共查询到20条相似文献,搜索用时 9 毫秒
1.
Matthew I. Hiskens Anthony G. Schneiders Mariana Angoa-Pérez Rebecca K. Vella Andrew S. Fenning 《Biomarkers》2020,25(3):213-227
AbstractMild traumatic brain injuries (mTBI) are prevalent and can result in significant debilitation. Current diagnostic methods have implicit limitations, with clinical assessment tools reliant on subjective self-reported symptoms or non-specific clinical observations, and commonly available imaging techniques lacking sufficient sensitivity to detect mTBI. A blood biomarker would provide a readily accessible detector of mTBI to meet the current measurement gap. Suitable options would provide objective and quantifiable information in diagnosing mTBI, in monitoring recovery, and in establishing a prognosis of resultant neurodegenerative disease, such as chronic traumatic encephalopathy (CTE). A biomarker would also assist in progressing research, providing suitable endpoints for testing therapeutic modalities and for further exploring mTBI pathophysiology. This review highlights the most promising blood-based protein candidates that are expressed in the central nervous system (CNS) and released into systemic circulation following mTBI. To date, neurofilament light (NF-L) may be the most suitable candidate for assessing neuronal damage, and glial fibrillary acidic protein (GFAP) for assessing astrocyte activation, although further work is required. Ultimately, the heterogeneity of cells in the brain and each marker’s limitations may require a combination of biomarkers, and recent developments in microRNA (miRNA) markers of mTBI show promise and warrant further exploration. 相似文献
2.
Hesam Sarvghad-Moghaddam Asghar Rezaei Mariusz Ziejewski 《Computer methods in biomechanics and biomedical engineering》2017,20(1):16-26
Underwash occurs as the incoming shockwaves enter the helmet subspace and develop a high pressure region at the opposite side of the head. The mechanism leading to the underwash is yet not well understood. To investigate this effect, the turbulent, supersonic flow of compressible air approaching the head–helmet assembly from different directions was studied through computational fluid dynamics simulations. The effects of different incident overpressures and helmet gap size on the underwash incidence were further evaluated. The backflow-induced pressure from the air traveling outside of the helmet on the outflow from the helmet, as well as the momentum change in the backside curve of the helmet were postulated as the main reasons for this effect. Side shockwaves predicted the highest underwash overpressures. The increase rate of the underwash reduced with increasing the incident shockwave intensity. 相似文献
3.
Polito Francesca Famà Fausto Oteri Rosaria Raffa Giovanni Vita Gianluca Conti Alfredo Daniele Sacco Macaione Vincenzo Passalacqua Marcello Cardali Salvatore Di Giorgio Rosa Maria Gioffrè Maria Angileri Flavio F. Germanò Antonino Aguennouz M’Hammed 《Molecular biology reports》2020,47(4):2941-2949
Molecular Biology Reports - TBI is the main cause of death and disability in individuals aged 1–45 in Western countries. One of the main challenges of TBI at present is the lack of specific... 相似文献
4.
J. P. Hayes A. Reagan M. W. Logue S. M. Hayes N. Sadeh D. R. Miller M. Verfaellie E. J. Wolf R. E. McGlinchey W. P. Milberg A. Stone S. A. Schichman M. W. Miller 《Genes, Brain & Behavior》2018,17(2):107-117
The negative long‐term effects of mild traumatic brain injury (mTBI) have been a growing concern in recent years, with accumulating evidence suggesting that mTBI combined with additional vulnerability factors may induce neurodegenerative‐type changes in the brain. However, the factors instantiating risk for neurodegenerative disease following mTBI are unknown. This study examined the link between mTBI and brain‐derived neurotrophic factor (BDNF) genotype, which has previously been shown to regulate processes involved in neurodegeneration including synaptic plasticity and facilitation of neural survival through its expression. Specifically, we examined nine BDNF single‐nucleotide polymorphisms (SNPs; rs908867, rs11030094, rs6265, rs10501087, rs1157659, rs1491850, rs11030107, rs7127507 and rs12273363) previously associated with brain atrophy or memory deficits in mTBI. Participants were 165 white, non‐Hispanic Iraq and Afghanistan war veterans between the ages of 19 and 58, 110 of whom had at least one mTBI in their lifetime. Results showed that the BDNF SNP rs1157659 interacted with mTBI to predict hippocampal volume. Furthermore, exploratory analysis of functional resting state data showed that rs1157659 minor allele homozygotes with a history of mTBI had reduced functional connectivity in the default mode network compared to major allele homozygotes and heterozygotes. Apolipoprotein E (APOE) was not a significant predictor of hippocampal volume or functional connectivity. These results suggest that rs1157659 minor allele homozygotes may be at greater risk for neurodegeneration after exposure to mTBI and provide further evidence for a potential role for BDNF in regulating neural processes following mTBI. 相似文献
5.
Dhananjay R. Namjoshi Craig Good Wai Hang Cheng William Panenka Darrin Richards Peter A. Cripton Cheryl L. Wellington 《Disease models & mechanisms》2013,6(6):1325-1338
Traumatic brain injury (TBI) is a major worldwide healthcare problem. Despite promising outcomes from many preclinical studies, the failure of several clinical studies to identify effective therapeutic and pharmacological approaches for TBI suggests that methods to improve the translational potential of preclinical studies are highly desirable. Rodent models of TBI are increasingly in demand for preclinical research, particularly for closed head injury (CHI), which mimics the most common type of TBI observed clinically. Although seemingly simple to establish, CHI models are particularly prone to experimental variability. Promisingly, bioengineering-oriented research has advanced our understanding of the nature of the mechanical forces and resulting head and brain motion during TBI. However, many neuroscience-oriented laboratories lack guidance with respect to fundamental biomechanical principles of TBI. Here, we review key historical and current literature that is relevant to the investigation of TBI from clinical, physiological and biomechanical perspectives, and comment on how the current challenges associated with rodent TBI models, particularly those involving CHI, could be improved. 相似文献
6.
7.
8.
9.
Liraglutide is neurotrophic and neuroprotective in neuronal cultures and mitigates mild traumatic brain injury in mice 下载免费PDF全文
Ian Tamargo Vardit Rubovitch David Tweedie Nigel H. Greig 《Journal of neurochemistry》2015,135(6):1203-1217
Traumatic brain injury (TBI), a brain dysfunction for which there is no present effective treatment, is often caused by a concussive impact to the head and affects an estimated 1.7 million Americans annually. Our laboratory previously demonstrated that exendin‐4, a long‐lasting glucagon‐like peptide 1 receptor (GLP‐1R) agonist, has neuroprotective effects in cellular and animal models of TBI. Here, we demonstrate neurotrophic and neuroprotective effects of a different GLP‐1R agonist, liraglutide, in neuronal cultures and a mouse model of mild TBI (mTBI). Liraglutide promoted dose‐dependent proliferation in SH‐SY5Y cells and in a GLP‐1R over‐expressing cell line at reduced concentrations. Pre‐treatment with liraglutide rescued neuronal cells from oxidative stress‐ and glutamate excitotoxicity‐induced cell death. Liraglutide produced neurotrophic and neuroprotective effects similar to those of exendin‐4 in vitro. The cAMP/PKA/pCREB pathway appears to play an important role in this neuroprotective activity of liraglutide. Furthermore, our findings in cell culture were well‐translated in a weight drop mTBI mouse model. Post‐treatment with a clinically relevant dose of liraglutide for 7 days in mice ameliorated memory impairments caused by mTBI when evaluated 7 and 30 days post trauma. These data cross‐validate former studies of exendin‐4 and suggest that liraglutide holds therapeutic potential for the treatment of mTBI.
10.
William C. Moss Michael J. King Eric G. Blackman 《Computer methods in biomechanics and biomedical engineering》2014,17(11):1173-1184
We use computational simulations to compare the impact response of different football and U.S. Army helmet pad materials. We conduct experiments to characterise the material response of different helmet pads. We simulate experimental helmet impact tests performed by the U.S. Army to validate our methods. We then simulate a cylindrical impactor striking different pads. The acceleration history of the impactor is used to calculate the head injury criterion for each pad. We conduct sensitivity studies exploring the effects of pad composition, geometry and material stiffness. We find that (1) the football pad materials do not outperform the currently used military pad material in militarily relevant impact scenarios; (2) optimal material properties for a pad depend on impact energy and (3) thicker pads perform better at all velocities. Although we considered only the isolated response of pad materials, not entire helmet systems, our analysis suggests that by using larger helmet shells with correspondingly thicker pads, impact-induced traumatic brain injury may be reduced. 相似文献
11.
12.
Zhiqing Zeng Yao Zhang Weiping Jiang Lu He Hongtao Qu 《Journal of cellular physiology》2020,235(3):1973-1985
Traumatic brain injury (TBI) is defined as a traumatically induced structural injury or physiological disruption of brain function as a result of external forces, leading to adult disability and death. A growing body of evidence reveals that alterations in autophagy-related proteins exist extensively in both experimentally and clinically after TBI. Of note, the autophagy pathway plays an essential role in pathophysiological processes, such as oxidative stress, inflammatory response, and apoptosis, thus contributing to neurological properties of TBI. With this in mind, this review summarizes a comprehensive overview on the beneficial and detrimental effects of autophagy in pathophysiological conditions and how these activities are linked to the pathogenesis of TBI. Moreover, the relationship between oxidative stress, inflammation, apoptosis, and autophagy occur TBI. Ultimately, multiple compounds and various drugs targeting the autophagy pathway are well described in TBI. Therefore, autophagy flux represents a potential clinical therapeutic value for the treatment of TBI and its complications. 相似文献
13.
Mayumi Prins Tiffany Greco Daya Alexander Christopher C. Giza 《Disease models & mechanisms》2013,6(6):1307-1315
Traumatic brain injury (TBI) is defined as an impact, penetration or rapid movement of the brain within the skull that results in altered mental state. TBI occurs more than any other disease, including breast cancer, AIDS, Parkinson’s disease and multiple sclerosis, and affects all age groups and both genders. In the US and Europe, the magnitude of this epidemic has drawn national attention owing to the publicity received by injured athletes and military personnel. This increased public awareness has uncovered a number of unanswered questions concerning TBI, and we are increasingly aware of the lack of treatment options for a crisis that affects millions. Although each case of TBI is unique and affected individuals display different degrees of injury, different regional patterns of injury and different recovery profiles, this review and accompanying poster aim to illustrate some of the common underlying neurochemical and metabolic responses to TBI. Recognition of these recurrent features could allow elucidation of potential therapeutic targets for early intervention. 相似文献
14.
Mitochondrial damage and dysfunction in traumatic brain injury 总被引:3,自引:0,他引:3
The enduring cognitive deficits and histopathology associated with traumatic brain injury (TBI) may arise from damage to mitochondrial populations, which initiates the metabolic dysfunction observed in clinical and experimental TBI. The anecdotal evidence for in vivo structural damage to mitochondria corroborates metabolic and physiologic dysfunction, which depletes substrates and promotes free radical generation. Excessive calcium pathology differentially disrupts the heterogeneous mitochondrial population, such that calcium sensitivity increases after TBI. The ongoing pathology may escalate to include protein and DNA oxidation that impacts mitochondrial function and promotes cell death. Thus, in vivo TBI damages, if not eliminates, mitochondrial populations depending on injury severity, with the remaining population left to provide metabolic support for survival or repair in the wake of cellular pathology. With a considerable understanding of post-injury mitochondrial populations, therapeutic interventions targeted to the mitochondria may delay or prevent secondary cascades that lead to long-term cell death and neurobehavioral disability. 相似文献
15.
A. A. Anosov I. S. Balashov R. V. Beljaev V. A. Vilkov R. V. Garskov A. S. Kazanskij A. D. Mansfel’d M. I. Shcherbakov 《Biophysics》2014,59(3):447-452
Non-invasive deep brain acoustic thermometry is carried out for two patients at Burdenko Neurosurgery Institute. This method is based on the measurements of the own thermal acoustic radiation of the investigated object. These two patients have got the brain injury. Some of their skull bones are absent. Infrared thermometry was also used to measure the surface temperature of the forehead skin. On the basis of the experimental data the temperatures deep within the brain were reconstructed. The values for the two patients are equal to 37.3 ± 0.7 and 37.0 ± 0.3°C. 相似文献
16.
Molecular mechanisms in the pathogenesis of traumatic brain injury 总被引:15,自引:0,他引:15
Traumatic brain injury (TBI) is a serious neurodisorder commonly caused by car accidents, sports related events or violence. Preventive measures are highly recommended to reduce the risk and number of TBI cases. The primary injury to the brain initiates a secondary injury process that spreads via multiple molecular mechanisms in the pathogenesis of TBI. The events leading to both neurodegeneration and functional recovery after TBI are generalized into four categories: (i) primary injury that disrupts brain tissues; (ii) secondary injury that causes pathophysiology in the brain; (iii) inflammatory response that adds to neurodegeneration; and (iv) repair-regeneration that may contribute to neuronal repair and regeneration to some extent following TBI. Destructive multiple mediators of the secondary injury process ultimately dominate over a few intrinsic protective measures, leading to activation of cysteine proteases such as calpain and caspase-3 that cleave key cellular substrates and cause cell death. Experimental studies in rodent models of TBI suggest that treatment with calpain inhibitors (e.g., AK295, SJA6017) and neurotrophic factors (e.g., NGF, BDNF) can prevent neuronal death and dysfunction in TBI. Currently, there is still no precise therapeutic strategy for the prevention of pathogenesis and neurodegeneration following TBI in humans. The search continues to explore new therapeutic targets and development of promising drugs for the treatment of TBI. 相似文献
17.
Stefano Signoretti Valentina Di Pietro Roberto Vagnozzi Giuseppe Lazzarino Angela M. Amorini Antonio Belli Serafina D’Urso Barbara Tavazzi 《Molecular and cellular biochemistry》2010,333(1-2):269-277
In this study, the concentrations of creatine (Cr), creatine phosphate (CrP), N-acetylaspartate (NAA), ATP, ADP and phosphatidylcholine (PC) were measured at different time intervals after mild traumatic brain injury (mTBI) in whole brain homogenates of rats. Anaesthetized animals underwent to the closed-head impact acceleration “weight-drop” model (450 g delivered from 1 m height = mild traumatic brain injury) and were killed at 2, 6, 24, 48 and 120 h after the insult (n = 6 for each time point). Sham-operated rats (n = 6) were used as controls. Compounds of interest were synchronously measured by HPLC in organic solvent deproteinized whole brain homogenates. A reversible decrease of all metabolites but PC was observed, with minimal values recorded at 24 h post-injury (minimum of CrP = 48 h after impact). In particular, Cr and NAA showed a decrease of 44.5 and 29.5%, respectively, at this time point. When measuring NAA in relation to other metabolites, as it is commonly carried out in “in vivo” 1H-magnetic resonance spectroscopy (1H-MRS), an increase in the NAA/Cr ratio and a decrease in the NAA/PC ratio was observed. Besides confirming a transient alteration of NAA homeostasis and ATP imbalance, our results clearly show significant changes in the cerebral concentration of Cr and CrP after mTBI. This suggests a careful use of the NAA/Cr ratio to measure NAA by 1H-MRS in conditions of altered cerebral energy metabolism. Viceversa, the NAA/PC ratio appears to be a better indicator of actual NAA levels during energy metabolism impairment. Furthermore, our data suggest that, under pathological conditions affecting the brain energetic, the Cr–CrP system is not a suitable tool to buffer possible ATP depletion in the brain, thus supporting the growing indications for alternative roles of cerebral Cr. 相似文献
18.
Qi L Cui X Dong W Barrera R Nicastro J Coppa GF Wang P Wu R 《Molecular medicine (Cambridge, Mass.)》2012,18(1):186-193
Traumatic brain injury (TBI) and hemorrhagic shock often occur concomitantly due to multiple injuries. Gastrointestinal dysfunction occurs frequently in patients with TBI. However, whether alterations in the gastrointestinal system are involved in modulating neuronal damage and recovery after TBI is largely neglected. Ghrelin is a "gut-brain" hormone with multiple functions including antiinflammation and antiapoptosis. The purpose of this study was to determine whether ghrelin attenuates brain injury in a rat model of TBI and uncontrolled hemorrhage (UH). To study this, brain injury was induced by dropping a 450-g weight from 1.5 m onto a steel helmet attached to the skull of male adult rats. Immediately after TBI, a midline laparotomy was performed and both lumbar veins were isolated and severed at the junction with the vena cava. At 45 min after TBI/UH, ghrelin (4, 8 or 16 nmol/rat) or 1 mL normal saline (vehicle) was intravenously administered. Brain levels of TNF-α and IL-6, and cleaved PARP-1 levels in the cortex were measured at 4 h after TBI/UH. Beam balance test, forelimb placing test and hindlimb placing test were used to assess sensorimotor and reflex function. In additional groups of animals, ghrelin (16 nmol/rat) or vehicle was subcutaneously (s.c.) administered daily for 10 d after TBI/UH. The animals were monitored for 28 d to record body weight changes, neurological severity scale and survival. Our results showed that ghrelin downregulated brain levels of TNF-α and IL-6, reduced cortical levels of cleaved PARP-1, improved sensorimotor and reflex functions, and decreased mortality after TBI/UH. Thus, ghrelin has a great potential to be further developed as an effective resuscitation approach for the trauma victims with brain injury and severe blood loss. 相似文献
19.
《Peptides》2013
Traumatic brain injury (TBI) is a common cause of death and disability throughout the world. A multifunctional peptide adrenomedullin (AM) has protective effects in the central nervous system. We evaluated AM in an animal model as a therapeutic agent that reduces brain damage after traumatic brain injury. A total of 36 rats was divided into 3 groups as sham, head trauma plus intraperitoneal (ip) saline, and head trauma plus adrenomedullin ip. The diffuse brain injury model of Marmarou et al. was used. Blood samples were taken from all groups at the 1st, 6th and 24th hours for analysis of TNF-α (tumor necrosis factor-α), IL-1β (interleukin-1β) and IL-6 (interleukin-6) levels. At the end of the study (at the 24th hour) a neurological examination was performed and half of the rats were decapitated to obtain blood and tissue samples, the other half were perfused transcardiacally for studying the histopathology of the brain tissue. There were no statistically significant changes in plasma levels of IL-1β, IL-6 and TNF-α relative to the sham group. Also, changes in tissue levels of malonedialdehyde, myeloperoxidase and glutathione were not statistically significant. However, neurological scores and histopathological examinations revealed healing. AM individually exerts neuroprotective effects in animal models of acute brain injury. But the mechanisms of action remain to be assessed. 相似文献
20.
Free radical formation and oxidative damage have been extensively investigated and validated as important contributors to the pathophysiology of acute central nervous system injury. The generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is an early event following injury occurring within minutes of mechanical impact. A key component in this event is peroxynitrite-induced lipid peroxidation. As discussed in this review, peroxynitrite formation and lipid peroxidation irreversibly damages neuronal membrane lipids and protein function, which results in subsequent disruptions in ion homeostasis, glutamate-mediated excitotoxicity, mitochondrial respiratory failure and microvascular damage. Antioxidant approaches include the inhibition and/or scavenging of superoxide, peroxynitrite, or carbonyl compounds, the inhibition of lipid peroxidation and the targeting of the endogenous antioxidant defense system. This review covers the preclinical and clinical literature supporting the role of ROS and RNS and their derived oxygen free radicals in the secondary injury response following acute traumatic brain injury (TBI) and spinal cord injury (SCI) and reviews the past and current trends in the development of antioxidant therapeutic strategies. Combinatorial treatment with the suggested mechanistically complementary antioxidants will also be discussed as a promising neuroprotective approach in TBI and SCI therapeutic research. This article is part of a Special Issue entitled: Antioxidants and antioxidant treatment in disease. 相似文献