coefficient of glycosaminoglycans from tannery wastewater was studied. Partition coefficient of glycosaminoglycan decreases on increase of PEG molecular weight, NaCl concentration and temperature, whereas it increases with increase of pH. In the PEG-rich phase, increased partitioning of GAGs was observed with increase in TLL. The partitioning of GAGs was better in PEG 4000 at pH 8.0, 20 °C with a yield of 91.50%. This study demonstrates the potential application of ATPS processes for the recovery of GAGs from complex biological suspensions.  相似文献   

14.
Nanocomposite materials based on a starch matrix reinforced with very small amounts of multi-walled carbon nanotubes (MWCNTs) (from 0.005 wt% to 0.055 wt%) were developed. The material's dynamic-mechanical and water vapor permeability properties were investigated. An increasing trend of storage modulus (E′) and a decreasing trend of water vapor permeability (WVP) with filler content were observed at room temperature. For the composite with 0.055 wt% of filler, E′ value was about 100% higher and WVP value was almost 43% lower than the corresponding matrix values. MWCNTs were wrapped in an aqueous solution of a starch-iodine complex before their incorporation into the matrix, obtaining exceptionally well-dispersed nanotubes and optimizing interfacial adhesion. This excellent filler dispersion leads to the development of an important contact surface area with the matrix material, producing remarkable changes in the starch-rich phase glass transition temperature even in composites with very low filler contents. This transition is shifted towards higher temperatures with increasing content of nanotubes. So at room temperature, some composites are in the rubber zone while others, in the transition zone. Therefore, this change in the material glass transition temperature can be taken as responsible for the important improvements obtained in the composites WVP and E′ values for carbon nanotubes content as low as 0.05 wt%.  相似文献   

15.
In response to illumination by ultraviolet-A (UV-A) light, proteins in solid form are now known to display a visible blue fluorescence, ostensibly on account of excitation transitions of loosely-held electrons within peptide bond orbitals engaged in hydrogen bonding. Because the CO and NH atom groups in peptide bonds are generally engaged in extensive hydrogen bonding in globular proteins even in aqueous solution, one could argue that proteins in solution must also display this novel blue fluorescence. Here, using high concentrations to enhance detectability, two globular proteins, γ-crystallin, and lysozyme, are shown to fluoresce visibly, exhibiting: (a) two excitation maxima, at ∼315 nm and ∼385 nm, (b) maximal emission at 425 nm in 100 mg/ml lysozyme and 465 nm in 100 mg/ml γ-crystallin, (c) a time-resolved emission decay that is best fitted by a sum of three exponentials with lifetimes of 3.14, 0.46, and 9.08 ns, respectively, and comparable relative amplitudes of around 30--40 percent each, and (d) a weak CD spectrum displaying a positive band at ∼385 nm and a negative band at ∼465 nm. While the wavelength of maximal emission (emλmax) in lysozyme is the same for all protein concentrations, the emλmax of γ-crystallin varies with protein concentration, suggesting a certain degree of conformation dependence.  相似文献   

16.
Milbemectin is a widely used veterinary antiparasitic agent. A high-performance liquid chromatography with fluorescent detection (HPLC–FLD) method is described for the determination of milbemectin in dog plasma. The derivative procedure included mixing 1-methylimizole [MI, MI-ACN (1:1, v/v), 100 μL], trifluoroacetic anhydride [TFAA, TFAA-ACN (1:2, v/v), 150 μL] with a subsequent incubation for 3 s at the room temperature to obtain a fluorescent derivative, which is reproducible in different blood samples and the derivatives proved to be stable for at least 80 h at room temperature. HPLC method was developed on C18 column with FLD detection at an excitation wavelength of 365 nm and emission wavelength of 475 nm, with the mobile phase consisting of methanol and water in the ratio of 98:2 (v/v). The assay lower limit of quantification was 1 ng/mL. The calibration curve was linear over concentration range of 1–200 ng/mL. The intra- and inter-day accuracy was >94% and precision expressed as % coefficient of variation was <5%. This method is specific, simple, accurate, precise and easily adaptable to measure milbemycin in blood of other animals.  相似文献   

17.
The miscibility and mechanical properties of poly vinyl alcohol (PVA) and poly acrylic acid (PAA)-composited membranes were studied with molecular simulation. The Flory–Huggins parameters (δ) were calculated to prove the good miscibility of PVA and PAA. The radial distribution functions of hydroxyl and carboxyl atoms and the average number of H-bonds were observed to indicate the degree of physical cross-linking between PVA and PAA. The influences of intermolecular physical cross-linking on the glass transition temperature and mechanical properties were estimated. The results revealed that the PVA/PAA membrane with a composition of 2:3 has the best plastic properties, which exhibits a good application value. All of the simulated results showed good agreement with the experimental data. It indicates that the method presented in this work has a promising application prospect.  相似文献   

18.
A new family of block polyelectrolyte networks containing cross-linked poly(acrylic acid) (PAA) and poly(ethylene oxide) (PEO) was synthesized by copolymerization of acrylic acid and bisacrylated PEO (10 kDa). Two materials with different PEO/PAA ratios were compared with a weakly cross-linked PAA homopolymer network. The networks bound a cationic protein, cytochrome C, due to the polyion coupling, leading to the network contraction. After binding the protein the block polyelectrolyte networks were more porous compared to a homopolymer network, facilitating protein absorption within the gel. The protein was released by adding Ca2+ ions or a polycation. Ca2+ ions migrated within the gels and reacted with PAA chains, thus displacing the protein. The polycation transfer into hydrogels, as a result of polyion substitution reactions, was inhibited by the excess of PEO chains in the block polyelectrolyte networks. Overall, these findings advance development of functional polyelectrolyte networks for immobilization and controlled release of proteins.  相似文献   

19.
The hydrogenation of various nitrogen-, oxygen- or sulfur-heterocyclic aromatic compounds by various surfactant-stabilized aqueous rhodium(0) colloidal suspensions was investigated. The nanocatalysts in the size range of 2.1-2.4 nm have been synthesized by reducing RhCl3 · 3H2O with sodium borohydride and were stabilized by highly water soluble N,N-dimethyl-N-cetyl-N-(2-hydroxyethyl)ammonium bromide or chloride salts. The catalytic reactions were performed under mild reaction conditions, namely room temperature and under atmospheric hydrogen pressure. The influence of the bromide or chloride nature of the surfactant counter-ion on the recycling of the aqueous phase containing the Rh(0) particles was studied.  相似文献   

20.
We report on the effects of temperature and pressure on the structure, conformation and phase behavior of aqueous dispersions of the model lipid “raft” mixture palmitoyloleoylphosphatidylcholine (POPC)/bovine brain sphingomyelin (SM)/cholesterol (Chol) (1:1:1). We investigated interchain interactions, hydrogen bonding, conformational and structural properties as well as phase transformations of this system using Fourier transform-infrared (FT-IR) spectroscopy, small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC) coupled with pressure perturbation calorimetry (PPC), and Laurdan fluorescence spectroscopy. The IR spectral parameters in combination with the scattering patterns from the SAXS measurements were used to detect structural and conformational transformations upon changes of pressure up to 7-9 kbar and temperature in the range from 1 to about 80 °C. The generalized polarization function (GP) values, obtained from the Laurdan fluorescence spectroscopy studies also reveal temperature and pressure dependent phase changes. DSC and PPC were used to detect thermodynamic properties accompanying the temperature-dependent phase changes. In combination with literature fluorescence spectroscopy and microscopy data, a tentative p,T stability diagram of the mixture has been established. The data reveal a broad liquid-order/solid-ordered (lo + so) two-phase coexistence region below 8 ± 2 °C at ambient pressure. With increasing temperature, a lo + ld + so three-phase region is formed, which extends up to ∼27 °C, where a liquid-ordered/liquid-disordered (lo + ld) immiscibility region is formed. Finally, above 48 ± 2 °C, the POPC/SM/Chol (1:1:1) mixture becomes completely fluid-like (liquid-disordered, ld). With increasing pressure, all phase transition lines shift to higher temperatures. Notably, the lo + ld (+so) phase coexistence region, mimicking raft-like lateral phase separation in natural membranes, extends over a rather wide temperature range of about 40 °C, and a pressure range, which extends up to about 2 kbar for T = 37 °C. Interestingly, in this pressure range, ceasing of membrane protein function in natural membrane environments has been observed for a variety of systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号