首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The synaptosome-associated protein of 25 kDa (SNAP-25) interacts with syntaxin 1 and vesicle-associated membrane protein 2 (VAMP2) to form a ternary soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) complex that is essential for synaptic vesicle exocytosis. We report a novel RING finger protein, Spring, that specifically interacts with SNAP-25. Spring is exclusively expressed in brain and is concentrated at synapses. The association of Spring with SNAP-25 abolishes the ability of SNAP-25 to interact with syntaxin 1 and VAMP2 and prevents the assembly of the SNARE complex. Overexpression of Spring or its SNAP-25-interacting domain reduces Ca(2+)-dependent exocytosis from PC12 cells. These results indicate that Spring may act as a regulator of synaptic vesicle exocytosis by controlling the availability of SNAP-25 for the SNARE complex formation.  相似文献   

2.
3.
The synaptic vesicle protein SV2 is a novel type of transmembrane transporter.   总被引:16,自引:0,他引:16  
M B Feany  S Lee  R H Edwards  K M Buckley 《Cell》1992,70(5):861-867
The primary function of synaptic vesicles is to store and release neurotransmitter. Synaptic vesicles are locally recycled following exocytosis and rapidly refilled with neurotransmitter from the cytoplasm by a process that depends on the electrochemical gradient generated by a proton pump. Little is known about the molecules that import neurotransmitter into synaptic vesicles. We report here that the sequence of the synaptic vesicle protein SV2 identifies this protein as a novel type of transmembrane transporter. The deduced amino acid sequence of SV2 contains two sets of six predicted transmembrane domains: the six most N-terminal transmembrane domains are highly homologous to a subfamily of transporters that includes the human glucose transporter, while the six most C-terminal domains are homologous to the plasma membrane transporters for neurotransmitters. We propose that SV2 mediates transport of neurotransmitters into synaptic vesicles.  相似文献   

4.
Synaptic plasticity results from changes in the strength of synaptic transmission upon repetitive stimulation. The amount of neurotransmitter released from presynaptic terminals can regulate short-term plasticity that lasts for a few minutes. This review focuses on short-term plasticity of small synaptic vesicle (SSV) and large dense-core vesicle (LDCV) exocytosis. Whereas SSVs contain classical neurotransmitters and activate ion channels, LDCVs contain neuropeptides and hormones which primarily activate G protein-coupled receptors (GPCRs). Thus, LDCV exocytosis is mainly associated with modulation of synaptic activity and cannot induce synaptic activity by itself. As in SSV exocytosis, repetitive stimulation leads to short-term enhancement of LDCV exocytosis: i.e., activity-dependent potentiation (ADP) which represents potentiation of neurotransmitter release. Short-term plasticity of SSV exocytosis results from Ca2+ accumulation, but ADP of LDCV exocytosis does not. Here, we review the signaling mechanisms and differences of short-term plasticity in exocytotic processes of SSV and LDCV.  相似文献   

5.
6.
The paradigm for soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) function in mammalian cells has been built on advancements in our understanding of structural and biochemical aspects of synaptic vesicle exocytosis, involving specifically synaptobrevin, syntaxin 1 and SNAP25. Interestingly, a good number of SNAREs which are not directly involved in neurotransmitter exocytosis, are either brain-enriched or have distinct neuron-specific functions. Syntaxins 12/13 regulates glutamate receptor recycling via its interaction with neuron-enriched endosomal protein of 21 kDa (NEEP21). TI-VAMP/VAMP7 is essential for neuronal morphogenesis and mediates the vesicular transport processes underlying neurite outgrowth. Ykt6 is highly enriched in the cerebral cortex and hippocampus and is targeted to a novel compartment in neurons. Syntaxin 16 has a moderate expression level in many tissues, but is rather enriched in the brain. Here, we review and discuss the neuron-specific physiology and possible pathology of these and other (such as SNAP-29 and Vti1a-beta) members of the SNARE family.  相似文献   

7.
The loss of a glutamic acid residue in the AAA-ATPase (ATPases associated with diverse cellular activities) torsinA is responsible for most cases of early onset autosomal dominant primary dystonia. In this study, we found that snapin, which binds SNAP-25 (synaptosome-associated protein of 25,000 Da) and enhances the association of the SNARE complex with synaptotagmin, is an interacting partner for both wild type and mutant torsinA. Snapin co-localized with endogenous torsinA on dense core granules in PC12 cells and was recruited to perinuclear inclusions containing mutant DeltaE-torsinA in neuroblastoma SH-SY5Y cells. In view of these observations, synaptic vesicle recycling was analyzed using the lipophilic dye FM1-43 and an antibody directed against an intravesicular epitope of synaptotagmin I. We found that overexpression of wild type torsinA negatively affects synaptic vesicle endocytosis. Conversely, overexpression of DeltaE-torsinA in neuroblastoma cells increases FM1-43 uptake. Knockdown of snapin and/or torsinA using small interfering RNAs had a similar inhibitory effect on the exo-endocytic process. In addition, down-regulation of torsinA causes the persistence of synaptotagmin I on the plasma membrane, which closely resembles the effect observed by the overexpression of the DeltaE-torsinA mutant. Altogether, these findings suggest that torsinA plays a role together with snapin in regulated exocytosis and that DeltaE-torsinA exerts its pathological effects through a loss of function mechanism. This may affect neuronal uptake of neurotransmitters, such as dopamine, playing a role in the development of dystonic movements.  相似文献   

8.
Synaptic vesicle proteins govern all relevant functions of the synaptic vesicle life cycle, including vesicle biogenesis, vesicle transport, uptake and storage of neurotransmitters, and regulated endocytosis and exocytosis. In spite of impressive progress made in the past years, not all known vesicular functions can be assigned to defined protein components, suggesting that the repertoire of synaptic vesicle proteins is still incomplete. We have identified and characterized a novel synaptic vesicle membrane protein of 31 kDa with six putative transmembrane helices that, according to its membrane topology and phylogenetic relation, may function as a vesicular transporter. The vesicular allocation is demonstrated by subcellular fractionation, heterologous expression, immunocytochemical analysis of brain sections and immunoelectron microscopy. The protein is expressed in select brain regions and contained in subpopulations of nerve terminals that immunostain for the vesicular glutamate transporter 1 and the vesicular GABA transporter VGaT (vesicular amino acid transporter) and may attribute specific and as yet undiscovered functions to subsets of glutamatergic and GABAergic synapses.  相似文献   

9.
Cysteine string protein alpha (CSPalpha)--an abundant synaptic vesicle protein that contains a DNA-J domain characteristic of Hsp40 chaperones--is thought to regulate Ca2+ channels and/or synaptic vesicle exocytosis. We now show that, in young mice, deletion of CSPalpha does not impair survival and causes no significant changes in presynaptic Ca2+ currents or synaptic vesicle exocytosis as measured in the Calyx of Held synapse. At 2-4 weeks of age, however, CSPalpha-deficient mice develop a progressive, fatal sensorimotor disorder. The neuromuscular junctions and Calyx synapses of CSPalpha-deficient mice exhibit increasing neurodegenerative changes, synaptic transmission becomes severely impaired, and the mutant mice die at approximately 2 months of age. Our data suggest that CSPalpha is not essential for the normal operation of Ca2+ channels or exocytosis but acts as a presynaptic chaperone that maintains continued synaptic function, raising the possibility that enhanced CSPalpha function could attenuate neurodegenerative diseases.  相似文献   

10.
11.
Synaptic vesicle protein 2 (SV2) is a component of all synaptic vesicles that is required for normal neurotransmission. Here we report that in intact synaptic terminals SV2 is a phosphoprotein. Phosphopeptide mapping studies indicate that a major site of phosphorylation is located on the cytoplasmic amino terminus. SV2 is phosphorylated on serine and threonine but not on tyrosine residues, indicating that it is a substrate for serine/threonine kinases. Phosphopeptide mapping, in gel kinase assays, and surveys of kinase inhibitors suggest that casein kinase I is a primary SV2 kinase. The amino terminus of SV2 was previously shown to mediate its interaction with synaptotagmin, a calcium-binding protein also required for normal neurotransmission. Comparison of synaptotagmin binding with phosphorylated and unphosphorylated SV2 amino-terminal peptides reveals an increase in binding with phosphorylation. These results suggest that the affinity of SV2 for synaptotagmin is modulated by phosphorylation of SV2.  相似文献   

12.
A 116-kDa polypeptide has recently been found to be a common component of vacuolar proton pumps isolated from a variety of sources. The 116-kDa subunit of the proton pump was purified from clathrin-coated vesicles of bovine brain, and internal sequences were obtained from proteolytic peptides. Oligonucleotide probes designed from these peptide sequences were utilized in polymerase chain reactions to isolate partial bovine cDNA clones for the protein. Sequences from these were then utilized to isolate rat brain cDNA clones containing the full-length coding region. RNA blots indicate the presence of an abundant 3.9-kilobase message for the 116-kDa subunit in brain, and primer extension analysis demonstrates that the cloned sequence is full-length. The rat cDNA sequences predict synthesis of a protein of 96,267 Da. Analysis of the deduced amino acid sequence of the 116-kDa subunit suggests that it consists of two fundamental domains: a hydrophilic amino-terminal half that is composed of greater than 30% charged residues, and a hydrophobic carboxyl-terminal half that contains at least six transmembrane regions. The structural properties of the 116-kDa proton pump polypeptide agree well with its proposed function in coupling ATP hydrolysis by the cytoplasmic subunits to proton translocation by the intramembranous components of the pump.  相似文献   

13.
The present study evaluated the expressional levels of synaptic vesicle protein 2A (SV2A) and other secretary machinery proteins (i.e., soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes, Munc18-1, N-ethylmaleimide-sensitive factor (NSF) and soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP)) in a pentylenetetrazole (PTZ) kindling model. Repeated administration of sub-convulsive PTZ (40 mg/kg, i.p.) progressively increased seizure susceptibility in mice and consistently induced clonic seizures in most animals tested at 15 days after the treatment. Western blot analysis revealed that, among the secretary machinery proteins examined, hippocampal SV2A was selectively elevated by PTZ kindling. PTZ kindling-induced SV2A expression appeared region-specific and the SV2A levels in the cerebral cortex or cerebellum were unaltered. In addition, SV2A expression by PTZ kindling was prominent in the hilar region of the dentate gyrus (DG) where GABAergic interneurons are located, but not in other hippocampal regions (e.g., the stratum lucidum of the CA3 and synaptic layers surrounding CA1 or CA3 pyramidal neurons). These findings suggest that PTZ kindling preferentially elevates SV2A expression in the hippocampus probably as a compensatory mechanism to activate the inhibitory neurotransmission.  相似文献   

14.
Liu ZJ  Chen NH 《生理科学进展》2007,38(4):343-346
神经递质合成酶、胞吐相关蛋白、神经递质受体,以及离子通道等蛋白的磷酸化和去磷酸化对神经系统的功能具有重要作用。神经递质的释放往往伴随众多蛋白的磷酸化或去磷酸化过程,包括突触蛋白磷酸化引起突触囊泡从细胞骨架上解离、突触囊泡通过复合体SNARE和Ca2 的介导与突触前膜发生锚靠、融合和神经递质释放,以及以网格蛋白依赖的形式实现突触囊泡从突触前膜上内陷、出芽和缢缩后,从膜上裂解到胞浆中重新形成突触囊泡。因此,蛋白磷酸化和去磷酸化对于神经系统完成神经信号传递具有重要的意义。  相似文献   

15.
We recently identified in a proteomic screen a novel synaptic vesicle membrane protein of 31 kDa (SV31) of unknown function. According to its membrane topology and its phylogenetic relation SV31 may function as a vesicular transporter. Based on its amino acid sequence similarity to a prokaryotic heavy metal ion transporter we analyzed its metal ion-binding properties and show that recombinant SV31 binds the divalent cations Zn(2+) and Ni(2+) and to a minor extent Cu(2+), but not Fe(2+), Co(2+), Mn(2+), or Ca(2+). Zn(2+)-binding of SV31 in viable cells was verified following heterologous transfection of pheochromocytoma cells 12 (PC12) with recombinant red fluorescent SV31 (SV31-RFP) and the fluorescent zinc indicator FluoZin-3. Sucrose density gradient fractionation of SV31-RFP-transfected PC12 cells revealed a partial overlap of SV31-RFP with synaptic-like vesicle markers and the early endosome marker rab5. Immunocytochemical analysis demonstrated a punctuate distribution in the cell soma and in neuritic processes and in addition in a compartment in vicinity to the plasma membrane that was immunopositive also for synaptosomal-associated protein 25 (SNAP-25) and syntaxin1A. Our data suggest that SV31 represents a novel Zn(2+) -binding protein that in PC12 cells is targeted to endosomes and subpopulations of synaptic-like microvesicles.  相似文献   

16.
A synaptic vesicle membrane protein is conserved from mammals to Drosophila   总被引:30,自引:0,他引:30  
T C Südhof  M Baumert  M S Perin  R Jahn 《Neuron》1989,2(5):1475-1481
The structure of synaptobrevin, an intrinsic membrane protein of small synaptic vesicles from mammalian brain, was studied by purification and molecular cloning. Its message in bovine brain encodes a 116 amino acid protein whose sequence reveals it to be the mammalian homolog of Torpedo VAMP-1. Antibody probing demonstrates that the protein is also present in Drosophila, and its Drosophila homolog was cloned. Alignment of the sequences of synaptobrevin/VAMP-1 from the three species shows it to contain four domains, including a highly conserved central region of 63 amino acids that contains 75% invariant residues. The finding that a membrane protein from vertebrate synaptic vesicles is conserved in Drosophila points toward a central role of this protein in neurotransmission and should allow a genetic approach to neurotransmitter release.  相似文献   

17.
p120 GTPase-activating protein (GAP) down-regulates Ras by stimulating GTP hydrolysis of active Ras. In addition to its association with Ras, GAP has been shown to bind to several tyrosine-phosphorylated proteins in cells stimulated by growth factors or expressing transforming tyrosine kinase variants. Here we report the cloning and characterization of a novel GAP-binding protein, mTid-1, a DnaJ chaperone protein that represents the murine homolog of the Drosophila tumor suppressor l(2)tid gene. Three alternatively spliced variants of mTid-1 were isolated, two of which correspond to the recently identified hTid-1(L) and hTid-1(S) forms of the human TID1 gene that exhibit opposing effects on apoptosis. We demonstrate that both cytoplasmic precursor and mitochondrial mature forms of mTid-1 associate with GAP in vivo. Interestingly, although mTid-1 is found tyrosine-phosphorylated in v-src-transformed fibroblast cells, GAP selectively binds to the unphosphorylated form of mTid-1. In immunofluorescence experiments, GAP and Tid-1 were shown to colocalize at perinuclear mitochondrial membranes in response to epidermal growth factor stimulation. These findings raise the possibility that Tid chaperone proteins may play a role in governing the conformation, activity, and/or subcellular distribution of GAP, thereby influencing its biochemical and biological activity within cells.  相似文献   

18.
During neurotransmitter release, exocytosed neurotransmitter vesicles are recycled by endocytosis, which involves the assembly of a complex of endocytic proteins. Assembly of endocytic proteins into a functional complex depends on their dephosphorylation by calcineurin, a calcium-sensitive protein phosphatase and the inhibitory target of immunosuppressive drugs cyclosporin A and FK506. Cain is a recently identified protein inhibitor of calcineurin. We now provide evidence that cain is a component of the endocytic protein complex. The proline-rich region of cain forms a stable association with the SH3 domain of amphiphysin 1. Using a transferrin uptake assay, we found that overexpression of cain in HEK293 cells blocks endocytosis as potently as expression of a dominant negative dynamin 1 construct. The use of other calcineurin inhibitors such as cyclosporin A and FK506 also blocks endocytosis. Since binding of cain to amphiphysin 1 does not affect amphiphysin's interaction with other endocytic proteins, our results suggest that cain negatively regulates synaptic vesicle endocytosis by inhibiting calcineurin activity, rather than sterically interfering with the assembly of the endocytic protein complex.  相似文献   

19.
Little is known about how synaptic activity is modulated in the central nervous system. We have identified SCRAPPER, a synapse-localized E3 ubiquitin ligase, which regulates neural transmission. SCRAPPER directly binds and ubiquitinates RIM1, a modulator of presynaptic plasticity. In neurons from Scrapper-knockout (SCR-KO) mice, RIM1 had a longer half-life with significant reduction in ubiquitination, indicating that SCRAPPER is the predominant ubiquitin ligase that mediates RIM1 degradation. As anticipated in a RIM1 degradation defect mutant, SCR-KO mice displayed altered electrophysiological synaptic activity, i.e., increased frequency of miniature excitatory postsynaptic currents. This phenotype of SCR-KO mice was phenocopied by RIM1 overexpression and could be rescued by re-expression of SCRAPPER or knockdown of RIM1. The acute effects of proteasome inhibitors, such as upregulation of RIM1 and the release probability, were blocked by the impairment of SCRAPPER. Thus, SCRAPPER has an essential function in regulating proteasome-mediated degradation of RIM1 required for synaptic tuning.  相似文献   

20.
Synaptic vesicles are key organelles in neurotransmission. Their functions are governed by a unique set of integral and peripherally associated proteins. To obtain a complete protein inventory, we immunoisolated synaptic vesicles from rat brain to high purity and performed a gel-based analysis of the synaptic vesicle proteome. Since the high hydrophobicity of integral membrane proteins hampers their resolution by gel electrophoretic techniques, we applied in parallel three different gel electrophoretic methods for protein separation prior to MS. Synaptic vesicle proteins were subjected to either 1-D SDS-PAGE along with nano-LC ESI-MS/MS or to the 2-D gel electrophoretic techniques benzyldimethyl-n-hexadecylammonium chloride (BAC)/SDS-PAGE, and double SDS (dSDS)-PAGE in combination with MALDI-TOF-MS. We demonstrate that the combination of all three methods provides a comprehensive survey of the proteinaceous inventory of the synaptic vesicle membrane compartment. The identified synaptic vesicle proteins include transporters, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), synapsins, rab and rab-interacting proteins, additional guanine nucleotide triphosphate (GTP) binding proteins, cytoskeletal proteins, and proteins modulating synaptic vesicle exo- and endocytosis. In addition, we identified novel proteins of unknown function. Our results demonstrate that the parallel application of three different gel-based approaches in combination with mass spectrometry permits a comprehensive analysis of the synaptic vesicle proteome that is considerably more complex than previously anticipated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号