首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regenerated films were successfully prepared from cellulose/NaOH/urea solution by coagulating with water at temperature from 25 to 45 °C. The results of solid 13C NMR, wide angle X-ray diffraction, scanning electron microscopy (SEM) and tensile testing revealed that the cellulose films possessed homogeneous structure and cellulose II crystalline, similar to that prepared previously by coagulating with 5 wt% H2SO4. By changing the coagulation temperature from 25 to 45 °C, tensile strength of the films was in the range of 85-139 MPa. Interestingly, the RC35 film coagulated at 35 °C exhibited the highest tensile strength (σb = 139 MPa). The inclusion complex associated with cellulose, NaOH and urea hydrates in the cellulose solution were broken by adding water (non-solvent), leading to the self-association of cellulose to regenerate through rearrangement of the hydrogen bonds. This work provided low-cost and “green” pathway to prepare cellulose films, which is important in industry.  相似文献   

2.
Transparent cellulose sheets were prepared through tape-casting a solution of cellulose. Flexible, luminescent sheets were produced by adding europium trichloride to the casting solution and treating the sheets with an aqueous solution of ammonium fluoride. Scanning electron micrographs of the resulting sheets showed europium trifluoride particles with diameters from 200 nm to 500 nm. These were found by transmission electron microscopy to be agglomerates of crystallites in the size range of 10-20 nm. The structure of supercritically dried sheets was further assessed by small-angle X-ray scattering and suggests a preferred orientation of slightly elongated pores of roughly 12 nm in diameter. Evaluation of the emission characteristics of the sheets showed the band pattern between 580 nm and 700 nm typical for Eu3+ phosphors. Our developed process is a versatile tool for the fabrication of transparent cellulose structures with different shapes and various embedded functional particles.  相似文献   

3.
As part of the desire to save the environment through “green” chemistry practices, we herein report an environmentally benign synthesis of silver nanoparticles (Ag-NPs) using cellulose extracted from an environmentally problematic aquatic weed, water hyacinth (WH), as both reducing and capping agent in an aqueous medium. By varying the pH of the solution and reaction time, the temporal evolutions of the optical and morphological properties of the as-synthesised Ag-NPs were investigated. The as-synthesised cellulose capped silver nanoparticles (C–Ag-NPs) were characterised using Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible spectroscopy (UV–vis), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The maximum surface plasmon resonance (SPR) peak decreased as the pH increased indicating that an increase in the pH of the solution favoured the formation of smaller particles. In addition, instantaneous change in the colour of the solution from colourless to brown within 5 min at pH 11 showed that the rate of reduction is faster at this pH compared to those at lower pH. The TEM micrographs showed that the materials are small, highly monodispersed and spherical in shape. The average particle mean diameters were calculated to be 5.69 ± 5.89 nm, 4.53 ± 1.36 nm and 2.68 ± 0.69 nm nm at pH 4, 8 and 11 respectively. The HRTEM confirmed the crystallinity of the material while the FTIR spectra confirmed the capping of the as-synthesised Ag-NPs by the cellulose. It has been shown therefore that based on this synthetic method, this aquatic plant can be used to the advantage of mankind.  相似文献   

4.
Bacterial cellulose obtained from Gluconacetobacter xylinus in the form of long fibers were acid hydrolyzed under controlled conditions to obtain cellulose nanocrystals. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) confirmed the formation of rod like cellulose nanocrystals having an average diameter and length of 20 ± 5 nm and 290 ± 130 nm respectively. These nanocrystals were used to prepare gelatin nanocomposite films and characterized for elucidating its performance. The formation of percolated networks of cellulose nanocrystals within gelatin matrix resulted in improving the mechanical properties of nanocomposites. The moisture sorption and water vapor permeability (WVP) studies revealed that the addition of cellulose nanocrystals reduced the moisture affinity of gelatin, which is very favorable for edible packaging applications. Results of this study demonstrated the use of bacterial cellulose nanocrystals (BCNCs) in the fabrication of edible, biodegradable and high-performance nanocomposite films for food packaging applications at relatively low cost.  相似文献   

5.
Irradiation of [Ce(hfac)3(diglyme)] (hfac = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionato and diglyme (DG) = 2,5,8,11,14-pentaoxapentadecane) in chlorinated solvents (CH2Cl2, CCl4) with UV light led to luminescent colloidal CeCl3 that was characterized by transmission electron microscopy (TEM) analysis. When a substrate, quartz or silicon was present in the reaction cell, photoluminescent films were obtained, containing either pure CeCl3 or mixtures of CeCl3, CeF3 and CeOx in function of the experimental parameters of irradiation. Nanostructured and luminescent pure CeCl3 films were obtained by irradiation of the cerium complex in CCl4 at high intensity light for a few minutes. The films were characterized by X-ray diffraction (XRD), Energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), TEM, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The kinetics of the [Ce(hfac)3(diglyme)] solution photodegradation, followed by UV spectrophotometry and spectrofluorimetry, pointed to CeCl3 formation by a solvent-initiated reaction, whereas the other inorganic compounds were the products of side reactions.  相似文献   

6.
The purpose of this article was to explore an environmentally friendly strategy to synthesis of biomass-based hybrids. Herein, microwave-assisted ionic liquids method was applied to fabricate the hybrids from cellulose and AgX (X = Cl, Br) using cellulose and AgNO3. The ionic liquids act simultaneously as a solvent, a microwave absorber, and a reactant. Ionic liquids provided Cl or Br to the synthesis of AgCl or AgBr crystals; thus no additional reactant is needed. The products are characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential thermal analysis (DTA). The cellulose–Ag/AgCl hybrid and cellulose–Ag/AgBr hybrid were also obtained by using cellulose–AgCl and cellulose–AgBr hybrids as precursors. This environmentally friendly microwave-assisted ionic liquids method is beneficial to the hybrids with high dispersion.  相似文献   

7.
A new, low-cost, and eco-friendly cellulose-based superabsorbent was successfully prepared from flax yarn waste. The method used was a free-radical graft copolymerization of AA and AM onto a cellulose backbone in a homogeneous aqueous solution. APS was used as the initiator in the presence of a crosslinker, MBA. The effects of various factors on water absorbency were discussed. The factors included reaction temperature, initiator amount, monomer amount, salt solution type, and solution pH. Under the optimized conditions, the water absorbencies of the obtained superabsorbent composite were 875 g/g distilled water, 490 g/g natural rainwater, and 90 g/g 0.9 wt% aqueous NaCl solution. The product also had excellent water retention and salt resistance properties. Fourier-transform infrared spectroscopy and scanning electron microscopy were employed to examine the structure of the prepared superabsorbent.  相似文献   

8.
Transparent and bendable regenerated cellulose films prepared from aqueous alkali (NaOH or LiOH)/urea (AU) solutions exhibit high oxygen barrier properties, which are superior to those of conventional cellophane, poly(vinylidene chloride), and poly(vinyl alcohol). Series of AU cellulose films are prepared from different cellulose sources (cotton linters, microcrystalline cellulose powder, and softwood bleached kraft pulp) for different dissolution and regeneration conditions. The oxygen permeabilities of these AU cellulose films vary widely from 0.003 to 0.03 mL μm m(-2) day(-1) kPa(-1) at 0% relative humidity depending on the conditions used to prepare the films. The lowest oxygen permeability is achieved for the AU film prepared from 6 wt % cellulose solution by regeneration with acetone at 0 °C. The oxygen permeabilities of the AU cellulose films are negatively correlated with their densities, and AU films prepared from solutions with high cellulose concentrations by regeneration in a solvent at low temperatures generally have low oxygen permeabilities. The AU cellulose films are, therefore, promising biobased packaging materials with high-oxygen barrier properties.  相似文献   

9.
Peng XW  Ren JL  Zhong LX  Sun RC 《Biomacromolecules》2011,12(9):3321-3329
Interest in xylan-rich hemicelluloses (XH) film is growing, and efforts have been made to prepare XH films with improved mechanical properties. This work described an effective approach to produce nanocomposite films with enhanced mechanical properties by incorporation of cellulose nanofibers (CNFs) into XH. Aqueous dispersions of XH (64-75 wt %), sorbitol (16-25 wt %), and CNF (0-20 wt %) were cast at a temperature of 23 °C and 50% relative humidity. The surface morphology of the films was revealed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The thermal properties and crystal structure of the films were evaluated by thermal analysis (TG) and X-ray diffraction (XRD). The surface of XH films with and without CNF was composed primarily of nanonodules, and CNFs were embedded in the XH matrix. Freeze-dried XH powder was amorphous, whereas the films with and without CNF showed a distinct peak at around 2θ = 18°, which suggested that XH molecules aggregated or reordered in the casting solution or during water evaporation. Furthermore, the nanocomposite films had improved thermal stability. XH film with 25 wt % plasticizer (sorbitol, based on dry XH weight) showed poor mechanical properties, whereas incorporation of CNF (5-20 wt %, based on the total dry mixture) into the film resulted in enhanced mechanical properties due to the high aspect ratio and mechanical strength of CNF and strong interactions between CNF and XH matrix. This effective method makes it possible to produce hemicellulose-based biomaterials of high quality.  相似文献   

10.
We previously proposed a biomimetic α-tricalcium phosphate (α-TCP) bone cement where gelatin controls the transformation of α-TCP into calcium deficient hydroxyapatite (CDHA), leading to improved mechanical properties. In this study we investigated the setting and hardening processes of biomimetic cements containing increasing amounts of CaHPO4·2H2O (DCPD) (0, 2.5, 5, 10, 15 wt.%), with the aim to optimize composition. Both initial and final setting times increased significantly when DCPD content accounts for 10 wt.%, whereas cements containing 15 wt.% DCPD did not set at all. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), thermogravimetry (TG) and scanning electron microscopy (SEM) investigations were performed on samples maintained in physiological solution for different times. DCPD dissolution starts soon after cement preparation, but the rate of transformation decreases on increasing DCPD initial content in the samples. The rate of α-TCP to CDHA conversion during hardening decreases on increasing DCPD initial content. Moreover, the presence of DCPD prevents gelatin release during hardening. The combined effects of gelatin and DCPD on the rate of CDHA formation and porosity lead to significantly improved mechanical properties, with the best composition displaying a compressive strength of 35 MPa and a Young modulus of 1600 MPa.  相似文献   

11.
High-quality and high-yield rod-like HgS dendrites with cubic structure was synthesized by a wet chemical route, without using any surfactant and organic solvents at 180 °C for 5 h, by using Hg(NO3)2·H2O and thioglycolic acid (TGA) as starting reagents. The obtained HgS with different morphologies and sized were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), and X-ray diffraction (XRD). The effects of reaction parameters, such as temperature, precursor concentration and reaction time on the morphology and particle size of products were investigated. Our experimental results showed that temperature reaction played key role in the final morphology of HgS. The morphology of HgS nanostructures could be changed from rod-like dendrites to nanoparticles by only decreased temperature reaction to 110 °C. In the present study the possible mechanism of HgS nanoparticles growth to dendrites in the aqueous solution was also discussed and the optical properties rod-like HgS dendrites were investigated by ultraviolet-visible (UV-Vis) spectroscopy.  相似文献   

12.
Highly stable silver nanoparticles (Ag NPs) in agar-agar (Ag/agar) as inorganic-organic hybrid were obtained as free-standing film by in situ reduction of silver nitrate by ethanol. The antimicrobial activity of Ag/agar film on Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Candida albicans (C. albicans) was evaluated in a nutrient broth and also in saline solution. In particular, films were repeatedly tested for antimicrobial activity after recycling. UV-vis absorption and TEM studies were carried out on films at different stages and morphological studies on microbes were carried out by SEM. Results showed spherical Ag NPs of size 15-25 nm, having sharp surface plasmon resonance (SPR) band. The antimicrobial activity of Ag/agar film was found to be in the order, C. albicans > E. coli > S. aureus, and antimicrobial activity against C. albicans was almost maintained even after the third cycle. Whereas, in case of E. coli and S. aureus there was a sharp decline in antimicrobial activity after the second cycle. Agglomeration of Ag NPs in Ag/agar film on exposure to microbes was observed by TEM studies. Cytotoxic experiments carried out on HeLa cells showed a threshold Ag NPs concentration of 60 μg/mL, much higher than the minimum inhibition concentration of Ag NPs (25.8 μg/mL) for E. coli. The mechanical strength of the film determined by nanoindentation technique showed almost retention of the strength even after repeated cycle.  相似文献   

13.
A novel amperometric biosensor for xanthine was developed based on covalent immobilization of crude xanthine oxidase (XOD) extracted from bovine milk onto a hybrid nanocomposite film via glutaraldehyde. Toward the preparation of the film, a stable colloids solution of core–shell Fe3O4/polyaniline nanoparticles (PANI/Fe3O4 NPs) was dispersed in solution containing chitosan (CHT) and H2PtCl6 and electrodeposited over the surface of a carbon paste electrode (CPE) in one step. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectrophotometry, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were used for characterization of the electrode surface. The developed biosensor (XOD/CHT/Pt NPs/PANI/Fe3O4/CPE) was employed for determination of xanthine based on amperometric detection of hydrogen peroxide (H2O2) reduction at –0.35 V (vs. Ag/AgCl). The biosensor exhibited a fast response time to xanthine within 8 s and a linear working concentration range from 0.2 to 36.0 μM (R2 = 0.997) with a detection limit of 0.1 μM (signal/noise [S/N] = 3). The sensitivity of the biosensor was 13.58 μA μM−1 cm−2. The apparent Michaelis–Menten (Km) value for xanthine was found to be 4.7 μM. The fabricated biosensor was successfully applied for measurement of fish and chicken meat freshness, which was in agreement with the standard method at the 95% confidence level.  相似文献   

14.
Fast pyrolysis of bagasse pretreated by sulfuric acid was conducted in a fixed bed reactor to prepare levoglucosenone (LGO), a very important anhydrosugar for organic synthesis. The liquid yield and LGO yield were studied at temperatures from 240 to 350 °C and sulfuric acid loadings from 0.92 to 7.10 wt.%. An optimal LGO yield of 7.58 wt.% was obtained at 270 °C with a sulfuric acid pretreatment concentration of 0.05 M (corresponding to 4.28 wt.% sulfuric acid loading). For comparison, microcrystalline cellulose pretreated by 0.05 M sulfuric acid solution was pyrolyzed at temperature from 270 °C to 320 °C, and bagasse loaded with 3-5 wt.% phosphoric acid was pyrolyzed at temperature from 270 °C to 350 °C. The highest yield of LGO from bagasse was 30% higher than that from microcrystalline cellulose, and treatment with sulfuric acid allowed a 21% higher yield than treatment with phosphoric acid.  相似文献   

15.
Supercritical water gasification (SCWG) of glucose solution (50-200 g/L), a simulated aqueous organic waste (composed of glucose, acetic acid and guaiacol) and a real aqueous organic waste stream generated from a sludge hydrothermal liquefaction process was performed in a bench-scale continuous down-flow tubular reactor with novel 0.1RuNi/γ-Al2O3 or 0.1RuNi/activated carbon (AC) catalyst (10 wt.% Ni with a Ru-to-Ni molar ratio of 0.1). 0.1RuNi/γ-Al2O3 was very effective in catalyzing SCWG of glucose solution and the simulated aqueous organic waste, attaining an H2 yield of 53.9 mol/kg dried feedstock at 750 °C, 24 MPa and a WHSV of 6 h−1. However, the γ-Al2O3-supported catalyst was not resistant to the attack of alkali and nitrogen compounds in the real waste during the SCWG of the real aqueous organic waste, whereas the AC-based catalyst exhibited higher stability. This research provides a promising approach to the treatment and valorization of aqueous organic waste via SCWG.  相似文献   

16.
Octacalcium phosphate (OCP) is a promising alternative to hydroxyapatite as biomaterial for hard tissue repair. In this study we successfully applied Matrix Assisted Pulsed Laser Evaporation (MAPLE) to deposit Mg and Sr doped OCP (MgOCP and SrOCP), as well as OCP, thin films on titanium substrates. OCP, Mg-substituted and Sr-substituted OCP were synthesized in aqueous medium, then were suspended in deionised water, frozen at liquid nitrogen temperature and used as targets for MAPLE experiments. The depositions were carried out using a KrF* excimer laser source (λ = 248 nm, τFWHM = 25 ns) in mild conditions of temperature and pressure. The results of X-ray diffraction, infrared spectroscopy, scanning electron microscopy and energy dispersive spectroscopy investigations revealed that the OCP thin films are deposited in the form of cauliflower-like aggregates and droplets, as well as crystal fragments, with a homogeneous distribution of magnesium and strontium on the surface of the coatings. Human osteoblast-like MG-63 cells were cultured on the different biomaterials up to 14 days. MgOCP and SrOCP coatings promote osteoblast proliferation and differentiation with respect to OCP. Under these experimental conditions, the production of procollagen-type I, transforming growth factor-β1, alkaline phosphatase and osteocalcin indicated that the level of differentiation of the cells grown on the different coatings increased in the order OCP < MgOCP < SrOCP.  相似文献   

17.
A novel non-toxic procedure is described for the grafting of chitosan-based microcapsules containing grapefruit seed oil extract onto cellulose. The cellulose was previously UV-irradiated and then functionalized from an aqueous emulsion of the chitosan with the essential oil. The novel materials are readily attained with durable fragrance and enhanced antimicrobial properties. The incorporation of chitosan as determined from the elemental analyses data was 16.08 ± 0.29 mg/g of sample. Scanning electron microscopy (SEM) and gas chromatography-mass spectroscopy (GC-MS) provided further evidence for the successful attachment of chitosan microcapsules containing the essential oil to the treated cellulose fibers. The materials thus produced displayed 100% inhibition of Escherichia coli and Staphylococcus epidermidis up to 48 h of incubation. Inhibition of bacteria by the essential oil was also evaluated at several concentrations.  相似文献   

18.
ZnS nanocrystals were prepared both in the form of mesoporous powder and thin films by one step thermal decomposition technique from a single-source procure (SSP) [Zn(SOCPh)2Lut2·H2O]. The final product was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), N2 adsorption-desorption isotherm, UV-Vis absorption spectroscopy and photoluminescence (PL) study. Structural analyses of the prepared ZnS revealed the formation of cubic crystallites with diameters around 5 and 10 nm for the thin films and powder materials, respectively. On the other hand, the powder form showed mesoporous nature (type IV isotherm) with an average pore diameter of 37.9 Å and BET specific surface area of 51.73 m2/g.  相似文献   

19.
Carboxymethyl cellulose was prepared using a continuous, reduced solvent, reactive extrusion process with a short reaction time. The effects of the amounts of NaOH (30 g, 40 g and 50 g), water:ethanol ratio (100%, 70%, 50%, 30% and 10% H2O) and their interactions on the physical, chemical and morphological properties of carboxymethyl cellulose were studied. Experiments were conducted using to a 5 × 3 blocked factorial design. X-ray diffraction analyses revealed higher degrees of crystallinity and fractions of cellulose-II crystalline structure when 100% H2O was used as compared to that for 70%, 50%, 30% and 10% H2O and a commercially available brand of carboxymethyl cellulose, AQUASORB A500. Statistical analysis revealed a significant interaction between the effects of NaOH and H2O on the degrees of substitutions. The degrees of substitutions decreased with increasing amounts of NaOH and tended to increase with increasing alcohol concentrations. Liquid uptake measurements revealed that the extent of saline uptake, measured at intervals of 1 min, 5 min and 10 min, by carboxymethyl cellulose prepared with 100% H2O, especially when 40 g and 50 g NaOH was used, was higher than that for 70%, 50%, 30% and 10% H2O and AQUASORB A500. This may have been because of the higher crystallinity in carboxymethyl cellulose prepared with 100% H2O. Carboxymethyl cellulose prepared with 70% H2O and 30 g and 50 g NaOH had the highest saline absorption, using the soak method, before and after centrifugation, respectively. Scanning electron microscopy for carboxymethyl cellulose prepared with 100% and 10% H2O, through images at 120X magnification, revealed fibers 100 μ to >800 μ in length and 0.8-3.3 μ in breadth. Some non fibrous particles, 0.8-6.7 μ in dimensions, also were observed for 100% H2O. Images at 900× magnification revealed partially damaged fiber surfaces.  相似文献   

20.
The study presents the preparation of some composite materials with magnetic properties by two different encapsulation methods of magnetite (Fe3O4) in a polymer matrix based on carboxymethyl starch-g-polylactic acid (CMS-g-PLA). The copolymer matrix used to obtain the magnetic nanocomposites was synthesized by grafting reaction of carboxymethyl starch (CMS) with d,l-lactic acid (DLLA), in the presence of Sn octanoate [Sn(Oct)2] as catalyst. Magnetite was obtained by co-precipitation from aqueous salt solutions FeCl2/FeCl3 (molar ratio 1/2). The magnetic composites were prepared by precipitation method in acetone (non-solvent) of the DMSO solutions of magnetite and copolymer, and synthesis in situ of the nanocomposites. In the first case, the particle size measured by DLS-technique was 168 nm, and the magnetization was 46.82 emu/g, while after in situ synthesis, the composite materials showed smaller size (141 nm), but the magnetization was reduced (3.04 emu/g). The higher magnetization in the first case is due to the great degree of encapsulation of the magnetite, which was about 43.4 wt.%, compared to 4.37 wt.% for the in situ synthesis (determined by thermogravimetry). The CMS-g-PLA copolymer, magnetite, and the nanocomposites were characterized by infrared spectroscopy (FTIR), near infrared chemical imagistic (NIR-CI), dynamic light scattering (DLS) technique, X-ray diffraction (WAXD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and thermal analyses. Since the polymer matrix and magnetite are biodegradable and biocompatible, the magnetic nanocomposites can be used for conjugation of some drugs. The polymer matrix CMS-g-PLA acts as a shell, and vehicle for the active component, whereas magnetite is the component which makes targeting possible by external magnetic field manipulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号