首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The H(+)-ATPase from chloroplasts, CF(0)F(1), was isolated and purified. The enzyme contained one endogenous ADP at a catalytic site, and two endogenous ATP at non-catalytic sites. Incubation with 2-azido-[alpha-(32)P]AD(T)P leads to a tight binding of the azido-nucleotides. Free nucleotides were removed by three consecutive passages through centrifugation columns, and after UV-irradiation, the label was covalently bound. The labelled enzyme was digested by trypsin, the peptides were separated by ion exchange chromatography into nitreno-AMP, nitreno-ADP and nitreno-ATP labelled peptides, and these were then separated by reversed phase chromatography. Amino acid sequence analysis was used to identify the type of the nucleotide binding site. After incubation with 2-azido-[alpha-(32)P]ADP, the covalently bound label was found exclusively at beta-Tyr-362, i.e. binding occurs only to catalytic sites. Incubation conditions with 2-azido-[alpha-(32)P]ADP were varied, and conditions were found which allow selective binding of the label to different catalytic sites, either to catalytic site 2 or to catalytic site 3. For measurements of the degree of inhibition by covalent modification, CF(0)F(1) was reconstituted into phosphatidylcholine liposomes, and the membranes were energised by an acid-base transition in the presence of a K(+)/valinomycin diffusion potential. The rate of ATP synthesis was 120 s(-1), and the rate of ATP hydrolysis was 20 s(-1), both measured under multi-site conditions. Covalent modification of either catalytic site 2 or catalytic site 3 inhibited both ATP synthesis and ATP hydrolysis, the degree of inhibition being proportional to the degree of modification. Extrapolation to complete inhibition indicates that modification of one catalytic site, either site 2 or site 3, is sufficient to completely block multi-site ATP synthesis and ATP hydrolysis. The rate of ATP synthesis and the rate of ATP hydrolysis were measured as a function of the substrate concentration from multi-site to uni-site conditions with covalently modified CF(0)F(1) and with non-modified CF(0)F(1). The result was that uni-site ATP synthesis and ATP hydrolysis were not inhibited by covalent modification of either catalytic site 2 or site 3. The results indicate cooperative interactions between catalytic nucleotide binding sites during multi-site catalysis, whereas neither uni-site ATP synthesis nor uni-site ATP hydrolysis require interaction with other sites.  相似文献   

2.
Incubation of the isolated H(+)-ATPase from chloroplasts, CF(0)F(1), with 2-azido-[alpha-(32)P]ATP leads to the binding of this nucleotide to different sites. These sites were identified after removal of free nucleotides, UV-irradiation and trypsin treatment by separation of the tryptic peptides by ion exchange chromatography. The nitreno-AMP, nitreno-ADP and nitreno-ATP peptides were further separated on a reversed phase column, the main fractions were subjected to amino acid sequence analysis and the derivatized tyrosines were used to distinguish between catalytic (beta-Tyr362) and non-catalytic (beta-Tyr385) sites. Several incubation procedures were developed which allow a selective occupation of each of the three non-catalytic sites. The non-catalytic site with the highest dissociation constant (site 6) becomes half maximally filled at 50 microM 2-azido-[alpha-(32)P]ATP, that with the intermediate dissociation constant (site 5) at 2 microM. The ATP at the site with the lowest dissociation constant had to be hydrolyzed first to ADP before a replacement by 2-azido-[alpha-(32)P]ATP was possible. CF(0)F(1) with non-covalently bound 2-azido-[alpha-(32)P]ATP and after covalent derivatization was reconstituted into liposomes and the rates of ATP synthesis as well as ATP hydrolysis were measured after energization of the proteoliposomes by Delta pH/Delta phi. Non-covalent binding of 2-azido-ATP to any of the three non-catalytic sites does not influence ATP synthesis and ATP hydrolysis, whereas covalent derivatization of any of the three sites inhibits both, the degree being proportional to the degree of derivatization. Extrapolation to complete inhibition indicates that derivatization of one site (either 4 or 5 or 6) is sufficient to block completely multi-site catalysis. The rates of ATP synthesis and ATP hydrolysis were measured as a function of the ADP and ATP concentration from uni-site to multi-site conditions with covalently derivatized and non-derivatized CF(0)F(1). Uni-site ATP synthesis and ATP hydrolysis were not inhibited by covalent derivatization of any of the non-catalytic sites, whereas multi-site catalysis is inhibited. These results indicate that multi-site catalysis requires some flexibility between beta- and alpha-subunits which is abolished by covalent derivatization of beta-Tyr385 with a 2-nitreno-adenine nucleotide. Conformational changes connected with energy transduction between the F(0)-part and the F(1)-part are either not required for uni-site ATP synthesis or they are not impaired by the derivatization of any of the three beta-Tyr385.  相似文献   

3.
The mechanism of ATP hydrolysis by the solubilized mitochondrial ATPase (MF1) has been studied under conditions where catalytic turnover occurs at one site, uni-site catalysis (obtained when enzyme is in excess of substrate), or at two sites, bi-site catalysis (obtained when substrate is in excess of enzyme). Pulse-chase experiments support the conclusion that the sites which participate in bi-site catalysis are the same as those which participate in uni-site catalysis. Upon addition of ATP in molar excess to MF1, label that was bound under uni-site conditions dissociates at a rate equal to the rate of bi-site catalysis. Similarly, when medium ATP is removed, label that was bound under bi-site conditions dissociates at a rate equal to the rate of uni-site catalysis. Evidence that a high affinity catalytic site equivalent to the one observed under uni-site conditions participates as an intermediate in bi-site catalysis includes the demonstration of full occupancy of a catalytically competent site during steady-state turnover at nanomolar concentrations of ATP. Improved measurements of the interaction of ADP at a high affinity catalytic site have lead to the revision of several of the rate constants that define uni-site catalysis. The rate constant for unpromoted dissociation of ADP is equal to that for Pi (4 X 10(-3) s-1). The rate of binding ADP at a high affinity chaseable site (Kd = 1 nM) is equal to the rate of binding ATP (4 X 10(6) M-1 s-1). The rate of catalysis obtained when substrate binding at one site promotes product release from an adjacent site (bi-site catalysis) is up to 100,000-fold faster than unpromoted product release (uni-site catalysis).  相似文献   

4.
Soluble purified CF(0)F(1) from chloroplasts was either oxidized or reduced and then incubated with [alpha-(32)P]ATP in the presence or in the absence of Mg(2+). Depending on the conditions of incubation, the enzyme showed different tight-nucleotide binding sites. In the presence of EDTA, two sites bind [alpha-(32)P]ATP from the reaction medium at different rates. Both sites promote ATP hydrolysis, since equimolar amounts of [alpha-(32)P]ATP and [alpha-(32)P]ADP are bound to the enzyme. In the presence of Mg(2+), only one site appears during the first hour of incubation, with characteristics similar to those described in the absence of Mg(2+). However, after this time a third site appears also permitting binding of ATP from the reaction medium, but in this case the bound ATP is not hydrolyzed. Covalent derivatization by 2-azido-[alpha-(32)P]ATP was used to distinguish between catalytic and noncatalytic sites. In the presence of Mg(2+), there are at least three distinct nucleotide binding sites that bind nucleotide tightly from the reaction medium: two of them are catalytic and one is noncatalytic.  相似文献   

5.
M F Bruist  G G Hammes 《Biochemistry》1981,20(22):6298-6305
The solubilized coupling factor from spinach chloroplasts (CF1) contains one nondissociable ADP/CF1 which exchanges slowly with medium ADP in the presence of Ca2+, Mg2+, or EDTA; medium ATP also exchanges in the presence of Ca2+ or EDTA, but it is hydrolyzed, and only ADP is found bound to CF1. The rate of ATP exchange with heat-activated CF1 is approximately 1000 times slower than the rate of ATP hydrolysis. In the presence of Mg2+, both latent CF1 and heat-activated CF1 bind one ATP/CF1, in addition to the ADP. This MgATP is not removed by dialysis, by gel filtration, or by the substrate CaATP during catalytic turnover; however, it is released when the enzyme is stored several days as an ammonium sulfate precipitate. The photoaffinity label 3'-O-[3-[N-(4-azido-2-nitrophenyl)amino]-propionyl]-ATP binds to the MgATP site, and photolysis results in labeling of the beta subunit of CF1. Equilibrium binding measurements indicate that CF1 has two identical binding sites for ADP with a dissociation constant of 3.9 microM (in addition to the nondissociable ADP site). When MgATP is bound to CF1, one ADP binding site with a dissociation constant of 2.9 microM is found. One ATP binding site is found in addition to the MgATP site with a dissociation constant of 2.9 microM. Reaction of CF1 with the photoaffinity label 3'-O-[3-[N-(4-azido-2-nitrophenyl)amino]propionyl]-ADP indicates that the ADP binding site which is not blocked by MgATP is located near the interface of alpha and beta subunits. No additional binding sites with dissociation constants less than 200 micro M are observed for MgATP with latent CF1 and for CaADP with heat-activated CF1. Thus, three distinct nucleotide binding sites can be identified on CF1, and the tightly bound ADP and MgATP are not at the catalytic site. The active site is either the third ADP and ATP binding site or a site not yet detected.  相似文献   

6.
J M Zhou  Z X Xue  Z Y Du  T Melese  P D Boyer 《Biochemistry》1988,27(14):5129-5135
Whether the tightly bound ADP that can cause a pronounced inhibition of ATP hydrolysis by the chloroplast ATP synthase and F1 ATPase (CF1) is bound at catalytic sites or at noncatalytic regulatory sites or both has been uncertain. We have used photolabeling by 2-azido-ATP and 2-azido-ADP to ascertain the location, with Mg2+ activation, of tightly bound ADP (a) that inhibits the hydrolysis of ATP by chloroplast ATP synthase, (b) that can result in an inhibited form of CF1 that slowly regains activity during ATP hydrolysis, and (c) that arises when low concentrations of ADP markedly inhibit the hydrolysis of GTP by CF1. The data show that in all instances the inhibition is associated with ADP binding without inorganic phosphate (Pi) at catalytic sites. After photophosphorylation of ADP or 2-azido-ADP with [32P]Pi, similar amounts of the corresponding triphosphates are present on washed thylakoid membranes. Trials with appropriately labeled substrates show that a small portion of the tightly bound 2-azido-ATP gives rise to covalent labeling with an ATP moiety at noncatalytic sites but that most of the bound 2-azido-ATP gives rise to covalent labeling by an ADP moiety at a catalytic site. We also report the occurrence of a 1-2-min delay in the onset of the Mg2+-induced inhibition after addition of CF1 to solutions containing Mg2+ and ATP, and that this delay is not associated with the filling of noncatalytic sites. A rapid burst of Pi formation is followed by a much lower, constant steady-state rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Incubation of the isolated H+-ATPase from chloroplasts, CF0F1, with 2-azido-[α-32P]ATP leads to the binding of this nucleotide to different sites. These sites were identified after removal of free nucleotides, UV-irradiation and trypsin treatment by separation of the tryptic peptides by ion exchange chromatography. The nitreno-AMP, nitreno-ADP and nitreno-ATP peptides were further separated on a reversed phase column, the main fractions were subjected to amino acid sequence analysis and the derivatized tyrosines were used to distinguish between catalytic (β-Tyr362) and non-catalytic (β-Tyr385) sites. Several incubation procedures were developed which allow a selective occupation of each of the three non-catalytic sites. The non-catalytic site with the highest dissociation constant (site 6) becomes half maximally filled at 50 μM 2-azido-[α-32P]ATP, that with the intermediate dissociation constant (site 5) at 2 μM. The ATP at the site with the lowest dissociation constant had to be hydrolyzed first to ADP before a replacement by 2-azido-[α-32P]ATP was possible. CF0F1 with non-covalently bound 2-azido-[α-32P]ATP and after covalent derivatization was reconstituted into liposomes and the rates of ATP synthesis as well as ATP hydrolysis were measured after energization of the proteoliposomes by ΔpH/Δϕ. Non-covalent binding of 2-azido-ATP to any of the three non-catalytic sites does not influence ATP synthesis and ATP hydrolysis, whereas covalent derivatization of any of the three sites inhibits both, the degree being proportional to the degree of derivatization. Extrapolation to complete inhibition indicates that derivatization of one site (either 4 or 5 or 6) is sufficient to block completely multi-site catalysis. The rates of ATP synthesis and ATP hydrolysis were measured as a function of the ADP and ATP concentration from uni-site to multi-site conditions with covalently derivatized and non-derivatized CF0F1. Uni-site ATP synthesis and ATP hydrolysis were not inhibited by covalent derivatization of any of the non-catalytic sites, whereas multi-site catalysis is inhibited. These results indicate that multi-site catalysis requires some flexibility between β- and α-subunits which is abolished by covalent derivatization of β-Tyr385 with a 2-nitreno-adenine nucleotide. Conformational changes connected with energy transduction between the F0-part and the F1-part are either not required for uni-site ATP synthesis or they are not impaired by the derivatization of any of the three β-Tyr385.  相似文献   

8.
The reaction of mitochondrial F1-ATPase with immobilized substrate was studied by using columns of agarose-hexane-ATP. Mg2+ was required for binding of the enzyme to the column matrix. The column-bound enzyme could be eluted fully by ATP and other nucleoside triphosphates. Nucleoside di- and mono-phosphates were less effective. At a fixed concentration of nucleotide the effectiveness of elution was proportional to the charge on the eluting molecule. The ATP of the column matrix was hydrolysed by the bound F1-ATPase to release phosphate, probably by a uni-site reaction mechanism. Thus the F1-ATPase was bound to the immobilized ATP by a catalytic site. Treatment of the bound F1-ATPase with 4-chloro-7-nitrobenzofurazan prevented complete release of the enzyme by ATP. Only one-third of the bound enzyme was now eluted by the nucleotide. The inhibition of release could be due either to the inhibitor blocking co-operative interactions between sites or to its increasing the tightness of binding of immobilized ADP at the catalytic site.  相似文献   

9.
Under steady state photophosphorylating conditions, each ATP synthase complex from spinach thylakoids contains, at a catalytic site, about one tightly bound ATP molecule that is rapidly labeled from medium 32Pi. The level of this bound [32P]ATP is markedly reduced upon de-energization of the spinach thylakoids. The reduction is biphasic, a rapid phase in which the [32P] ATP/synthase complex drops about 2-fold within 10 s, followed by a slow phase, kobs = 0.01/min. A decrease in the concentration of medium 32Pi to well below its apparent Km for photophosphorylation is required to decrease the amount of tightly bound ATP/synthase found just after de-energization and before the rapid phase of bound ATP disappearance. The [32P]ATP that remains bound after the rapid phase appears to be mostly at a catalytic site as demonstrated by a continued exchange of the oxygens of the bound ATP with water oxygens. This bound [32P]ATP does not exchange with medium Pi and is not removed by the presence of unlabeled ATP. The levels of tightly bound ADP and ATP arising from medium ADP were measured by a novel method based on use of [beta-32P]ADP. After photophosphorylation and within minutes after the rapid phase of bound ATP loss, the measured ratio of bound ADP to ATP was about 1.4 and the sum of bound ADP plus ATP was about 1/synthase. This ratio is smaller than that found about 1 h after de-energization. Hence, while ATP bound at catalytic sites disappears, bound ADP appears. The results suggest that during and after de-energization the bound ATP disappears from the catalytic site by hydrolysis to bound ADP and Pi with subsequent preferential release of Pi. These and related observations can be accommodated by the binding change mechanism for ATP synthase with participation of alternating catalytic sites and are consistent with a deactivated state arising from occupancy of one catalytic site on the synthase complex by an inhibitory ADP without presence of Pi.  相似文献   

10.
The F1-ATPase from chloroplasts (CF1) lacks catalytic capacity for ATP hydrolysis if ATP is not bound at noncatalytic sites. CF1 heat activated in the presence of ADP, with less than one ADP and no ATP at non-catalytic sites, shows a pronounced lag in the onset of ATP hydrolysis after exposure to 5-20 microM ATP. The onset of activity correlates well with the binding of ATP at the last two of the three noncatalytic sites. The dependence of activity on the presence of ATP at non-catalytic sites is shown at relatively low or high free Mg2+ concentrations, with or without bicarbonate as an activating anion, and when the binding of ATP at noncatalytic sites is slowed 3-4-fold by sulfate. The latent CF1 activated by dithiothreitol also requires ATP at noncatalytic sites for ATPase activity. A similar requirement by other F1-ATPases and by ATP synthases seems plausible.  相似文献   

11.
H Hanada  T Noumi  M Maeda  M Futai 《FEBS letters》1989,257(2):465-467
We prepared two types of E. coli F1 by slightly different gel filtration procedures of the purified F1: F1(II) contained about 2 mol, and F1(V) about 5 mol of bound adenine nucleotides per mol of the enzyme. Thus F1(II) had more than 2, possibly 3, vacant catalytic sites, while F1(V) had less than one vacant catalytic site. The rate of ATP hydrolysis in uni-site catalysis (in the presence of inorganic phosphate) was about 3-fold higher with F1(II) than with F1(V), suggesting that ADP and inorganic phosphate bound at the catalytic sites of F1(V) changed the kinetics of uni-site catalysis significantly.  相似文献   

12.
The binding of one ADP molecule at the catalytic site of the nucleotide depleted F1-ATPase results in a decrease in the initial rate of ATP hydrolysis. The addition of an equimolar amount of ATP to the nucleotide depleted F1-ATPase leads to the same effect, but, in this case, inhibition is time dependent. The half-time of this process is about 30 s, and the inhibition is correlated with Pi dissociation from the F1-ATPase catalytic site (uni-site catalysis). The F1-ATPase-ADP complex formed under uni-site catalysis conditions can be reactivated in two ways: (i) slow ATP-dependent ADP release from the catalytic site (tau 1/2 20 s) or (ii) binding of Pi in addition to MgADP and the formation of the triple F1-ATPase-MgADP-Pi complex. GTP and GDP are also capable of binding to the catalytic site, however, without changes in the kinetic properties of the F1-ATPase. It is proposed that ATP-dependent dissociation of the F1-ATPase-GDP complex occurs more rapidly, than that of the F1-ATPase-ADP complex.  相似文献   

13.
Z X Xue  J M Zhou  T Melese  R L Cross  P D Boyer 《Biochemistry》1987,26(13):3749-3753
The photolabeling of chloroplast F1 ATPase, following exposure to Mg2+ and 2-azido-ATP and separation from medium nucleotides, results in derivatization of two separate peptide regions of the beta subunit. Up to 3 mol of the analogue can be incorporated per mole of CF1, with covalent binding of one moiety or two moieties per beta subunit that can be either AMP, ADP, or ATP derivatives. These results, the demonstration of noncovalent tight binding of at least four [3H]adenine nucleotides to the enzyme and the presence of three beta subunits per enzyme, point to six potential adenine nucleotide binding sites per molecule. The tightly bound 2-azido nucleotides on CF1, found after exposure of the heat-activated and EDTA-treated enzyme to Mg2+ and 2-azido-ATP, differ in their ease of replacement during subsequent hydrolysis of ATP. Some of the bound nucleotides are not readily replaced during catalytic turnover and covalently label one peptide region of the beta subunit. They are on noncatalytic sites. Other tightly bound nucleotides are readily replaced during catalytic turnover and label another peptide region of the beta subunit. They are at catalytic sites. No alpha-subunit labeling is detected upon photolysis of the bound 2-azido nucleotides. However, one or both of the sites could be at an alpha-beta-subunit interface with the 2-azido region close to the beta subunit, or both binding sites may be largely or entirely on the beta subunit.  相似文献   

14.
The photoaffinity phosphate analogue 4-azido-2 nitrophenyl phosphate (ANPP) was shown previously (Pougeois, R., Lauquin, G. J.-M., and Vignais, P. V. (1983) Biochemistry 22, 1241-1245) to bind covalently and specifically to a single catalytic site on one of the three beta-subunits of the isolated chloroplast coupling factor 1 (CF(1)). Modification by ANPP strongly inhibited ATP hydrolysis activity. In this study, we examined labeling of membrane-bound CF(1) by ANPP by exposing thylakoid membranes to increasing concentrations of the reagent. ANPP exhibited saturable binding to two sites on CF(1), one on the beta-subunit and one on the alpha-subunit. Labeling by ANPP resulted in the complete inhibition of both ATP synthesis and ATP hydrolysis by the membrane-bound enzyme. Labeling of both sites by ANPP was reduced by more than 80% in the presence of P(i) (> or = 10 mM) and ATP (> or = 0.5 mM). ADP was less effective in competing with ANPP for binding, giving a maximum of approximately 35% inhibition at concentrations > or = 2 mM. ANPP-labeled tryptic peptides of the alpha-subunit were isolated and sequenced. The majority of the probe was contained in three peptides corresponding to residues Gln(173) to Arg(216), Gly(217) to Arg(253), and His(256) to Arg(272) of the alpha-subunit. In the mitochondrial F(1) (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628), all three analogous peptides are located within the nucleotide binding pocket and within close proximity to the gamma-phosphate binding site. The data indicate, however, that the azidophenyl group of bound ANPP is oriented at approximately 180 degrees in the opposite direction to the adenine binding site with reference to the phosphate binding site on the alpha-subunit. The study has confirmed that ANPP is a bona fide phosphate analogue and suggests that it specifically targets the gamma-phosphate binding site within the nucleotide binding pockets on the alpha- and beta-subunits of CF(1). The study also indicates that in the resting state of the chloroplast F(1)-F(0) complex both the alpha- and beta-subunits are structurally asymmetric.  相似文献   

15.
The aurovertin-F1 complex was used to monitor fluorescence changes of the mitochondrial adenosine triphosphatase during multi- and uni-site ATP hydrolysis. It is known that the fluorescence intensity of the complex is partially quenched by addition of ATP or Mg2+ and enhanced by ADP (Chang, T., and Penefsky, H. S. (1973) J. Biol. Chem. 248, 2746-2754). In the present study low concentrations of ATP (0.03 mM) induced a marked fluorescence quenching which was followed by a fast fluorescence recovery. This recovery could be prevented by EDTA or an ATP regenerating system. The rate of ATP hydrolysis by the aurovertin-F1 complex and the reversal of the ATP-induced fluorescence quenching were determined in these various conditions. ITP hydrolysis also resulted in fluorescence quenching that was followed by a recovery of fluorescence intensity. Under conditions for single site catalysis, fluorescence quenching was observed upon the addition of ATP. This strongly indicates that fluorescence changes in the aurovertin-F1 complex are due to the binding and hydrolysis of ATP at a catalytic site. Therefore the resulting ADP molecule bound at this catalytic site possibly induces the fluorescence recovery observed.  相似文献   

16.
The catalytic site of Escherichia coli F1 was probed using a reactive ATP analogue, adenosine triphosphopyridoxal (AP3-PL). For complete loss of enzyme activity, about 1 mol of AP3-PL bound to 1 mol of F1 was estimated to be required in the presence or absence of Mg2+. About 70% of the label was bound to the alpha subunit and the rest to the beta subunit in the absence of Mg2+, and the alpha Lys-201 and beta Lys-155 residues, respectively, were the major target residues (Tagaya, M., Noumi, T., Nakano, K., Futai, M., and Fukui, T. (1988) FEBS Lett. 233, 347-351). Addition of Mg2+ decreased the AP3-PL concentration required for half-maximal inhibition, and predominant labeling of the beta subunit (beta Lys-155 and beta Lys-201) with the reagent. ATP and ADP were protective ligands in the presence and absence of Mg2+. The alpha subunit mutation (alpha Lys-201----Gln or alpha Lys-201 deletion) were active in oxidative phosphorylation. However, purified mutant F1s showed impaired low multi-site activity, although their uni-site catalyses were essentially normal. Thus alpha Lys-201 is not a catalytic residue, but may be important for catalytic cooperativity. Mutant F1s were inhibited less by AP3-PL in the absence of Mg2+, and consistent with this, modifications of their alpha subunits by AP3-PL were reduced. AP3-PL was more inhibitory to the mutant enzymes in the presence of Mg2+, and bound to the beta Lys-155 and beta Lys-201 residues of mutant F1 (alpha Lys-201----Gln). These results strongly suggest that alpha Lys-201, beta Lys-155, and beta Lys-201 are located close together near the gamma-phosphate group of ATP bound to the catalytic site, and that the two beta residues and the gamma-phosphate group become closer to each other in the presence of Mg2+.  相似文献   

17.
J C Wu  J Lin  H Chuan  J H Wang 《Biochemistry》1989,28(22):8905-8911
The affinity reagents 3'-O-(5-fluoro-2,4-dinitrophenyl) [alpha-32P]ATP (FDNP-[alpha-32P]ATP) and 3'-O-(5-fluoro-2,4-dinitrophenyl) [8-14C]ATP (FDNP-[14C]ATP) were synthesized and used to characterize the structure and function of the three active sites in F1-ATPase. FDNP-[alpha-32P]ATP was found to bind covalently to F1 up to two DNP-[alpha-32P]ATP labels per F1 in the absence of Mg2+ without decreasing the ATPase activity. However, when MgCl2 was subsequently added to the reaction mixture, the enzyme could be further labeled with concomitant decrease in ATPase activity that is consistent with the complete inactivation of one enzyme molecule by an affinity label at the third ATP-binding site. Partial hydrolysis of the FDNP-[14C]ATP-labeled enzyme and sequencing of the isolated peptide indicated that the affinity label was attached to Lys-beta 301 at all three active sites. Samples of F1 with covalent affinity label on Lys-beta 301 were also used to reconstitute F1-deficient submitochondrial particles. The reconstituted particles were assayed for ATPase and oxidative phosphorylation activities. These results show that the catalytic hydrolysis of ATP either by F1 in solution or by F0F1 complex attached to inner mitochondrial membrane takes place essentially at only one active site, but is promoted by the binding of ATP at the other two active sites, and that ATP synthesis during oxidative phosphorylation takes place at all three active sites [corrected].  相似文献   

18.
Beef heart mitochondrial F1 contains a total of six adenine nucleotide-binding sites including at least two different types of sites. Three "exchangeable" sites exchange rapidly during hydrolysis of MgATP, whereas three "nonexchangeable" sites do not (Cross, R. L. and Nalin, C. M. (1982) J. Biol. Chem. 257, 2874-2881). When F1 that has been stored as a suspension in (NH4)2SO4/ATP/EDTA/sucrose/Tris, pH 8.0, is pelleted, rinsed with (NH4)2SO4, dissolved, and desalted, it retains three bound adenine nucleotides. We find that two of these endogenous nucleotides are bound at nonexchangeable sites and one at an exchangeable site. The vacant nonexchangeable site is highly specific for adenine nucleotide and is rapidly filled by ADP upon addition of ADP or during ATP hydrolysis. ADP bound at this site can be removed by reprecipitating the enzyme with (NH4)2SO4. The single nucleotide retained by desalted F1 at an exchangeable site is displaced during hydrolysis of ATP, GTP, or ITP. The binding of PPi at two sites on the enzyme also promotes its dissociation. Neither procedure affects retention of nucleotide at the nonexchangeable sites. These observations, combined with the finding that PPi is much more easily removed from exchangeable sites than ADP, have led to the development of a procedure for preparing F1 with uniform and well-defined nucleotide site occupancy. This involves sequential exposure to MgATP, PPi, and high concentrations of Pi. Unbound ligand is removed between each step. The resulting enzyme, F1[3,0], has three occupied nonexchangeable sites and three vacant exchangeable sites. Evidence that nonexchangeable and exchangeable sites represent noncatalytic and catalytic sites, respectively, suggest that this form of the enzyme will prove useful in numerous applications, including transient kinetic measurements and affinity labeling of active site residues.  相似文献   

19.
On the soluble part of the coupling factor (CF1), extracted from spinach chloroplasts, three nucleotide-binding sites are identified. Three ADP are bound per CF1 when the enzyme is incubated with ADP either with or without Mg2+. Two ADP and one ATP are bound per CF1 when the enzyme is incubated with a limiting concentration of ATP, in the presence of Mg2+. At high ATP concentration, in the presence of Mg2+, one free ATP exchanges with one bound ADP and two ATP and one ADP remain bound per CF1. When Mg2+ is omitted from the incubation medium of ATP and CF1, only two ADP and around 0.5 ATP are bound per CF1. The three nucleotide binding sites of CF1 fall into two different and independent categories according to the ability of the bound nucleotides to be exchanged with free nucleotides. On one site the bound ADP is difficult to exchange. On the other two sites, the bound nucleotides. ADP or ATP, are readily exchangable. We propose that the two exchangeable sites form the catalytic part of the enzyme where ATP is hydrolyzed. When ATP concentration is high enough, in the presence of Mg2+, one ATP displaces one bound ADP and allows the ATP hydrolysis to proceed. We propose too that the site where ADP is difficult to exchange may represent the 'tight' ADP-binding site, different from the catalytic ones, which becomes exchangeable on the CF1 in vivo when the thylakoid membranes are energized by light, as stressed by Bickel-Sandk?tter and Strotman [(1976) FEBS Lett. 65, 102-106].  相似文献   

20.
In medium containing 40% dimethylsulfoxide, soluble F1 catalyzes the hydrolysis of ATP introduced at concentrations lower than that of the enzyme [Al-Shawi, M.K. & Senior, A.E. (1992), Biochemistry 31, 886-891]. At this concentration of dimethylsulfoxide, soluble F1 also catalyzes the spontaneous synthesis of a tightly bound ATP to a level of approximately 0.15 mol per mol F1 [Gómez-Puyou, A., Tuena de Gómez-Puyou, M. & de Meis, L. (1986) Eur. J. Biochem. 159, 133-140]. The mechanisms that allow soluble F1 to carry out these apparently opposing reactions were studied. The rate of hydrolysis of ATP bound to F1 under uni-site conditions and that of synthesis of ATP were markedly similar, indicating that the two ATP molecules lie in equivalent high affinity catalytic sites. The number of enzyme molecules that have ATP at the high affinity catalytic site under conditions of synthesis or uni-site hydrolysis is less than the total number of enzyme molecules. Therefore, it was hypothesized that when the enzyme was treated with dimethylsulfoxide, a fraction of the F1 population carried out synthesis and another hydrolysis. Indeed, measurements of the two reactions under identical conditions showed that different fractions of the F1 population carried out simultaneously synthesis and hydrolysis of ATP. The reactions continued until an equilibrium level between F1.ADP + Pi <--> F1.ATP was established. At equilibrium, about 15% of the enzyme population was in the form F1.ATP. The DeltaG degrees of the reaction with 0.54 microM F1, 2 mM Pi and 10 mM Mg2+ at pH 6.8 was -2.7 kcal.mol-1 in favor of F1.ATP. The DeltaG degrees of the reaction did not exhibit important variations with Pi concentration; thus, the reaction was in thermodynamic equilibrium. In contrast, DeltaG degrees became significantly less negative as the concentration of dimethylsulfoxide was decreased. In water, the reaction was far to the left. The equilibrium constant of the reaction diminished linearly with an increase in water activity. The effect of solvent is fully reversible. In comparison to other enzymes, F1 seems unique in that solvent controls the equilibrium that exists within an enzyme population. This results from the effect of solvent on the partition of Pi between the catalytic site and the medium, and the large energetic barrier that prevents release of ATP from the catalytic site. In the presence of dimethylsulfoxide and Pi, ATP is continuously hydrolyzed and synthesized with formation and uptake of Pi from the medium. This process is essentially an exchange reaction analogous to the phosphate-ATP exchange reaction that is catalyzed by the ATP synthase in coupled energy transducing membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号