首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dissociation of mixed trypsin (bovine plus porcine trypsin) complexes with chicken ovoinhibitor was used to investigate the nonequivalence of the two binding sites for trypsin on the inhibitor. Previous work has shown that 1 mol of trypsin dissociates much more rapidly than the 2nd from unmixed trypsin complexes, those containing 2 mol of one kind of trypsin, bovine or porcine, per mol of inhibitor. However, only approximately 0.5 to 0.6 mol of trypsin dissociated in the rapid step from the mixed trypsin complexes, those containing 1 mol each of bovine and porcine trypsin. Rates of the slow dissociation steps for the two types of complexes did not differ appreciably from each other. A general dissociation scheme is proposed, in which each of the 2:1 complexes can lose a trypsin molecule from either in two parrallel first order reactions, producing two different 1:1 complexes, which subsequently dissociate to yield free ovoinhibitor and a second trypsin molecule. In this scheme, both the earlier results with unmixed trypsin complexes and the preponderance (approximately 3:1) of slow dissociation from the mixed trypsin complexes can be rationalized if bovine trypsin is retained preferentially at one of the two trypsin binding sites on chicken ovoinhibitor, and porcine trypsin at the other. That is, one site allows rapid dissociation of porcine trypsin and slow dissociation of bovine trypsin, whereas the other allows rapid dissociation of bovine trypsin and slow dissociation of porcine trypsin.  相似文献   

2.
To determine the kinetics of human low density lipoproteins (LDL) interacting with LDL receptors, 125I-LDL binding to cultured human fibroblasts at 4 degrees C was studied. Apparent association rate constants did not increase linearly as 125I-LDL concentrations were increased. Instead, they began to plateau which suggested that formation of initial receptor-ligand complexes is followed by slower rearrangement or isomerization to complexes with higher affinity. To test this, 125I-LDL were allowed to associate for 2, 15, or 120 min, then dissociation was followed. The dissociation was biphasic with the initial phase being 64-110-fold faster than the terminal phase. After binding for 2 min, a greater percentage of 125I-LDL dissociated rapidly (36%) than after association for 15 min (24%) or 120 min (11%). Neither the rate constants nor the relative amplitudes of the two phases were dependent on the degree of receptor occupancy. Thus, the duration of association, but not the degree of receptor occupancy affected 125I-LDL dissociation. To determine if binding by large LDL, which is predominantly via apolipoprotein (apo) E, also occurs by an isomerization mechanism, the d = 1.006-1.05 g/ml lipoproteins were fractionated by ultracentrifugation. In contrast to small LDL which bound via apoB-100 and whose dissociation was similar to that of unfractionated LDL, large LDL dissociation after 2, 15, or 120 min of binding did not show isomerization to a higher affinity. This suggests that large and small LDL bind by different mechanisms as a result of different modes of interaction of apoE and apoB-100 with LDL receptors.  相似文献   

3.
1. Isolated rat fat cells were incubated at 37 degrees with [U-14C]-glucose 0.55 mM and 125I-labeled insulin. The amount of receptor-bound 125I-labeled insulin and the rate of insulin-induced 14C-lipid synthesis were assessed during association and dissociation of 125I-labeled insulin. 2. The rate of 14C-lipid synthesis was constant from zero time in the absence of insulin and in the presence of insulin in a high concentration (0.7 muM). With insulin in a low concentration (56 pM) the insulin-induced rate of 14C-lipid synthesis was proportional to the receptor occupancy; the receptor binding reached equilibrium and the rate of 14C-lipid synthesis reached a constant value after 30 to 45 min. With insulin in a concentration of 0.7 nM the rate of 14C-lipid synthesis reached a steady state before equilibrium of the receptor binding was obtained. 3. Ater preincubation with 56 pM 125I-labeled insulin followed by removal of extracellular insulin the decrease in the rate of insulin induced 14C-lipid synthesis followed the decrease in receptor occupancy with a half-time of about 10 min. After preincubation with insulin in concentrations of 0.28, 0.56, and 1.4 nM a maximum rate of 14C-lipid synthesis was maintained for about 8, 15, and 30 min, respectively. 4. The following model is suggested. Binding of insulin to the previously described receptors with a dissociation constant of about 3 nM (Gammeltoft, S., and Gliemann, J. (1973) Biochim. Biophys Acta 320, 16-32) represents the first step in the action of insulin on lipid synthesis from glucose. The receptor occupancy is rate-determining at low concentrations of insulin, i.e. when the occupancy is small (about 2 percent or less). At higher insulin concentrations some other step becomes rate-determining and the higher occupancy at equilibrium therefore causes no further increase in the steady state lipogenesis. However, a high receptor occupancy causes a prolonged maintenance of a maximal (or near-maximal) effect after removal of insulin from the medium.  相似文献   

4.
After short preincubations with N-[(3)H]methylscopolamine ([(3)H]NMS) or R(-)-[(3)H]quinuclidinyl benzilate ([(3)H]QNB), radioligand dissociation from muscarinic M(1) receptors in Chinese hamster ovary cell membranes was fast, monoexponential, and independent of the concentration of unlabeled NMS or QNB added to reveal dissociation. After long preincubations, the dissociation was slow, not monoexponential, and inversely related to the concentration of the unlabeled ligand. Apparently, the unlabeled ligand becomes able to associate with the receptor simultaneously with the already bound radioligand if the preincubation lasts for a long period, and to hinder radioligand dissociation. When the membranes were preincubated with [(3)H]NMS and then exposed to benzilylcholine mustard (covalently binding specific ligand), [(3)H]NMS dissociation was blocked in wild-type receptors, but not in mutated (D99N) M(1) receptors. Covalently binding [(3)H]propylbenzilylcholine mustard detected substantially more binding sites than [(3)H]NMS. The observations support a model in which the receptor binding domain has two tandemly arranged subsites for classical ligands, a peripheral one and a central one. Ligands bind to the peripheral subsite first (binding with lower affinity) and translocate to the central subsite (binding with higher affinity). The peripheral subsite of M(1) receptors may include Asp-99. Experimental data on [(3)H]NMS and [(3)H]QNB association and dissociation perfectly agree with the predictions of the tandem two-site model.  相似文献   

5.
Little is known of the effects of the solvent on hormone-receptor interactions. In the present study the effect of the polar solvent dimethyl sulfoxide on the binding of insulin to its surface receptors on cultured human lymphocytes of the IM-9 line was investigated. At concentrations exceeding 0.1% (v/v), dimethyl sulfoxide produced a dose-related inhibition of 125-I-labeled insulin binding. Insulin binding was totally abolished in 20% dimethyl sulfoxide. This inhibition was immediately present and was totally reversible. Analysis of the data of binding at steady state indicated that the decrease in binding of 125I-labeled insulin was due to a reduced affinity of the insulin receptor without noticeable change in the concentration of receptor sites. Kinetic studies showed that the decreased affinity could largely be accounted for by a decreased association rate constant; effects on dissociation and negative cooperativity of the insulin receptor was affected to a much lesser extent.  相似文献   

6.
An oxygen-affinity-modifying drug, voxelotor, has very recently been approved by the FDA for treatment of sickle cell disease. The proposed mechanism of action is by preferential binding of the drug to the R quaternary conformation, which cannot copolymerize with the T conformation to form sickle fibers. Here, we report widely different oxygen dissociation and oxygen association curves for normal blood in the presence of voxelotor and interpret the results in terms of the allosteric model of Monod, Wyman, and Changeux with the addition of drug binding. The model does remarkably well in quantitatively explaining a complex data set with just the addition of drug binding and dissociation rates for the R and T conformations. Whereas slow dissociation of the drug from R results in time-independent dissociation curves, the changing association curves result from slow dissociation of the drug from T, as well as extremely slow binding of the drug to T. By calculating true equilibrium curves from the model parameters, we show that there would be a smaller decrease in oxygen delivery from the left shift in the dissociation curve caused by drug binding if drug binding and dissociation for both R and T were rapid. Our application of the Monod, Wyman, and Changeux model demonstrates once more its enormous power in explaining many different kinds of experimental results for hemoglobin. It should also be helpful in analyzing oxygen binding and in vivo delivery in future investigations of oxygen-affinity-modifying drugs for sickle cell disease.  相似文献   

7.
Dihydrofolate reductase from wild-type Escherichia coli (WT-ECDHFR) and from a mutant enzyme in which aspartate 27 is replaced by asparagine have been compared with respect to the binding of the inhibitor methotrexate (MTX). Although the Asp27----Asn substitution causes only small changes in the association rate constants (kon) for the formation of binary and ternary (with NADPH) complexes, the dissociation rate constants for these complexes (koff) are increased for the mutant enzyme by factors of about 5- and 100-fold, respectively, at pH 7.65. In binding experiments, the initial MTX binary and ternary complexes of the mutant enzyme were found to undergo relatively rapid isomerization (kobs approximately 17 and 145 s-1, respectively). Although such rapid isomerization of complexes of WT-ECDHFR could not be detected in binding experiments, evidence of a slow isomerization (k = 4 x 10(-3) s-1) of the ternary WT-ECDHFR.MTX.NADPH complex was obtained from progress of inhibition experiments. This slow isomerization increases binding of MTX to WT-ECDHFR only 2.4-fold (much less than previously estimated). From presently available data, we could not determine the contribution of the rapid isomerization of complexes to the binding of MTX to the mutant enzyme. The Asp27----Asn substitution increases the overall dissociation constant (KD) 9-fold for the binary complex and 85-fold for the ternary complex. When it is also taken into account that a proton ultimately derived from the solvent must be added to MTX bound to the WT enzyme, but not to MTX bound to the mutant enzyme, these increases in KD for the mutant enzyme correspond to decreases in binding energy for MTX of 3.9 and 5.2 kcal/mol at pH 7.65 for the binary and ternary complexes, respectively.  相似文献   

8.
The kinetics of binding of glucocorticoids to the soluble, specific binding protein of mouse fibroblasts has been examined. The rate at which both potent and weak glucocorticoids achieve binding equilibrium is very slow. Second order rate constants of association range from 3 times 10-5 M- minus 1 min- minus 1 for cortisol to 6.7 times 10-5 M- minus 1 min- minus 1 for triamcinolone acetonide. Studies of the rates of binding at high steroid concentrations suggest that the slow rate of binding may be explained by a two-step mechanism. Active glucocorticoids, regardless of their potency, bind initially in a rapid manner to form a weak complex with the binding protein. The dissociation constant for the weak binding reaction is 0.87 times 10- minus 7 M for triamcinolone acetonide and 2.4 times 10- minus 7 M for cortisol. The weak binding complex becomes converted slowly to a tight complex. The first order rate constants for this conversion and the rate constants of dissociation from the tight complex have been determined for cortisol, dexamethasone and triamcinolone acetonide. The binding affinity of steroids of different biological potency is correlated with their rate of dissociation from this second tight binding state.  相似文献   

9.
Temperature-jump experiments were performed with di-, tetra-, and hexasaccharides derived from type III pneumococcal polysaccharide using a homogeneous corresponding antibody IgG 45-394. A decrease in stability of the oligosaccharide-antibody complexes with decreasing chain length was observed and entirely reflected in the decrease of the association rate constants which were 1.7 X 10(4) M-1 s-1 for the di-, 3.7 X 10(5) M-1 s-1 for the tetra-, and 1.1 X 10(6) M-1 s-1 for the hexasaccharide at 23 degrees C. The dissociation rate constants for all oligomers were about 12 s-1. This marked chain-length dependence of the association rate constants as well as their low values are unexpected for a single binding step. A mechanism is proposed which consists of a fast formation of a labile oligosaccharide-antibody precomplex followed by a slow isomerization step which is induced by the oligosaccharide ligands but which is chain-length independent.  相似文献   

10.
The kinetics of the binding of mebendazole (MBZ) to tubulin from the third-stage (L3) larvae of the parasitic nematode, Haemonchus contortus, have been characterized. In partially purified preparations, the association of [3H]MBZ to nematode tubulin was rapid, k1 = (2.6 +/- 0.3) x 10(5) M-1 min-1, but dissociation was slow, k-1 = (1.58 +/- 0.02) x 10(-3) min-1. The affinity constant (K(a)) for the interaction, determined by the ratio k1/k-1, was (1.6 +/- 0.2) x 10(8) M-1. Similar results were obtained with crude cytosolic fractions. In equilibrium studies, performed with partially purified nematode tubulin under similar conditions, a K(a) of (5.3 +/- 1.6) x 10(6) M-1 was obtained. The best estimate for the K(a) of the MBZ-nematode tubulin interaction is considered to be the 'kinetic' value determined from the ratio of rate constants. The slow dissociation of MBZ from nematode tubulin, which contrasts with the rapid dissociation of MBZ from mammalian tubulin, supports the hypothesis that the selective toxicity of the benzimidazole anthelmintics results from a difference between the affinities of mammalian and nematode tubulins for these drugs.  相似文献   

11.
A protein design strategy was developed to specifically enhance the rate of association (k(on)) between a pair of proteins without affecting the rate of dissociation (k(off)). The method is based on increasing the electrostatic attraction between the proteins by incorporating charged residues in the vicinity of the binding interface. The contribution of mutations towards the rate of association was calculated using a newly developed computer algorithm, which predicted accurately the rate of association of mutant protein complexes relative to the wild type. Using this design strategy, the rate of association and the affinity between TEM1 beta-lactamase and its protein inhibitor BLIP was enhanced 250-fold, while the dissociation rate constant was unchanged. The results emphasize that long range electrostatic forces specifically alter k(on), but do not effect k(off). The design strategy presented here is applicable for increasing rates of association and affinities of protein complexes in general.  相似文献   

12.
The connection between experimentally measured values of ED50 (concentration of added peptide required to bind half of the protein), which characterize peptide-protein binding and the equilibrium dissociation constant of peptide-protein complex Kd (affinity) is considered. It is shown and confirmed by experimental studies that in certain cases, as a result of the absence of equilibrium in the system, the value of Kd could be much less than the experimental value of ED50, but not equal to that as commonly assumed. This is especially applicable to the formation of peptide-MHC complexes with low dissociation rates (strong binding), which may require longer time-intervals to reach equilibrium. Thus the search of the good binding peptides based on finding ones with the smallest measured values' of ED50 may result in missing the best binders with the lowest values of dissociation constant (highest affinity). To analyze the problem we considered the formal chemical kinetics of peptide-protein binding. Experimental studies of peptide binding was performed to obtain the parameters of the kinetic model. According to the predictions of the model, it was confirmed that peptide binding occurs through the preceding step, which is either a release of an endogenous peptide or some conformational change of the molecule. The half decay time for this process was determined to be approximately 3 h. Based on the model developed, a new effective method for determination of the dissociation rates of peptide-MHC complexes and the equilibrium dissociation constants Kd was proposed, which implies the comparison of binding levels (ED50) at different instants of time. This method works especially well for the peptide-MHC complexes with relatively slow dissociation rates (stable complexes), for which the direct off-rate measurements as well as obtaining equilibrium binding data to determine Kd are highly time consuming and not very reliable.  相似文献   

13.
The hepatitis C virus (HCV) glycoproteins (E1 and E2) are released from the polyprotein by signal peptidase-mediated cleavage and interact to form a heterodimer. Since properly folded subunits are usually required for specific recognition and stable oligomer formation, the rate of stable E1E2 complex formation, which is low, may be limited by the rate of HCV E1 and/or E2 folding. In this study, the folding of the HCV E1 and E2 glycoproteins was monitored by observing the kinetics of intramolecular disulfide bond formation. The association/dissociation of E1 and E2 with calnexin was also examined, since this molecular chaperone appears to play a major role in quality control via retention of incompletely folded or misfolded proteins in the endoplasmic reticulum. Our results indicate that the disulfide-dependent folding of E2 occurs rapidly and appears to be complete upon cleavage of the precursor E2-NS2. In contrast, folding of E1 is slow (> 1 h), suggesting that this step may be rate limiting for E1E2 oligomerization. Both HCV glycoproteins associated rapidly with calnexin, but dissociation was slow, consistent with the slow folding and assembly of E1E2 glycoprotein complexes. These results suggest a role for prolonged association with calnexin in the folding and assembly of HCV glycoprotein heterodimer complexes.  相似文献   

14.
To examine the kinetics of opioid receptor binding, the agonists [D-Ala2-D-Leu5]enkephalin (DADL) and [D-Ala2-MePhe4-Gly-ol5]enkephalin (DAGO) and the antagonists diprenorphine and naltrexone were used with bovine hippocampal synaptic plasma membranes. By computer modeling of equilibrium binding displacement curves utilizing the LIGAND program, we found opioid peptides bind with high affinity to single populations of synaptic plasma membranes receptors, whereas opiate alkaloids bind to multiple sites. Initial kinetic experiments revealed that agonist rates of association were radioligand concentration-independent. Pseudo first-order rate constants for DADL, DAGO, diprenorphine, and naltrexone association were estimated to be 5.63 X 10(5), 5.08 X 10(5), 4.60 X 10(6), and 2.3 X 10(6) mol-1 X s-1, respectively. After preincubation of 0.2-1 nM radioligand for variable time intervals, dissociation was initiated by addition of 1 microM unlabeled ligand. If saturation binding was achieved before dissociation was initiated, then nearly monophasic dissociation of DADL, DAGO, and diprenorphine and a biphasic off-rate for naltrexone were observed. When association times were reduced to pre-equilibrium intervals, the kinetics of dissociation of agonists became biphasic and association time-dependent, but that for antagonists did not change significantly. Comparisons by both graphical methods and computerized nonlinear regression analyses of rate constants revealed that the fraction of the rapid component of agonist dissociation decreases and that of the slow component is elevated with increasing receptor occupancy. In the presence of 100 mM NaCl, DADL dissociation became association time-independent. These data are consistent with the idea that the Na+ effect is brought about by a change of receptor to an antagonist-like conformation. On the basis of both association and dissociation kinetic data, opioid agonists appear to interact in a multistep process in which a rapid, reversible association is followed by the formation of a more tightly bound complex.  相似文献   

15.
The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblast insulin receptors. These cells bind and internalize insulin normally. Biochemical assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4 degrees C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37 degrees C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The total number of complexes reached a maximum by 5 min and decreased rapidly thereafter with a t 1/2 of approximately 10 min. There was a distinct delay in the appearance, rate of rise, and peak of intracellular free and degraded insulin. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored, based on the ability of dissociated insulin to rebind to receptor upon neutralization of acidic intracellular vesicles with monensin. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation.  相似文献   

16.
Binding activity characteristics in human endometrium of estradiol-17-beta (E2), estrone (E1), estriol (E3), and 17-alpha-ethinylestradiol-17-beta (EE2) were determined in cytosol extracts. Unequal binding was observed. A lower affinity of E3 binding in endometrial cytosol when compared to E2 was parallel to a slower rate of association and to a higher rate of dissociation. For EE2, the slightly higher affinity was parallel to a higher rate of association and a slower dissociation rate. For E1, the association rate constant was 1/2 of that for E2 when the total number of binding sites able to bind E2 was considered in the calculation. Association rate constant was only 23% of that for E2 when the total number of binding sites able to bind E1 was considered in the calculation, and the dissociation rate was neglected. The dissociation rate of E1 receptor complexes was 20 times higher at both 0 and 25 degrees centigrade than the E2 receptor complexes. An unequal number of binding sites was measured for E2 and E1, an unexpected finding. Also observed was an unequal binding for E2 and E1 which varied during the menstrual cycle, and it is suggested that progesterone may be the regulatory factor since E1 and E2 receptors increased during the luteal phase.  相似文献   

17.
18.
In previous studies, the insulin resistance of the obese hyperglycemic mouse (ob/ob) was found to be associated with decreased insulin binding to liver, fat, and lymphocytes. The present study demonstrates that the insulin receptors in the liver membranes of the ob/ob mouse are decreased in number, but are indistinguishable from normal by other criteria including affinity, kinetics of association and dissociation, temperature dependence of binding, and biological specificity of the binding reaction. The receptor in liver membranes of the ob/ob mouse is also indistinguishable with respect to insulin receptor site-site interactions. Degradation of both insulin and of receptor sites was studied and did not account for differences observed in binding. We conclude that the insulin receptor from the ob/ob mouse is a functionally normal receptor and that its presence in diminished number accounts for the observed decrease in insulin binding to liver plasma membranes.  相似文献   

19.
Myosin-I is the single-headed member of the myosin superfamily that associates with lipid membranes. Biochemical experiments have shown that myosin-I membrane binding is the result of electrostatic interactions between the basic tail domain and acidic phospholipids. To better understand the dynamics of myosin-I membrane association, we measured the rates of association and dissociation of a recombinant myo1c tail domain (which includes three IQ domains and bound calmodulins) to and from large unilamellar vesicles using fluorescence resonance energy transfer. The apparent second-order rate constant for lipid-tail association in the absence of calcium is fast with nearly every lipid-tail collision resulting in binding. The rate of binding is decreased in the presence of calcium. Time courses of myo1c-tail dissociation are best fit by two exponential rates: a fast component that has a rate that depends on the ratio of acidic phospholipid to myo1c-tail (phosphatidylserine (PS)/tail) and a slow component that predominates at high PS/tail ratios. The dissociation rate of the slow component is slower than the myo1c ATPase rate, suggesting that myo1c is able to stay associated with the lipid membrane during multiple catalytic cycles of the motor. Calcium significantly increases the lifetimes of the membrane-bound state, resulting in dissociation rates 0.001 s(-1).  相似文献   

20.
Ligands for insulin receptor isolation   总被引:1,自引:0,他引:1  
F M Finn  G Titus  K Hofmann 《Biochemistry》1984,23(12):2554-2558
Biotinylated insulins are bivalent molecules having the ability to bind to insulin receptors on the one hand and to "avidins" on the other. In order to be useful as ligands for insulin receptor isolation, biotinylated insulins must be developed that have the capacity to bind simultaneously to both and insulin receptor. The present investigation addresses this problem. A series of biotinylated and dethiobiotinylated insulins has been prepared in which the distance between the biotin carboxyl group and the insulin varies from 7 to 20 atoms. These compounds form complexes with succinoylavidin. The dissociation rates (K-1) of these complexes have been determined from the [14C]biotin exchange assay. The dissociation kinetics of most of these complexes are biphasic, and the kinetic constants reported are those corresponding to the slow rate. Ligands containing dethiobiotin dissociate more rapidly than the corresponding biotin derivatives. The interposition of a spacer arm substantially decreases the rate of dissociation. The [14C]biotin exchange assay could not be used with streptavidin complexes of the above ligand since biotin dissociates more rapidly from streptavidin than from succinoylavidin. However, the relative dissociation rates of a series of ligands could be determined and were as follows: 6-(dethiobiotinylamido)-hexanoic acid greater than dethiobiotinyl-A1-insulin greater than biotinylinsulin greater than biotinyl-A1-insulin greater than biotinyl-A2-insulin. Dethiobiotin and its amide failed to form complexes with streptavidin. The affinity of the ligands for insulin receptors was determined by measuring their ability to stimulate 14CO2 formation from [1-14C]glucose in rat epididymal adipocytes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号