首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
RNA interference (RNAi) has previously been shown to be effective in western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte) larvae via oral delivery of synthetic double-stranded RNA (dsRNA) in an artificial diet bioassay, as well as by ingestion of transgenic corn plant tissues engineered to express dsRNA. Although the RNAi machinery components appear to be conserved in Coleopteran insects, the key steps in this process have not been reported for WCR. Here we characterized the sequence of events that result in mortality after ingestion of a dsRNA designed against WCR larvae. We selected the Snf7 ortholog (DvSnf7) as the target mRNA, which encodes an essential protein involved in intracellular trafficking. Our results showed that dsRNAs greater than or equal to approximately 60 base-pairs (bp) are required for biological activity in artificial diet bioassays. Additionally, 240 bp dsRNAs containing a single 21 bp match to the target sequence were also efficacious, whereas 21 bp short interfering (si) RNAs matching the target sequence were not. This result was further investigated in WCR midgut tissues: uptake of 240 bp dsRNA was evident in WCR midgut cells while a 21 bp siRNA was not, supporting the size-activity relationship established in diet bioassays. DvSnf7 suppression was observed in a time-dependent manner with suppression at the mRNA level preceding suppression at the protein level when a 240 bp dsRNA was fed to WCR larvae. DvSnf7 suppression was shown to spread to tissues beyond the midgut within 24 h after dsRNA ingestion. These events (dsRNA uptake, target mRNA and protein suppression, systemic spreading, growth inhibition and eventual mortality) comprise the overall mechanism of action by which DvSnf7 dsRNA affects WCR via oral delivery and provides insights as to how targeted dsRNAs in general are active against insects.  相似文献   

3.
4.
5.
Yang D  Lu H  Erickson JW 《Current biology : CB》2000,10(19):1191-1200
BACKGROUND: RNA interference (RNAi) is a phenomenon in which introduced double-stranded RNAs (dsRNAs) silence gene expression through specific degradation of their cognate mRNAs. Recent analyses in vitro suggest that dsRNAs may be copied, or converted, into 21-23 nucleotide (nt) guide RNAs that direct the nucleases responsible for RNAi to their homologous mRNA targets. Such small RNAs are also associated with gene silencing in plants. RESULTS: We developed a quantitative single-embryo assay to examine the mechanism of RNAi in vivo. We found that dsRNA rapidly induced mRNA degradation. A fraction of dsRNAs were converted into 21-23 nt RNAs, and their time of appearance and persistence correlated precisely with inhibition of expression. The strength of RNAi increased disproportionately with increasing dsRNA length, but an 80bp dsRNA was capable of effective gene silencing. RNAi was saturated at low dsRNA concentration and inhibited by excess unrelated dsRNA. The antisense strand of the dsRNA determined target specificity, and excess complementary sense or antisense single-stranded RNAs (ssRNAs) competed with the RNAi reaction. CONCLUSIONS: Processed dsRNAs can act directly to mediate RNAi, with the antisense strand determining mRNA target specificity. The involvement of 21-23 nt RNAs is supported by the kinetics of the processing reaction and the observed size dependence. RNAi depends on a limiting factor, possibly the nuclease that generates the 21-23 mer species. The active moiety appears to contain both sense and antisense RNA strands.  相似文献   

6.
To determine whether Penaeus chinensis can be protected against white spot syndrome virus (WSSV) infection by intramuscular injection with long double-stranded RNAs (dsRNAs) as in other shrimp species and whether the protection degree by WSSV-specific dsRNAs is correlated with the roles of viral genes, P. chinensis juveniles were intramuscularly injected with long dsRNAs corresponding to VP28, VP281, protein kinase genes of WSSV, and an unrelated long dsRNA corresponding to a green fluorescence protein (GFP) gene. All shrimp injected with long dsRNAs including GFP dsRNA showed higher survival rates against WSSV infection than shrimp injected with PBS alone. Furthermore, shrimp injected with dsRNAs corresponding to VP28 and protein kinase showed higher survival rates than those injected with dsRNAs corresponding to VP281 and GFP. These results indicate that the introduction of long dsRNAs corresponding to viral proteins, which are essential for WSSV infection, is quite effective in blocking WSSV infection in P. chinensis, and suggest that dsRNA-mediated protection is a common feature across shrimp species.  相似文献   

7.
RNA interference (RNAi) is a promising strategy to combat shrimp viral pathogens at lab-scale experiments. Development of effective orally delivered agents for double-stranded (ds)RNA is necessary for RNAi application at farm level. Since continuous shrimp cell lines have not been established, we are developing a dsRNA-delivery system in Spodoptera frugiperda (Sf9) cells for studying in vitro RNAi-mediated gene silencing of shrimp virus. Sf9 cells challenged with yellow head virus (YHV) were used for validating nanoparticles as effective dsRNA carriers. Inexpensive and biodegradable polymers, chitosan and its quarternized derivative (QCH4), were formulated with long dsRNA (>100 bp) targeting YHV. Their morphology and physicochemical properties were examined. When treated with chitosan- and QCH4-dsRNA complexes, at least 50% reduction in YHV infection in Sf9 cells relative to the untreated control was evident at 24h post infection with low cytoxicity. Inhibitory effects of chitosan- and QCH4-dsRNA complexes were comparable to that of dsRNA formulated with Cellfectin(?), a commercial lipid-based transfection reagent. The natural and quaternized chitosan prepared in this study can be used for shrimp virus-specific dsRNA delivery in insect cultures, and have potential for future development of dsRNA carriers in shrimp feed.  相似文献   

8.
Silencing of yellow head virus replication in penaeid shrimp cells by dsRNA   总被引:8,自引:0,他引:8  
RNA interference (RNAi) has been shown to inhibit viral replication in some animals and plants. Whether the RNAi is functional in shrimp remains to be demonstrated. In vitro transcribed dsRNAs of YHV helicase, polymerase, protease, gp116, and gp64 were transfected into shrimp primary cell culture and found to inhibit YHV replication. dsRNA targeted to nonstructural genes (protease, polymerase, and helicase) effectively inhibited YHV replication. Those targeted structural genes (gp116 and gp64) were the least effective. These findings are the first evidence that RNAi-mediated gene silencing is operative in shrimp cells. This could be a powerful tool for studying gene function and to develop effective control of viral infection in shrimp.  相似文献   

9.
Wang Y  Zhang H  Li H  Miao X 《PloS one》2011,6(4):e18644
The key of RNAi approach success for potential insect pest control is mainly dependent on careful target selection and a convenient delivery system. We adopted second-generation sequencing technology to screen RNAi targets. Illumina's RNA-seq and digital gene expression tag profile (DGE-tag) technologies were used to screen optimal RNAi targets from Ostrinia furnalalis. Total 14690 stage specific genes were obtained which can be considered as potential targets, and 47 were confirmed by qRT-PCR. Ten larval stage specific expression genes were selected for RNAi test. When 50 ng/μl dsRNAs of the genes DS10 and DS28 were directly sprayed on the newly hatched larvae which placed on the filter paper, the larval mortalities were around 40~50%, while the dsRNAs of ten genes were sprayed on the larvae along with artificial diet, the mortalities reached 73% to 100% at 5 d after treatment. The qRT-PCR analysis verified the correlation between larval mortality and the down-regulation of the target gene expression. Topically applied fluorescent dsRNA confirmed that dsRNA did penetrate the body wall and circulate in the body cavity. It seems likely that the combination of DGE-tag with RNA-seq is a rapid, high-throughput, cost less and an easy way to select the candidate target genes for RNAi. More importantly, it demonstrated that dsRNAs are able to penetrate the integument and cause larval developmental stunt and/or death in a lepidopteron insect. This finding largely broadens the target selection for RNAi from just gut-specific genes to the targets in whole insects and may lead to new strategies for designing RNAi-based technology against insect damage.  相似文献   

10.
Double-stranded RNA (dsRNA) is a common by-product of viral infections and a potent inducer of innate antiviral immune responses in vertebrates. In the marine shrimp Litopenaeus vannamei, innate antiviral immunity is also induced by dsRNA in a sequence-independent manner. In this study, the hypothesis that dsRNA can evoke not only innate antiviral immunity but also a sequence-specific antiviral response in shrimp was tested. It was found that viral sequence-specific dsRNA affords potent antiviral immunity in vivo, implying the involvement of RNA interference (RNAi)-like mechanisms in the antiviral response of the shrimp. Consistent with the activation of RNAi by virus-specific dsRNA, endogenous shrimp genes could be silenced in a systemic fashion by the administration of cognate long dsRNA. While innate antiviral immunity, sequence-dependent antiviral protection, and gene silencing could all be induced by injection of long dsRNA molecules, injection of short interfering RNAs failed to induce similar responses, suggesting a size requirement for extracellular dsRNA to engage antiviral mechanisms and gene silencing. We propose a model of antiviral immunity in shrimp by which viral dsRNA engages not only innate immune pathways but also an RNAi-like mechanism to induce potent antiviral responses in vivo.  相似文献   

11.
12.
Abstract Numerous studies indicate that target gene silencing by RNA interference (RNAi) could lead to insect death. This phenomenon has been considered as a potential strategy for insect pest control, and it is termed RNAi‐mediated crop protection. However, there are many limitations using RNAi‐based technology for pest control, with the effectiveness target gene selection and reliable double‐strand RNA (dsRNA) delivery being two of the major challenges. With respect to target gene selection, at present, the use of homologous genes and genome‐scale high‐throughput screening are the main strategies adopted by researchers. Once the target gene is identified, dsRNA can be delivered by micro‐injection or by feeding as a dietary component. However, micro‐injection, which is the most common method, can only be used in laboratory experiments. Expression of dsRNAs directed against insect genes in transgenic plants and spraying dsRNA reagents have been shown to induce RNAi effects on target insects. Hence, RNAi‐mediated crop protection has been considered as a potential new‐generation technology for pest control, or as a complementary method of existing pest control strategies; however, further development to improve the efficacy of protection and range of species affected is necessary. In this review, we have summarized current research on RNAi‐based technology for pest insect management. Current progress has proven that RNAi technology has the potential to be a tool for designing a new generation of insect control measures. To accelerate its practical application in crop protection, further study on dsRNA uptake mechanisms based on the knowledge of insect physiology and biochemistry is needed.  相似文献   

13.
Western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte) is highly sensitive to orally delivered double‐stranded RNA (dsRNA). RNAi in WCR is systemic and spreads throughout the insect body. This raises the question whether transitive RNAi is a mechanism that functions in WCR to amplify the RNAi response via production of secondary siRNA. Secondary siRNA production is achieved through RNA‐dependent RNA polymerase (RdRP) activity in other eukaryotic organisms, but RdRP has not been identified in WCR and any other insects. This study visualized the spread of the RNAi‐mediated knockdown of Dv v‐ATPase C mRNA throughout the WCR gut and other tissues using high‐sensitivity branched DNA in situ hybridization. Furthermore, we did not detect either secondary siRNA production or transitive RNAi in WCR through siRNA sequence profile analysis. Nucleotide mismatched sequences introduced into either the sense or antisense strand of v‐ATPase C dsRNAs were maintained in siRNAs derived from WCR fed with the mismatched dsRNAs in a strand specific manner. The distribution of all siRNAs was restricted to within the original target sequence regions, which may indicate the lack of new dsRNA synthesis leading to production of secondary siRNA. Thus, the systemic spread of RNAi in WCR may be derived from the original dsRNA molecules taken up from the gut lumen. These results indicate that the initial dsRNA dose is important for a lethal systemic RNAi response in WCR and have implications in developing effective dsRNA traits to control WCR and in resistance management to prolong the durability of RNAi trait technology.  相似文献   

14.
In eukaryotes, double-stranded RNAs (dsRNAs) or short, interfering dsRNAs (siRNAs) can reduce the accumulation of a sequence-related mRNA, often resulting in a loss-of-function phenotype-a process termed RNA interference (RNAi). Unfortunately, some mRNAs are resistant to the effects of dsRNA. Experiments designed to unravel RNAi mechanisms in Caenorhabditis elegans have led to the identification of two worm proteins, RRF-31,2 and, now, ERI-1,3 that can inhibit RNAi responses. Animals defective in either protein can display enhanced RNAi phenotypes for mRNAs that were previously resistant to dsRNA. Since ERI-1 is a conserved protein, development of procedures to enhance RNAi effectiveness in other systems may be possible.  相似文献   

15.
The Asian long-horned beetle (ALB) Anoplophora glabripennis is a serious invasive forest pest in several countries, including the United States. Methods available to manage or eradicate this pest are extremely limited, but RNA interference (RNAi) technology is a potentially effective method to control ALB. In this study, we used sucrose feeding bioassay for oral delivery of double-strand RNA (dsRNA) to ALB larvae. 32P-labeled dsRNA orally delivered to ALB larvae using the sucrose droplet feeding method was processed to small interfering RNA. Feeding neonate larvae with dsRNA targeting genes coding for the inhibitor of apoptosis (IAP), vacuolar sorting protein SNF7 (SNF7), and snakeskin (SSK) induced knockdown of target genes and mortality. Feeding 2 µg of dsRNA per day for 3 days did not induce a significant decrease in the expression of target genes or mortality. However, feeding 5 or 10 µg of dsRNA per day for 3 days induced a significant decrease in the expression of target genes and 50–90% mortality. Interestingly, feeding 2.5 µg each of dsIAP plus dsSNF7, dsIAP plus dsSSK, or dsSNF7 plus dsSSK per day for 3 days induced a significant decrease in the expression of both target genes and approximately 80% mortality. Our findings demonstrate that orally delivered dsRNA induces target gene knockdown and mortality in ALB neonate larvae and RNAi technology may have the potential for effective ALB control.  相似文献   

16.
Yellow head virus infects cultured shrimps and causes severe mortality resulting in a great economic loss. Haemolymph injection of dsRNA(pro) corresponding to the protease motif of YHV genome resulted in a complete inhibition of YHV replication. The effect of dsRNA lasted for at least 5 days. Injecting sequence-unrelated dsRNA(gfp) or dsRNA(TSV-pol) also resulted in an inhibition of YHV replication but at a comparatively much less extent. Shrimp mortality was monitored for 10 days when more than 90% shrimps receiving no dsRNA died within 8 dpi. However, those receiving dsRNA(pro) showed no mortality. A partial mortality was observed among the shrimps receiving dsRNA(gfp) or dsRNA(TSV-pol). Thus, Penaeus monodon possesses the sequence-specific protection to YHV infection, most likely through the RNAi pathway, in addition to sequence-independent protection. It gives a new notion that dsRNA induction of antiviral immunity in shrimp goes through two pathways, sequence-independent and sequence-dependent.  相似文献   

17.
The discovery of RNA interference (RNAi) has revolutionized biological research and has a huge potential for therapy. Since small double-stranded RNAs (dsRNAs) are required for various RNAi applications, there is a need for cost-effective methods for producing large quantities of high-quality dsRNA. We present two novel, flexible virus-based systems for the efficient production of dsRNA: (1) an in vitro system utilizing the combination of T7 RNA polymerase and RNA-dependent RNA polymerase (RdRP) of bacteriophage 6 to generate dsRNA molecules of practically unlimited length, and (2) an in vivo RNA replication system based on carrier state bacterial cells containing the 6 polymerase complex to produce virtually unlimited amounts of dsRNA of up to 4.0 kb. We show that pools of small interfering RNAs (siRNAs) derived from dsRNA produced by these systems significantly decreased the expression of a transgene (eGFP) in HeLa cells and blocked endogenous pro-apoptotic BAX expression and subsequent cell death in cultured sympathetic neurons.  相似文献   

18.
Gill-associated virus (GAV) of the black tiger prawn Penaeus monodon has been implicated as a cause of periodic production losses in Australia since 1996. We report here the development of a real-time quantitative RT-PCR (qRT-PCR) for GAV. A dilution series of in vitro transcribed RNA was used to determine the sensitivity limit of the qRT-PCR and as a standard for GAV quantification. A linear relationship between cycle threshold (Ct) values and input RNA was obtained over a wide concentration range between 4.86 x 10(9) and 0.5 template copies per reaction, the latter being the test detection limit. The qRT-PCR was used to follow the progression of GAV levels in a group of 15 adult male P. monodon with chronic GAV infections that were super-infected by intramuscular injection of an inoculum containing high levels of GAV. By Day 9 post-injection, cumulative mortalities reached 100% (15/15) in the GAV-injected prawns and 40% (2/5) in placebo-injected prawns. Spermatophores were collected at the beginning, and together with other tissues, at the end of the trial. Prawns were also bled at regular intervals to collect circulating haemocytes. The qRT-PCR revealed that GAV loads increased significantly in haemocytes collected from both the control and super-infected prawns (p = 0.010). This increase was significantly higher in the super-infected prawns (p = 0.047). The rapid increase in GAV levels in super-infected P. monodon was expected. However, the increase in the control prawns was not, and indicates that repetitive bleeding and handling stress can stimulate GAV proliferation in chronically infected P. monodon.  相似文献   

19.
20.
The present study describes improved properties of 27-nt dsRNAs over 21-nt siRNAs, and accents on the possibility to use their modifications and conjugates for direct long-term gene silencing in viable cells and animals, avoiding conventional transfectants. Using a Renilla Luciferase gene-silencing system and cultured cell lines, we established that 27-nt dsRNAs possessed about three to five times higher "long-term" RNAi activity than 21-nt siRNAs and 21-nt dsRNAs. Moreover, if RNA duplexes were preincubated with cell-cultured medium for several hours before their transfection in cells, 21-mer completely lost its RNAi effect, while 27-mer, its amino modifications, thiol modifications, and cholesterol conjugates manifested a strong gene silencing. In attempts to clarify the reason(s) for the higher RNAi activity of 27-nt dsRNAs, we found that they were approximately 100 times more stable than 21-nt siRNA and 21-nt dsRNA in cell-cultured medium supplemented with 10% inactivated serum, approximately 50 times more stable in 90% inactivated serum, and approximately six times more stable in active serum. The 5' sense modification was selected as the most stable, accessible to Dicer, and with highest RNAi potential. The RNAi activity of 5' sense modifications was higher even than the activity of nonmodified 27-nt dsRNA. The 5' sense amino modification also did not influence the activity of 21-nt siRNA, right overhang 25/27-nt (R25D/27), and 25D/27-nt RNAs. The stability of 5' sense modified R25D/27-nt and 25D/27-nt RNAs in serum was lower than that of blunt 27-nt dsRNA. However, these asymmetric RNAs were more active than modified and nonmodified blunt 27-nt dsRNAs, which demonstrates the superiority of the asymmetric design. The 5' sense modifications were considered as most appropriate for conjugation with small signal molecules to facilitate the intracellular delivery of RNA duplex, to preserve its RNAi capacity, and to ensure a possibility for rapid long-term gene silencing in viable cells and animals. The 5' sense conjugation with cholesterol approved this assumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号