首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vesicular stomatitis virus (VSV) induces apoptosis by at least two mechanisms. The viral matrix (M) protein induces apoptosis via the mitochondrial pathway due to the inhibition of host gene expression. However, in some cell types, the inhibition of host gene expression by VSV expressing wild-type (wt) M protein delays VSV-induced apoptosis, indicating that another mechanism is involved. In support of this, the recombinant M51R-M (rM51R-M) virus, expressing a mutant M protein that is defective in its ability to inhibit host gene expression, induces apoptosis much more rapidly in L929 cells than do viruses expressing wt M protein. Here, we determine the caspase pathways by which the rM51R-M virus induces apoptosis. An analysis of caspase activity, using fluorometric caspase assays and Western blots, indicated that each of the main initiator caspases, caspase-8, caspase-9, and caspase-12, were activated during infection with the rM51R-M virus. The overexpression of Bcl-2, an inhibitor of the mitochondrial pathway, or MAGE-3, an inhibitor of caspase-12 activation, did not delay apoptosis induction in rM51R-M virus-infected L929 cells. However, an inhibitor of caspase-8 activity significantly delayed apoptosis induction. Furthermore, the inhibition of caspase-8 activity prevented the activation of caspase-9, suggesting that caspase-9 is activated by cross talk with caspase-8. These data indicate that VSV expressing the mutant M protein induces apoptosis via the death receptor apoptotic pathway, a mechanism distinct from that induced by VSV expressing the wt M protein.  相似文献   

2.
Y H Kim  S S Kim 《Cytokine》1999,11(4):274-281
To investigate the protection mechanism of Bcl-2 against tumour necrosis factor (TNF)-mediated cell death, the bcl2 gene was transfected into the L929 cells and stably expressed. Two clones having different sensitivity among bcl2-transfected L929 clones had been isolated, and termed clone R1 and R2. It was observed that activation of manganese superoxide dismutase (MnSOD) and suppression of Jun kinase of clone R1 and R2 were correlated with protection from TNF cytotoxicity. Upon treatment with TNF, clone R1 and R2 were more resistant than control L929 cells against TNF cytotoxicity and the protective effect of clone R1 was stronger than clone R2. However, in case of TNF plus actinomycin D treatment, clone R1 was still resistant against TNF cytotoxicity, whereas clone R2 became more sensitive than control L929 cells. The JNK activities of clone R1 and R2 were suppressed upon TNF treatment and in case of TNF plus actinomycin D treatment, clone R2 showed a marked increase in JNK activities and had higher activity than control L929 cells. The specific activities of MnSOD of clone R1 and R2 upon TNF treatment were 70 U/ml and 33 U/ml, respectively, while the MnSOD activity was not detectable in control L929 cells. When TNF and actinomycin D were treated simultaneously, MnSOD activity was not detectable in control L929 cells and bcl2 -transfected L929 cells (clone R1, R2). Consistent with these results, both clone R1 and R2 showed higher levels of MnSOD mRNA expression than control L929 cells after TNF treatment. These data suggest that suppression of Jun kinase and increase of MnSOD may be involved in inhibitory action of Bcl-2 against TNF, and the balance between MnSOD and JNK signalling pathway may be an important factor for the protection of bcl2-transfected L929 cells from TNF cytotoxicity.  相似文献   

3.
A growing number of inherited neurodegenerative disorders, including Huntington's disease, have been shown to be caused by the expansion of CAG/polyglutamine repeats. The molecular mechanism underlying these disorders, however, has yet to be clarified. We and others previously demonstrated that caspase-8 was activated by proteolysis in association with the expression of extended polyglutamine. Here, we further analyzed the selectivity of caspases in the process mediated by extended polyglutamine. Among upstream caspases, caspase-10, a close homolog of caspase-8, was also proteolytically activated, but caspase-9 was not. Caspase-8 and -10 were recruited into nuclear aggregates of extended polyglutamine, where at least a fraction of these caspases was converted to the activated forms. Caspase-8 and -10 were co-immunoprecipitated with polyglutamine only when the polyglutamine was pathologically extended, whereas caspase-2, -3, -6, -7 and -9 were not co-immunoprecipitated with polyglutamine regardless of its size. A dominant-negative form of caspase-8 with a mutation at the catalytic cysteine residue inhibited polyglutamine-mediated nuclear apoptotic phenotype. These results suggest that caspase-8 and -10 are autoactivated as a result of close proximity of the proforms of these molecules that occurs due to aggregate formation, which reveals a novel toxic gain-of-function mechanism for the pathogenesis of CAG-repeat disorders.  相似文献   

4.
Caspase-8, the proximal enzyme in the death-induction pathway of the TNF/nerve growth factor receptor family, is activated upon juxtaposition of its molecules within the receptor complexes and is then self-processed. Caspase-8 also contributes to the regulation of cell survival and growth, but little is known about the similarities or the differences between the mechanisms of these nonapoptotic functions and of the enzyme's apoptotic activity. In this study, we report that in bacterial artificial chromosome-transgenic mice, in which the aspartate residue upstream of the initial self-processing site in caspase-8 (D387) was replaced by alanine, induction of cell death by Fas is compromised. However, in contrast to caspase-8-deficient mice, which die in utero at mid-gestation, the mice mutated at D387 were born alive and seemed to develop normally. Moreover, mice with the D387A mutation showed normal in vitro growth responses of T lymphocytes to stimulation of their Ag receptor as well as of B lymphocytes to stimulation by LPS, normal differentiation of bone marrow macrophage precursors in response to M-CSF, and normal generation of myeloid colonies by the bone marrow hematopoietic progenitors, all of which are compromised in cells deficient in caspase-8. These finding indicated that self-processing of activated caspase-8 is differentially involved in the different functions of this enzyme: it is needed for the induction of cell death through the extrinsic cell death pathway but not for nonapoptotic functions of caspase-8.  相似文献   

5.
Although signaling by death receptors involves the recruitment of common components into their death-inducing signaling complexes (DISCs), apoptosis susceptibility of various tumor cells to each individual receptor differs quite dramatically. Recently it was shown that, besides caspase-8, caspase-10 is also recruited to the DISCs, but its function in death receptor signaling remains unknown. Here we show that expression of caspase-10 sensitizes MCF-7 breast carcinoma cells to TRAIL- but not tumor necrosis factor (TNF)-induced apoptosis. This sensitization is most obvious at low TRAIL concentrations or when apoptosis is assessed at early time points. Caspase-10-mediated sensitization for TRAIL-induced apoptosis appears to be dependent on caspase-3, as expression of caspase-10 in MCF-7/casp-3 cells but not in caspase-3-deficient MCF-7 cells overcomes TRAIL resistance. Interestingly, neutralization of TRAIL receptor 2 (TRAIL-R2), but not TRAIL-R1, impaired apoptosis in a caspase-10-dependent manner, indicating that caspase-10 enhances TRAIL-R2-induced cell death. Furthermore, whereas processing of caspase-10 was delayed in TNF-treated cells, TRAIL triggered a very rapid activation of caspase-10 and -3. Therefore, we propose a model in which caspase-10 is a crucial component during TRAIL-mediated apoptosis that in addition actively requires caspase-3. This might be especially important in systems where only low TRAIL concentrations are supplied that are not sufficient for the fast recruitment of caspase-8 to the DISC.  相似文献   

6.
The two‐way communication between the ECM (extracellular matrix) and the cytoplasm via the integrins has many functions in cancer cells, including the suppression of apoptosis. As cells in a 3D (three‐dimensional) architecture resemble the in vivo situation more closely than do cells in more conventional 2D cultures, we have employed a substratum that prevents cell adhesion and induces cell aggregation to determine why highly metastatic B16F10 melanoma cells resist anoikis. We compared the behaviour of B16F10 cells in 2D [on tPS (tissue culture polystyrene)] and 3D culture {on polyHEMA [poly(2‐hydroxyethylmethacrylate)]} configurations. For this, we analysed cell morphology, proliferation, apoptosis and the activation status of several proteins involved in cell proliferation and survival [RhoA, FAK (focal adhesion kinase), Akt, ERK1/2 (extracellular‐signal‐regulated kinase 1/2)]. B16F10 cells in 3D architecture were able to proliferate as cell aggregates for 3 days, after which the number of cells decreased. The normal Swiss 3T3 cells used as an anoikis‐sensitive control did not proliferate on the anti‐adhesive substratum. Rho A was activated in B16F10 aggregates throughout their time in culture, whereas it was not in Swiss 3T3 aggregates. An absence of apoptotic activity was correlated with the proliferation of B16F10 cells in aggregates: caspase 3 was significantly activated only after 3 days in culture on polyHEMA. FAK and Akt were transiently activated, and their inactivation was correlated with the induction of apoptosis. ERK1/2 were activated throughout the 3D culture. No survival protein was activated in Swiss 3T3 aggregates. Data obtained from cells in 3D culture suggest that B16F10 cells are resistant to anoikis through the activation of the FAK and Akt signalling pathways.  相似文献   

7.
Caspase activation throughout the first wave of spermatogenesis in the rat   总被引:7,自引:0,他引:7  
Early in postnatal life, the first wave of spermatogenesis is accompanied by an initial wave of germ cell apoptosis. This may reflect an adjustment in the number of germ cells that can be adequately maintained by Sertoli cells. Two major pathways (intrinsic and extrinsic) are involved in the process of caspase activation and apoptosis in mammalian cells. The extrinsic pathway is characterized by the oligomerization of death receptors such as FAS or tumor necrosis factor, followed by the activation of caspase-8 and caspase-3. The intrinsic pathway involves the activation of procaspase-9, which in turn activates caspase-3. Extensive information is available concerning apoptotic inducers and their possible mechanisms in the adult rat. However, no data exist regarding the molecular and cellular mechanisms governing physiological cell death during puberty in the male rat. We have studied caspase activation throughout the first wave of spermatogenesis in the rat under physiological conditions, by combining the TUNEL procedure with the localization of active caspases in germ cells. We observed TUNEL-positive germ cells in rats of 5–40 days of age, the highest number being found in 25-day-old rats. TUNEL-positive and caspase-3-positive germ cells appeared as long chains of interconnected germ cells in 25-day-old rats. Caspase activation was assayed by either immunohistochemistry with antibodies against active caspase-3, -8, and -9, or by determining enzymatic activity in seminiferous tubules extracts. Both techniques showed activation of caspase-3, -8, and -9 in 25-day-old rats and low enzymatic activity at other ages. Confocal scanning laser microscopy indicated that active caspase-3, -8, and -9 co-localized with TUNEL-positive cells. Thus, caspase-3, -8, and -9 are active in apoptotic germ cells during the first wave of rat spermatogenesis. The extrinsic pathway of apoptosis may therefore play an important role in germ cell apoptosis during puberty in the rat.This work was financed by a research grant from FONDECYT (1040800) to R.D.M.  相似文献   

8.
Tumor necrosis factor (TNF) plays an import role in the control of apoptosis. The most well known apoptotic pathway regulated by TNF involves the TNFR1-associated death domain protein, Fas-associated death domain protein, and caspase-8. This study examines the mechanism of TNF-induced apoptosis in FaO rat hepatoma cells. TNF treatment significantly increased the percentage of apoptotic cells. TNF did not activate caspase-8 but activated caspase-3, -10, and -12. The effect of TNF on the expression of different members of the Bcl-2 family in these cells was studied. We observed no detectable changes in the steady-state levels of Bcl-X(L), Bax, and Bid, although TNF suppresses Bcl-2 expression. Dantrolene suppressed the inhibitory effect of TNF on Bcl-2 expression. TNF induced release of Ca(2+) from the endoplasmic reticulum (ER) that was blocked by dantrolene. Importantly, the expression of Bcl-2 blocked TNF-induced apoptosis and decreased TNF-induced Ca(2+) release. These results suggest that TNF induces apoptosis by a mechanism that involves increasing Ca(2+) release from the ER and suppression of Bcl-2 expression.  相似文献   

9.

Objective

To determine if temporomandibular joint chondrocyte apoptosis is induced in rats with dental biomechanical stimulation and what a role TNF takes.

Methods

Thirty-two rats were divided into 4 groups (n = 8/group) and exposed to incisor mal-occlusion induced by unilateral anterior crossbite biomechanical stimulation. Two groups were sampled at 2 or 4 weeks. The other two groups were treated with local injections of a TNF inhibitor or PBS into the temporomandibular joints area at 2 weeks and then sampled at 4 weeks. Twenty-four rats either served as unilateral anterior crossbite mock operation controls (n = 8/group) with sampling at 2 or 4 weeks or received a local injection of the TNF inhibitor at 2 weeks with sampling at 4 weeks. Chondrocytes were isolated from the temporomandibular joints of 6 additional rats and treated with TNF in vitro. Joint samples were assessed using Hematoxylin&eosin, Safranin O, TUNEL and immunohistochemistry staining, real-time PCR, fluorogenic activity assays and Western blot analyses. The isolated chondrocytes were also analyzed by flow cytometry.

Results

Unilateral anterior crossbite stimulation led to temporomandibular joint cartilage degradation, associated with an increase in TUNEL-positive chondrocytes number, caspase-9 expression levels, and the release of cytochrome c from mitochondria at 2 weeks without changes in TNF and caspase-8 levels until after 4 weeks. TNF stimulated apoptosis of the isolated chondrocytes and up-regulated caspase-8 expression, but did not change caspase-9 expression levels. Local injection of TNF inhibitor down-regulated caspase-8 expression and reduced TUNEL-positive cell number, but did not reverse cartilage thickness reduction, caspase-9 up-regulation or cytochrome c release.

Conclusions

Unilateral anterior crossbite stimulation induces mitochondrion-mediated apoptosis of articular chondrocytes. TNF accelerated the unilateral anterior crossbite induced chondrocytes apoptosis via death-receptor pathway. However, anti-TNF therapy does not prevent cartilage loss in this model of temporomandibular joint.  相似文献   

10.
Excess endoplasmic reticulum (ER) stress induces processing of caspase-12, which is located in the ER, and cell death. However, little is known about the relationship between caspase-12 processing and cell death. We prepared antisera against putative caspase-12 cleavage sites (anti-m12D318 and anti-m12D341) and showed that overexpression of caspase-12 induced autoprocessing at D(318) but did not induce cell death. Mutation analysis confirmed that D(318) was a unique autoprocessing site. In contrast, tunicamycin, one of the ER stress stimuli, induced caspase-12 processing at the N-terminal region and the C-terminal region (both at D(318) and D(341)) and cell death. Anti-m12D318 and anti-m12D341 immunoreactivities were located in the ER of the tunicamycin-treated cells, and some immunoreactivities were located around and in the nuclei of the apoptotic cells. Thus, processing at the N-terminal region may be necessary for the translocation of processed caspase-12 into nuclei and cell death induced by ER stress. Some of the caspase-12 processed at the N-terminal and C-terminal regions may directly participate in the apoptotic events in nuclei.  相似文献   

11.
Ras signaling in tumor necrosis factor-induced apoptosis.   总被引:5,自引:0,他引:5       下载免费PDF全文
Tumor necrosis factor (TNF) exerts cytotoxicity on many types of tumor cells but not on normal cells. The molecular events leading to cell death triggered by TNF are still poorly understood. Our previous studies have shown that enforced expression of an activated H-ras oncogene converted non-tumorigenic, TNF-resistant C3H 10T1/2 fibroblasts into tumorigenic cells that also became very sensitive to TNF-induced apoptosis. This finding suggested that Ras activation may play a role in TNF-induced apoptosis. In this study we investigated whether Ras activation is an obligatory step in TNF-induced apoptosis. Introduction of two different molecular antagonists of Ras, the rap1A tumor suppressor gene or the dominant-negative rasN17 gene, into H-ras-transformed 10TEJ cells inhibited TNF-induced apoptosis. Similar results were obtained with L929 cells, a fibroblast cell line sensitive to TNF-induced apoptosis, which does not have a ras mutation. While Ras is constitutively activated in TNF-sensitive 10TEJ cells, TNF treatment increased Ras-bound GTP in TNF-sensitive L929 cells but not in TNF-resistant 10T1/2 cells. Moreover, RasN17 expression blocked TNF-induced Ras-GTP formation in L929 cells. These results demonstrate that Ras activation is required for TNF-induced apoptosis in mouse fibroblasts.  相似文献   

12.
The cause of Huntington's disease (HD) is a pathological expansion of the polyglutamine domain within the NH(2)-terminal region of huntingtin. Neuronal intranuclear inclusions and cytoplasmic aggregates composed of the mutant huntingtin within certain neuronal populations are a characteristic hallmark of HD. Because in vitro expanded polyglutamine repeats are glutaminyl-donor substrates of tissue transglutaminase (tTG), it has been hypothesized that tTG may contribute to the formation of these aggregates in HD. Therefore, it is of fundamental importance to establish whether tTG plays a significant role in the formation of mutant huntingtin aggregates in the cell. Human neuroblastoma SH-SY5Y cells were stably transfected with truncated NH(2)-terminal huntingtin constructs containing 18 (wild type) or 82 (mutant) glutamines. In the cells expressing the mutant truncated huntingtin construct, numerous SDS-resistant aggregates were present in the cytoplasm and nucleus. Even though numerous aggregates were present in the mutant huntingtin-expressing cells, tTG did not coprecipitate with mutant truncated huntingtin. Further, tTG was totally excluded from the aggregates, and significantly increasing tTG expression had no effect on the number of aggregates or their intracellular localization (cytoplasm or nucleus). When a YFP-tagged mutant truncated huntingtin construct was transiently transfected into cells that express no detectable tTG due to stable transfection with a tTG antisense construct, there was extensive aggregate formation. These findings clearly demonstrate that tTG is not required for aggregate formation, and does not facilitate the process of aggregate formation. Therefore, in HD, as well as in other polyglutamine diseases, tTG is unlikely to play a role in the formation of aggregates.  相似文献   

13.
In this study, two alternatively spliced forms of the mouse death-associated protein kinase (DAPK) have been identified and their roles in apoptosis examined. The mouse DAPK-alpha sequence is 95% identical to the previously described human DAPK, and it has a kinase domain and calmodulin-binding region closely related to the 130-150 kDa myosin light chain kinases. A 12-residue extension of the carboxyl terminus of DAPK-beta distinguishes it from the human and mouse DAPK-alpha. DAPK phosphorylates at least one substrate in vitro and in vivo, the myosin II regulatory light chain. This phosphorylation occurs preferentially at Ser-19 and is stimulated by calcium and calmodulin. The mRNA encoding DAPK is widely distributed and detected in mouse embryos and most adult tissues, although the expression of the encoded 160-kDa DAPK protein is more restricted. Overexpression of DAPK-alpha, the mouse homolog of human DAPK has a negligible effect on tumor necrosis factor (TNF)-induced apoptosis. Overexpression of DAPK-beta has a strong cytoprotective effect on TNF-treated cells. Biochemical analysis of TNF-treated cell lines expressing mouse DAPK-beta suggests that the cytoprotective effect of DAPK is mediated through both intrinsic and extrinsic apoptotic signaling pathways and results in the inhibition of cytochrome c release from the mitochondria as well as inhibition of caspase-3 and caspase-9 activity. These results suggest that the mouse DAPK-beta is a negative regulator of TNF-induced apoptosis.  相似文献   

14.
Binding of TNF to TNF receptor-1 can give a pro-survival signal through activation of p65/RelA NF-κB, but also signals cell death. To determine the roles of FLICE-inhibitory protein (FLIP) and caspase-8 in TNF-induced activation of NF-κB and apoptosis, we used mouse embryonic fibroblasts derived from FLIP and caspase-8 gene-deleted mice, and treated them with TNF and a smac-mimetic compound that causes degradation of cellular inhibitor of apoptosis proteins (cIAPs). In cells treated with smac mimetic, TNF and Fas Ligand caused wild-type and FLIP(-/-) MEFs to die, whereas caspase-8(-/-) MEFs survived, indicating that caspase-8 is necessary for death of MEFs triggered by these ligands when IAPs are degraded. By contrast, neither caspase-8 nor FLIP was required for TNF to activate p65/RelA NF-κB, because IκB was degraded, p65 translocated to the nucleus, and an NF-κB reporter gene activated normally in caspase-8(-/-) or FLIP(-/-) MEFs. Reconstitution of FLIP(-/-) MEFs with the FLIP isoforms FLIP-L, FLIP-R, or FLIP-p43 protected these cells from dying when treated with TNF or FasL, whether or not cIAPs were depleted. These results show that in MEFs, caspase-8 is necessary for TNF- and FasL-induced death, and FLIP is needed to prevent it, but neither caspase-8 nor FLIP is required for TNF to activate NF-κB.  相似文献   

15.

Background

The Galanthus nivalis agglutinin (GNA)-related lectins have been reported to bear antiproliferative and apoptosis-inducing activities in cancer cells; however, the precise mechanisms by which GNA-related lectins induce cell death are still only rudimentarily understood.

Methods

In the present study, Polygonatum odoratum lectin (designated POL), a mannose-binding specific GNA-related lectin, possessed a remarkable antiproliferative activity toward murine fibrosarcoma L929 cells. And, this lectin induced L929 cell apoptosis in a caspase-dependent manner. In addition, POL treatment increased the levels of FasL and Fas-Associated protein with Death Domain (FADD) proteins and resulted in caspase-8 activation. Also, POL treatment caused mitochondrial transmembrane potential collapse and cytochrome c release, leading to activations of caspase-9 and caspase-3. Moreover, POL treatment enhanced tumor necrosis factor α (TNFα)-induced L929 cell apoptosis.

Results

Our data demonstrate for the first time that this lectin induces apoptosis through both death-receptor and mitochondrial pathways, as well as amplifies TNFα-induced L929 cell apoptosis.

General significance

These inspiring findings would provide new molecular basis for further understanding cell death mechanisms of the Galanthus nivalis agglutinin (GNA)-related lectins in future cancer investigations.  相似文献   

16.
The role of p38 mitogen-activated protein kinase (MAPK) in apoptosis is a matter of debate. Here, we investigated the involvement of p38 MAPK in endothelial apoptosis induced by tumor necrosis factor alpha (TNF). We found that activation of p38 MAPK preceded activation of caspase-3, and the early phase of p38 MAPK stimulation did not depend on caspase activity, as shown by pretreatment with the caspase inhibitors z-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD-fmk) and Boc-Asp(OMe)-fluoromethylketone (BAF). The p38 MAPK inhibitor SB203580 significantly attenuated TNF-induced apoptosis in endothelial cells, suggesting that p38 MAPK is essential for apoptotic signaling. Furthermore, we observed a time-dependent increase in active p38 MAPK in the mitochondrial subfraction of cells exposed to TNF. Notably, the level of Bcl-x(L) protein was reduced in cells undergoing TNF-induced apoptosis, and this reduction was prevented by treatment with SB203580. Immunoprecipitation experiments revealed p38 MAPK-dependent serine-threonine phosphorylation of Bcl-x(L) in TNF-treated cells. Exposure to lactacystin prevented both the downregulation of Bcl-x(L) and activation of caspase-3. Taken together, our results suggest that TNF-induced p38 MAPK-mediated phosphorylation of Bcl-x(L) in endothelial cells leads to degradation of Bcl-x(L) in proteasomes and subsequent induction of apoptosis.  相似文献   

17.
Oncogenic Ras induces cells to undergo apoptosis after inhibition of protein kinase C (PKC) activity. The integration of differential signaling pathways is required for full execution of apoptosis. In this study, we used Jurkat as well as Fas/FADD-defective cell lines expressing v-ras to determine the upstream elements required for activation of the caspase cascade in PKC/Ras-mediated apoptosis. During this Ras-induced apoptotic process, caspase-8 was activated, possibly through its binding to Fas-associated death domain (FADD), in Jurkat/ras and Jurkat/Fas(m)/ras cells but not in Jurkat/FADD(m)/ras cells. c-Jun NH(2)-terminal kinase (JNK) was activated in all three cell lines expressing ras in response to apoptotic stimulation. Suppression of JNK by dn-JNK1 blocked the interaction of FADD and caspase-8 and partially protected Jurkat/ras and Jurkat/Fas(m)/ras cells from apoptosis. However, dn-JNK1 had no effect on PKC/Ras-induced apoptosis in Jurkat/FADD(m)/ras cells. The results indicate that FADD/caspase-8 signaling is involved in PKC/Ras-mediated apoptosis, and JNK may be an upstream effector of caspase activation.  相似文献   

18.
Death receptors are a subfamily of the tumor necrosis factor (TNF) receptor subfamily. They are characterized by a death domain (DD) motif within their intracellular domain, which is required for the induction of apoptosis. Fas-associated death domain protein (FADD) is reported to be the universal adaptor used by death receptors to recruit and activate the initiator caspase-8. CD95, TNF-related apoptosis-inducing ligand (TRAIL-R1), and TRAIL-R2 bind FADD directly, whereas recruitment to TNF-R1 is indirect through another adaptor TNF receptor-associated death domain protein (TRADD). TRADD also binds two other adaptors receptor-interacting protein (RIP) and TNF-receptor-associated factor 2 (TRAF2), which are required for TNF-induced NF-kappaB and c-Jun N-terminal kinase activation, respectively. Analysis of the native TNF signaling complex revealed the recruitment of RIP, TRADD, and TRAF2 but not FADD or caspase-8. TNF failed to induce apoptosis in FADD- and caspase-8-deficient Jurkat cells, indicating that these apoptotic mediators were required for TNF-induced apoptosis. In an in vitro binding assay, the intracellular domain of TNF-R1 bound TRADD, RIP, and TRAF2 but did not bind FADD or caspase-8. Under the same conditions, the intracellular domain of both CD95 and TRAIL-R2 bound both FADD and caspase-8. Taken together these results suggest that apoptosis signaling by TNF is distinct from that induced by CD95 and TRAIL. Although caspase-8 and FADD are obligatory for TNF-mediated apoptosis, they are not recruited to a TNF-induced membrane-bound receptor signaling complex as occurs during CD95 or TRAIL signaling, but instead must be activated elsewhere within the cell.  相似文献   

19.
Inhibition of NF-kappaB in the presence of tumor necrosis factor-alpha (TNF) is supposed to be a promising cancer therapeutic approach, since it disrupts the protective mechanism of NF-kappaB activated by TNF. To test this approach in gliomas, we introduced a superrepressor of NF-kappaB, an N-terminal deleted form of inhibitor kappa B alpha (IkappaBdN) gene, to human glioma cells (U251 and U-373MG) via adenoviral vector (Adv) in the presence of TNF. U-373MG cells were refractory to TNF-induced apoptosis even when they were transduced with the IkappaBdN gene. On the other hand, transduction of IkappaBdN drastically augmented caspase-8-mediated apoptosis in U-373MG cells. Similar results were obtained in U251 cells. Cotransduction of IkappaBdN and caspase-8 induced cleavage of PARP. Taken together, Adv-mediated transfer of IkappaBdN plus caspase-8 may be a promising therapeutic approach to treat gliomas.  相似文献   

20.
Ceramide has been proposed to be an important signaling intermediate in tumor necrosis factor (TNF)-induced apoptosis in human MCF-7 breast adenocarcinoma cells. We compared cell death and signal transduction pathways induced by TNF and ceramide in TNF-sensitive, parental MCF-7 cells to those in TNF-resistant, MCF-7 cells (3E9). TNF caused proteolysis of the caspase substrate, polyADP-ribose polymerase (PARP) in parental cells, but not in 3E9 cells. Both apoptosis and PARP cleavage were strongly prevented by co-incubation with caspase inhibitors. In contrast, ceramide-induced cell death was neither affected by TNF resistance nor was it associated with PARP cleavage, and death could not be prevented by co-incubation with caspase inhibitors in either cell line. TNF was able to activate JNK/SAPK approximately 30-fold and approximately 5-fold in parental MCF-7 and 3E9 cells, respectively; in contrast, cell-permeable ceramide only weakly stimulated JNK/SAPK activity in either cell type. Although JNK was activated by TNF, pharmacological blockade of the JNK pathway did not inhibit TNF- or ceramide-mediated cell death. Using mass spectroscopic analysis for ceramide, no increase, rather, a decrease in total ceramide content in TNF-treated parental cells was observed. These results suggest that the cell death signaling and execution pathways utilized by ceramide are distinct from those activated by TNF in MCF-7 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号