首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dielectric response of native wheat starch-water slurries containing 5-60% starch (w/w) was measured in the frequency range of 0.2-20 GHz after heating the slurries to 7 different temperatures between 25 and 90 °C for 30 min. Three relaxations, with relaxation time range of 4-9 ps, 20-25 ps and 230-620 ps at 25 °C, were identified from the dielectric spectra of starch slurries. The fastest relaxation process (4-9 ps) was attributed to bulk water while the two slower relaxations were attributed to the confined water molecules present in the starch-water system. The amount of water exhibiting the slowest relaxation (230-620 ps) was calculated to be 0.08-0.16 g water/g starch, which was close to the monolayer water associated with wheat starch. Mobility of bulk water was significantly reduced (P < 0.001) upon gelatinization at low starch concentration (10% starch), but remained unaffected at higher starch concentrations. The mobility of two slower relaxing water species was not significantly influenced (P > 0.19) by gelatinization at all starch concentrations.  相似文献   

2.
Highly substituted sago starch phosphate was synthesized using POCl3 as cross-linking reagent. Titrimetric and Fourier transform infra red (FT-IR) spectral analysis were used to characterize the substitution. Studying the different factors affecting the reaction parameters showed that the optimal conditions for starch phosphorylation were: 4 h reaction time and reagent concentration 1.5% (w/w). The physicochemical properties of cross-linked sago starch (CLSS) were done using Scanning electron micrograph (SEM), X-ray powder diffractometer (XRD and Thermogravimetric analysis (TGA). The results revealed that crystalline nature of native sago starch was transformed after cross-linking. TGA report exhibited higher thermal stability, which makes it suitable for various industrial applications. Swelling behavior showed high swelling at low temperature (30 and 60 °C) as compared to high temperature (90 °C).  相似文献   

3.
Karki B  Maurer D  Jung S 《Bioresource technology》2011,102(11):6522-6528
The effectiveness of several pretreatments [high-power ultrasound, sulfuric acid (H2SO4), sodium hydroxide (NaOH), and ammonium hydroxide (NH3OH)] to enhance glucose production from insoluble fractions recovered from enzyme-assisted aqueous extraction processing of extruded full-fat soybean flakes (FFSF) was investigated. Sonication of the insoluble fraction at 144 μmpp (peak-to-peak) for 30 and 60 s did not improve the saccharification yield. The solid fractions recovered after pretreatment with H2SO4 [1% (w/w), 90 °C, 1.5 h], NaOH [15% (w/w), 65 °C, 17 h], and NH3OH [15% (w/w), 65 °C, 17 h] showed significant lignin degradation, i.e., 81.9%, 71.2%, and 75.4%, respectively, when compared to the control (7.4%). NH3OH pretreatment resulted in the highest saccharification yield (63%) after 48 h of enzymatic saccharification. A treatment combining the extraction and saccharification steps and applied directly to the extruded FFSF, where oil extraction yield and saccharification yield reached 98% and 43%, respectively, was identified.  相似文献   

4.
The goals were to elucidate the effects of ventilation rate (VR) coupled with exposure to constant 20 °C or to diurnal temperature cycling on young turkeys' performance and sensible heat loss (SHL). In three experiments male British United Turkeys (BUT), from 3 to 6 weeks of age, were exposed to constant 20 °C, or to 35/25 °C or 30/20 °C diurnal temperature cycling, all at 50% RH and with VR (expressed as air velocity (AV)) ranging from 0.8 to 3.0 m s−1. The 2nd and 3rd of these experiments included a positive control at constant 30 °C and VR of 1.5 m s−1. Weight gain, feed intake, and feed efficiency were measured or calculated, as appropriate; SHL was calculated from measured surface temperature, and plasma concentrations of triiodothyronine (T3) was determined in the 1st experiment. Changes of VR at constant 20 °C did not affect performance, but total SHL increased significantly with increasing VR. Under the 35/25 °C regime a significantly higher BW was recorded, with a similar pattern of feed efficiency, when VR during the hot part of the cycle was 1.5 or 2.0 m s−1 than when it was 0.8 m s−1. In the 3rd experiment, BW in the 35/20 °C treatment was significantly lower than that of the controls. In all experiments, turkeys maintained body temperature (Tb) within the normothermic range, and SHL varied with VR. It can be concluded that although diurnal temperature cycling reflects the natural situation, exposing young turkeys to constant 30 °C combined with optimal ventilation might yield the best performance results.  相似文献   

5.
Waxy maize starch in an aqueous sulfuric acid solution (3.16 M, 14.7% solids) was hydrolyzed for 2–6 days, either isothermally at 40 °C or 4 °C, or at cycled temperatures of 4 and 40 °C (1 day each). The starch hydrolyzates were recovered as precipitates after centrifuging the dispersion (10,000 rpm, 10 min). The yield of starch hydrolyzates depended on the hydrolysis temperature and time, which varied from 6.8% to 78%. The starch hydrolyzed at 40 °C or 4/40 °C exhibited increased crystallinity determined by X-ray diffraction analysis, but melted in broader temperature range (from 60 °C to 110 °C). However, the starch hydrolyzed at 4 °C displayed the crystallinity and melting endotherm similar to those of native starch. The starch hydrolyzates recovered by centrifugation were re-dispersed in water (15% solids), and the dispersion was treated by an ultrasonic treatment (60% amplitude, 3 min). The ultrasonication effectively fragmented the starch hydrolyzates to nanoparticles. The hydrolyzates obtained after 6 days of hydrolysis were more resistant to the ultrasonication than those after 2 or 4 days, regardless of hydrolysis temperatures. The starch nanoparticles could be prepared with high yield (78%) and crystallinity by 4 °C hydrolysis for 6 days followed by ultrasonication. Scanning electron microscopy revealed that the starch nanoparticles had globular shapes with diameters ranging from 50 to 90 nm.  相似文献   

6.
Repeatedly frozen and thawed rice starch gel affects quality. This study investigated how incorporating waxy rice flour (WF) and cassava starch (CS) in rice starch gel affects factors used to measure quality. When rice starch gels containing 0-2% WF and CS were subjected to 5 freeze-thaw cycles, both WF and CS reduced the syneresis in first few cycles. However CS was more effective in reducing syneresis than WF. The different composite arrangement of rice starch with WF or CS caused different mechanisms associated with the rice starch gel retardation of retrogradation, reduced the spongy structure and lowered syneresis. Both swollen granules of rice starch and CS caused an increase in the hardness of the unfrozen and freeze-thawed starch gel while highly swollen WF granules caused softer gels. These results suggested that WF and CS were effective in preserving quality in frozen rice starch based products.  相似文献   

7.
Pasting viscosity and in vitro digestibility of oven-dried powders of waxy and normal corn starch gels (40% solids) retrograded under an isothermal (4 °C) or temperature cycled (4/30 °C) storage were investigated. Temperature cycling induced higher onset temperature for melting of amylopectin crystals than isothermal storage under a differential scanning calorimeter whereas little difference in crystalline type was observed under X-ray diffraction analysis. Temperature cycling caused higher pasting temperature and viscosity for the retrograded starches than isothermal storage. The retrograded waxy corn starch powders exhibited pasting behaviors similar to that of native waxy corn starch. However, the retrograded normal corn starch powders showed very much different pasting patterns with lower pasting viscosity but higher pasting temperature than native starch counterpart. The retrogradation increased slowly digestible starch content without changing resistant starch content, more effectively by the temperature cycling than the isothermal storage.  相似文献   

8.
The effects of electrolysis at room temperature on formation of sweet potato retrograded starch were studied by photographic method in the paper. The optimal parameters of electrolytic preparation of sweet potato retrograded starch were determined. The ratio between sweet potato starch and water was 10 g/100 mL with addition of NaCl 1.0 g/100 mL, pH value of the solution was 6.0 and the solution was electrolyzed for 30 min at 90 V at room temperature, then it was stored at 4 °C for 24 h after being autoclaved for 30 min at 120 °C, the retrogradation rate of sweet potato starch at this condition was 33.1%, which is 138% higher than that of control group. Four possible reasons are put forward to explain the results.  相似文献   

9.
Low-liquid pretreatment of corn stover with aqueous ammonia   总被引:1,自引:0,他引:1  
Li X  Kim TH 《Bioresource technology》2011,102(7):4779-4786
A low-liquid pretreatment method of corn stover using aqueous ammonia was studied to reduce the severity and liquid throughput associated with the pretreatment step for ethanol production. Corn stover was treated at 0.5-50.0 wt.% of ammonia loading, 1:0.2-5.0 (w/w) of solid-to-liquid ratio, 30 °C for 4-12 weeks. The effects of these conditions on the composition and enzyme digestibility of pretreated corn stover were investigated. Pretreatment of corn stover at 30 °C for four weeks using 50 wt.% of ammonia loading and 1:5 solid-to-liquid ratio resulted in 55% delignification and 86.5% glucan digestibility with 15 FPU cellulase + 30 CBU β-glucosidase/g-glucan.Simultaneous saccharification and fermentation of corn stover treated at 30 °C for four weeks using 50 wt.% ammonia loading and 1:2 solid-to-liquid ratio gave an ethanol yield of 73% of the theoretical maximum based on total carbohydrates (glucan + xylan) present in the untreated material.  相似文献   

10.
Cold enzymatic hydrolysis conditions for bioethanol production were optimized using multi-objective optimization. Response surface methodology was used to optimize the effects of α-amylase, glucoamylase, liquefaction temperature and liquefaction time on S. cerevisiae biomass, ethanol concentration and starch utilization ratio. The optimum hydrolysis conditions were: 224 IU/gstarch α-amylase, 694 IU/gstarch glucoamylase, 77 °C and 104 min for biomass; 264 IU/gstarch α-amylase, 392 IU/gstarch glucoamylase, 60 °C and 85 min for ethanol concentration; 214 IU/gstarch α-amylase, 398 IU/gstarch glucoamylase, 79 °C and 117 min for starch utilization ratio. The hydrolysis conditions were subsequently evaluated by multi-objectives optimization utilizing the weighted coefficient methods. The Pareto solutions for biomass (3.655-4.380 × 108 cells/ml), ethanol concentration (15.96-18.25 wt.%) and starch utilization ratio (92.50-94.64%) were obtained. The optimized conditions were shown to be feasible and reliable through verification tests. This kind of multi-objective optimization is of potential importance in industrial bioethanol production.  相似文献   

11.
The modified starch gels prepared from partial enzyme treatments (1, 3, and 6 U/g starch; 2-h incubation) of the corn and rice starch pastes using Thermus aquaticus 4-α-glucanotransferase (TAαGT) were investigated for their molecular characteristics, microstructures, and physicochemical properties. Unlike the native and partially modified normal starches, the native and partially modified waxy starches could not form gels strong enough for textural analysis after 24 h for gel setting. Features of the partially modified normal starches were the specific apparent amylose contents and maximum iodine absorption wavelength (λmax, ∼567 nm), as well as the tri-modal molecular weight profiles and flatter side-chain distributions. Also, the partially modified normal starch gels possessed fractured surfaces with discontinuous crystalline fibrous assembly that differed from the native starch gels’ porous continuous network, which resulted in more brittle, rigid, and resilient gels compared with the native gels.  相似文献   

12.

Background

The gastro-intestinal disorders, induced by the NSAIDs including indomethacin (IND) remain unresolved medical problems. Herein, we disclose allylpyrocatechol (APC) as a potential agent against IND-gastropathy and rationalize its action mechanistically.

Methods

Mice were pre-treated with APC for 1 h followed by IND (18 mg kg− 1) administration, and the ulcer-prevention capacity of APC was evaluated on the 3rd day by histology. Its effect on the inflammatory (MPO, cytokines, adhesion molecules), ulcer-healing (COX, prostaglandins, growth factors and their receptors) and signaling parameters (NF-κB and MAPKs) were assessed by immunoblots/mRNA, and ELISA at the time points of their maximal changes due to IND administration.

Results

IND induced oxidative stress, triggering mucosal TNF-α that activated NF-κB and JNK MAPK signaling in mice. These increased the pro-inflammatory biochemical parameters, but reduced the healing factors. APC reversed all the adverse effects to prevent gastric ulceration. APC (5 mg kg− 1), trolox (50 mg kg− 1) and NAC (250 mg kg− 1) showed similar protection that was better than that by misoprostol (5 μg kg− 1) and omeprazole (3 mg kg− 1).

Conclusions

The anti-ulcer effect of APC can be primarily attributed to its antioxidant action that helped in controlling various inflammatory parameters and augmenting angiogenesis.

General significance

Given that APC is an effective, non-toxic antioxidant with appreciable natural abundance, further evaluation of its pharmacokinetics and dynamics would help in promoting it as a new anti-inflammatory agent.  相似文献   

13.
Zheng X  Cheng W  Wang X  Lei C 《Cryobiology》2011,63(3):164-169
Insects can increase their resistance to cold stress by prior exposure to non-lethal cold temperatures. Here, we investigated the supercooling capacity and survival of eggs, 3rd and 5th instar larvae, and pupae of Spodoptera exigua (Lepidoptera: Noctuidae) during CA, and responses to various pre-treatment protocols, including constant temperatures, thermoperiods, and RCH, RHH, RCH + RHH and RHH + RCH combined with thermoperiods. Only acclimated eggs demonstrated a significant decrease in SCP, from −20.7 ± 0.3 to −22.9 ± 0.3 °C, among all experimental groups compared to non-acclimated stages. Survival increased by 17.5% for eggs, 40.0% and 13.3% for 3rd and 5th instar larvae, and by 20.0% for pupae after CA. Compared to controls, survival of eggs under the conditions of thermoperiod (5:15 °C), thermoperiod (5:15 °C) + RHH, and thermoperiod (5:15, 10:20, and 15:25 °C) + RCH significantly increased. In addition, survival of 3rd and 5th instar larvae and pupae increased under the conditions of thermoperiod (5:15 °C) and thermoperiod (5:15 °C) + RCH, possibly due to the induction of heat shock proteins or cryoprotectants. However, the pre-treatments of thermoperiod + RCH + RHH and thermoperiod + RHH + RCH did not significantly enhance survival of any developmental stage. These adaptive responses may allow S. exigua to enhance supercooling capacity and survival in response to seasonal or unexpected diurnal decreases in environmental temperatures.  相似文献   

14.
We explore how the presence of urea can influence the kinetics of amylolysis, with a long-term objective of developing practical and energy efficient bioconversion protocols. In this study, triticale and corn starches were hydrolyzed by a granular starch hydrolyzing enzyme with or without addition of urea and a pre-heating treatment at subgelatinization temperature. Differential scanning calorimetry showed that the gelatinization parameters of triticale and corn starches were negatively correlated with the urea concentration in the starch suspension. Addition of urea did not significantly affect starch amylolysis by the granular starch hydrolyzing enzyme at 30 °C. However when pre-heating at a higher yet sub-gelatinization temperature (50 °C for triticale and 61 °C for corn, 5 °C below the onset of starch gelatinization) for 30 min, the presence of urea greatly facilitated the amylolysis of both tricticale and corn starches. Scanning electron microcopy revealed starch granule mophological changes to a porous structure in residual starch granules/fragments rich in resistant starch. This means that the amylolysis pattern in the presence of urea was fundamentally changed, and urea disrupts starch hydrogen bonds effectively with heating treatment at a sub-gelatinization temperature. This treatment combination increased both starch hydrolysis rate and extent. Since extra energy was not necessary to gelatinize starch, this method may benefit starch and bio-enthanol industries to reduce the costs of starch hydrolysis.  相似文献   

15.
The coccolithophorid Emiliania huxleyi is a bloom-forming marine phytoplankton thought to play a key role as a biological pump that transfers carbon from the surface to the bottom of the ocean, thus contributing to the global carbon cycle. This alga is also known to accumulate a variety of polyunsaturated fatty acids. At 25 °C, E. huxleyi produces mainly 14:0, 18:4n − 3, 18:5n − 3 and 22:6n − 3. When the cells were transferred from 25 °C to 15 °C, the amount of unsaturated fatty acids, i.e. 18:1n − 9, 18:3n − 3 and 18:5n − 3, gradually increased. Among the predicted desaturase genes whose expression levels were up-regulated at low temperature, we identified a gene encoding novel ?15 fatty acid desaturase, EhDES15, involved in the production of n − 3 polyunsaturated fatty acids in E. huxleyi. This desaturase contains a putative transit sequence for localization in chloroplasts and a ?6 desaturase-like domain, but it does not contain a cytochrome b5 domain nor typical His-boxes found in ?15 desaturases. Heterologous expression of EhDES15 cDNA in cyanobacterium Synechocystis sp. PCC 6803 cells increased the level of n − 3 fatty acid species, which are produced at low levels in wild-type cells grown at 30 °C. The orthologous genes are only conserved in the genomes of prasinophytes and cryptophytes. The His-boxes conserved in orthologues varied from that of the canonical ?15 desaturases. These results suggested the gene encodes a novel ?15 desaturase responsible for the synthesis of 18:3n − 3 from 18:2n − 6 in E. huxleyi.  相似文献   

16.
The effect of dextran from Leuconostoc mesenteroides (DEX500), added to milk prior to acidification with glucono-δ-lactone (GDL) or Streptococcus thermophilus DSM20259, was studied with respect to polysaccharide concentration. The incorporation of 5–30 g/kg DEX500 significantly affected gelation behavior. Increasing DEX500 concentrations resulted in a linear increase of gel stiffness (GDL gels: R2 = 0.96; microbial acidification: R2 = 0.94; P < 0.05) and 30 g/kg DEX500 resulted in a 2-fold higher stiffness compared to gels without polysaccharide. The respective stirred gels depicted a significant reduction in syneresis, which decreased from 30.4% (0 g/kg DEX500) to 22.0% (30 g/kg DEX500) for chemically acidified gels after 1 d of storage. Physical characteristics of DEX500 in aqueous solution were helpful to explain its behavior in the complex system milk.  相似文献   

17.
Cohesive gels have been obtained by de-esterification of 1.0 wt % high-methoxy citrus pectin (degree of esterification ≈ 68%) in the presence of Ca2+ cations, using a commercial preparation (NovoShape) of fungal methyl esterase cloned from Aspergillus aculeatus. A convenient rate of network formation (gelation within ∼30 min) was achieved at an enzyme concentration of 0.2 PEU/g pectin. At a Ca2+-concentration of 40 mM and incubation temperature of 20 °C, severe syneresis (>7% of sample mass) was observed, but release of fluid decreased with decreasing concentration of Ca2+ and increasing temperature of incubation, becoming undetectable for 10 mM Ca2+ at 30 °C. Under these conditions, progressive development of solid-like character (storage modulus, G′) was observed during 160 min of enzymic de-esterification, and the mechanical spectrum recorded at the end of the incubation period had the form typical of a biopolymer gel. On subsequent heating to 70 °C, dissociation of the gel network (sigmoidal reduction in G′ and G″) was observed. At or above the midpoint temperature of this melting process (∼50 °C), there was no indication of gel formation on enzymic de-esterification (at 50 or 60 °C). At lower temperatures (20, 30 and 40 °C), the rate of gelation (assessed visually) showed no systematic increase as the incubation temperature was increased towards the temperature-optimum of the enzyme (∼50 °C). This unexpected behaviour is attributed to competition between faster de-esterification and slower formation of Ca2+-induced ‘egg-box’ junctions.  相似文献   

18.
Lipase-coupling esterification of starch with octenyl succinic anhydride   总被引:1,自引:0,他引:1  
Enzymatic modification of starch was conducted by lipase-coupling esterification with octenyl succinic anhydride (OSA). Parameters affecting the esterification were systematically studied. Products were characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction, differential scanning calorimetry (DSC) and viscosity analysis (VA). Optimum condition for lipase-coupling OSA starch preparation was as follows: starch pretreatment at 65 °C for 15 min, starch concentration 35%, amount of lipase and OSA, 0.6% and 3%, reaction pH, temperature and time, 8.0, 40 °C and 30 min respectively, which resulted in 0.0195 of the degree of substitution and 84.05 ± 2.07% of the reaction efficiency. FT-IR spectroscopy confirmed the formation of OSA starch. SEM and X-ray diffraction showed apparent surface change, but no crystalline change. DSC and VA results indicated the synthesized OSA starch gelatinized rapidly with high viscosity. Attractively, reaction time drastically reduced to 30 min, showing vast potential for scale production of OSA starch.  相似文献   

19.
This study demonstrates for the first time that the enzymatic hydrolysis of cellulose is drastically enhanced following ultrasonic pretreatment of lignocellulosic material in ionic liquids (ILs) when compared to conventional thermal pretreatment. Five types of ILs, 1-buthyl-3-methylimidazolium chloride (BmimCl), 1-allyl-3-methylimidazolium chloride (AmimCl), 1-ethyl-3-methylimidazolium chloride (EmimCl), 1-ethyl-3-methylimidazolium diethyl phosphate (EmimDep), and 1-ethyl-3-methylimidazolium acetate (EmimOAc) were tested. Cellulose saccharification ratio was about 20% for kenaf powders pretreated in BmimCl, AmimCl, EmimCl, and EmimDep by conventional heating at 110 °C for 120 min. Conversely, 60-95% of cellulose was hydrolyzed to glucose, subsequent to ultrasonic pretreatment in the same ILs for 120 min at 25 °C. The cellulose saccharification ratio of kenaf powder in EmimOAc was 86% after only 15 min of the ultrasonic pretreatment at 25 °C, compared to only 47% in that case of thermal pretreatment in the IL.  相似文献   

20.
In this study the pulp from Solanum lycocarpum fruits was used as raw material for extraction of starch, resulting in a yield of 51%. The starch granules were heterogeneous in size, presenting a conical appearance, very similar to a high-amylose cassava starch. The elemental analysis (CHNS) revealed 64.33% carbon, 7.16% hydrogen and 0.80% nitrogen. FT-IR spectroscopy showed characteristic peaks of polysaccharides and NMR analysis confirmed the presence of the α-anomer of d-glucose. The S. lycocarpum starch was characterized by high value of intrinsic viscosity (3515 mPa s) and estimated molecular weight around 645.69 kDa. Furthermore, this starch was classified as a B-type and high amylose content starch, presenting 34.66% of amylose and 38% crystallinity. Endothermic transition temperatures (To = 61.25 °C, Tp = 64.5 °C, Tc = 67.5 °C), gelatinization temperature (ΔT = 6.3 °C) ranges and enthalpy changes (ΔH = 13.21 J g−1) were accessed by DCS analysis. These results make the S. lycocarpum fruit a very promising source of starch for biotechnological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号