首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are three isoforms of the inositol 1,4,5- trisphosphate receptor (InsP(3)R), each of which has a distinct effect on Ca(2+) signaling. However, it is not known whether each isoform similarly plays a distinct role in the activation of Ca(2+)-mediated events. To investigate this question, we examined the effects of each InsP(3)R isoform on transmission of Ca(2+) signals to mitochondria and induction of apoptosis. Each isoform was selectively silenced using isoform-specific small interfering RNA in Chinese hamster ovary cells, which express all three InsP(3)R isoforms. ATP-induced cytosolic Ca(2+) signaling patterns were altered, regardless of which isoform was silenced, but in a different fashion depending on the isoform. ATP also induced Ca(2+) signals in mitochondria, which were inhibited more effectively by silencing the type III InsP(3)R than by silencing either the type I or type II isoform. The type III isoform also co-localized most strongly with mitochondria. When apoptosis was induced by activation of either the extrinsic or intrinsic apoptotic pathway, induction was reduced most effectively by silencing the type III InsP(3)R. These findings provide evidence that the type III isoform of the InsP(3)R plays a special role in induction of apoptosis by preferentially transmitting Ca(2+) signals into mitochondria.  相似文献   

2.
Acetylcholine-evoked secretion from the parotid gland is substantially potentiated by cAMP-raising agonists. A potential locus for the action of cAMP is the intracellular signaling pathway resulting in elevated cytosolic calcium levels ([Ca(2+)](i)). This hypothesis was tested in mouse parotid acinar cells. Forskolin dramatically potentiated the carbachol-evoked increase in [Ca(2+)](i), converted oscillatory [Ca(2+)](i) changes into a sustained [Ca(2+)](i) increase, and caused subthreshold concentrations of carbachol to increase [Ca(2+)](i) measurably. This potentiation was found to be independent of Ca(2+) entry and inositol 1,4,5-trisphosphate (InsP(3)) production, suggesting that cAMP-mediated effects on Ca(2+) release was the major underlying mechanism. Consistent with this hypothesis, dibutyryl cAMP dramatically potentiated InsP(3)-evoked Ca(2+) release from streptolysin-O-permeabilized cells. Furthermore, type II InsP(3) receptors (InsP(3)R) were shown to be directly phosphorylated by a protein kinase A (PKA)-mediated mechanism after treatment with forskolin. In contrast, no evidence was obtained to support direct PKA-mediated activation of ryanodine receptors (RyRs). However, inhibition of RyRs in intact cells, demonstrated a role for RyRs in propagating Ca(2+) oscillations and amplifying potentiated Ca(2+) release from InsP(3)Rs. These data indicate that potentiation of Ca(2+) release is primarily the result of PKA-mediated phosphorylation of InsP(3)Rs, and may largely explain the synergistic relationship between cAMP-raising agonists and acetylcholine-evoked secretion in the parotid. In addition, this report supports the emerging consensus that phosphorylation at the level of the Ca(2+) release machinery is a broadly important mechanism by which cells can regulate Ca(2+)-mediated processes.  相似文献   

3.
Disruption of neuronal Ca(2+) homeostasis plays a well-established role in cell death in a number of neurodegenerative disorders. Recent evidence suggests that proteolysis of the type 1 inositol 1,4,5-trisphosphate receptor (InsP(3) R1), a Ca(2+) release channel on the endoplasmic reticulum, generates a dysregulated channel, which may contribute to aberrant Ca(2+) signaling and neurodegeneration in disease states. However, the specific effects of InsP(3) R1 proteolysis on neuronal Ca(2+) homeostasis are unknown, as are the functional contributions of this pathway to neuronal death. This study evaluates the consequences of calpain-mediated InsP(3) R1 proteolysis on neuronal Ca(2+) signaling and survival using adeno-associated viruses to express a recombinant cleaved form of the channel (capn-InsP(3) R1) in rat primary cortical neurons. Here, we demonstrate that expression of capn-InsP(3) R1 in cortical cultures reduced cellular viability. This effect was associated with increased resting cytoplasmic Ca(2+) concentration ([Ca(2+) ](i) ), increased [Ca(2+) ](i) response to glutamate, and enhanced sensitivity to excitotoxic stimuli. Together, our results demonstrate that InsP(3) R1 proteolysis disrupts neuronal Ca(2+) homeostasis, and potentially acts as a feed-forward pathway to initiate or execute neuronal death.  相似文献   

4.
The cytosolic Ca(2+) concentration ([Ca(2+)](c)) controls diverse cellular events via various Ca(2+) signaling patterns; the latter are influenced by the method of cell activation. Here, in single-voltage clamped smooth muscle cells, sarcolemma depolarization generated uniform increases in [Ca(2+)](c) throughout the cell entirely by Ca(2+) influx. On the other hand, the Ca(2+) signal produced by InsP(3)-generating agonists was a propagated wave. Using localized uncaged InsP(3), the forward movement of the Ca(2+) wave arose from Ca(2+)-induced Ca(2+) release at the InsP(3) receptor (InsP(3)R) without ryanodine receptor involvement. The decline in [Ca(2+)](c) (the back of the wave) occurred from a functional compartmentalization of the store, which rendered the site of InsP(3)-mediated Ca(2+) release, and only this site, refractory to the phosphoinositide. The functional compartmentalization arose by a localized feedback deactivation of InsP(3) receptors produced by an increased [Ca(2+)](c) rather than a reduced luminal [Ca(2+)] or an increased cytoplasmic [InsP(3)]. The deactivation of the InsP(3) receptor was delayed in onset, compared with the time of the rise in [Ca(2+)](c), persisted (>30 s) even when [Ca(2+)](c) had regained resting levels, and was not prevented by kinase or phosphatase inhibitors. Thus different forms of cell activation generate distinct Ca(2+) signaling patterns in smooth muscle. Sarcolemma Ca(2+) entry increases [Ca(2+)](c) uniformly; agonists activate InsP(3)R and produce Ca(2+) waves. Waves progress by Ca(2+)-induced Ca(2+) release at InsP(3)R, and persistent Ca(2+)-dependent inhibition of InsP(3)R accounts for the decline in [Ca(2+)](c) at the back of the wave.  相似文献   

5.
Members of the Bcl-2 protein family modulate outer mitochondrial membrane permeability to control apoptosis. However, these proteins also localize to the endoplasmic reticulum (ER), the functional significance of which is controversial. Here we provide evidence that anti-apoptotic Bcl-2 proteins regulate the inositol 1,4,5-trisphosphate receptor (InsP(3)R) ER Ca(2+) release channel resulting in increased cellular apoptotic resistance and enhanced mitochondrial bioenergetics. Anti-apoptotic Bcl-X(L) interacts with the carboxyl terminus of the InsP(3)R and sensitizes single InsP(3)R channels in ER membranes to low [InsP(3)], enhancing Ca(2+) and InsP(3)-dependent regulation of channel activity in vitro and in vivo, reducing ER Ca(2+) content and stimulating mitochondrial energetics. The pro-apoptotic proteins Bax and tBid antagonize this effect by blocking the biochemical interaction of Bcl-X(L) with the InsP(3)R. These data support a novel model in which Bcl-X(L) is a direct effector of the InsP(3)R, increasing its sensitivity to InsP(3) and enabling ER Ca(2+) release to be more sensitively coupled to extracellular signals. As a consequence, cells are protected against apoptosis by a more sensitive and dynamic coupling of ER to mitochondria through Ca(2+)-dependent signal transduction that enhances cellular bioenergetics and preserves survival.  相似文献   

6.
Many stimuli that activate the vascular NADPH oxidase generate reactive oxygen species and increase intracellular Ca(2+), but whether NADPH oxidase activation directly affects Ca(2+) signaling is unknown. NADPH stimulated the production of superoxide anion and H(2)O(2) in human aortic endothelial cells that was inhibited by the NADPH oxidase inhibitor diphenyleneiodonium and was significantly attenuated in cells transiently expressing a dominant negative allele of the small GTP-binding protein Rac1, which is required for oxidase activity. In permeabilized Mag-indo 1-loaded cells, NADPH and H(2)O(2) each decreased the threshold concentration of inositol 1,4,5-trisphosphate (InsP(3)) required to release intracellularly stored Ca(2+) and shifted the InsP(3)-Ca(2+) release dose-response curve to the left. Concentrations of H(2)O(2) as low as 3 microm increased the sensitivity of intracellular Ca(2+) stores to InsP(3) and decreased the InsP(3) EC(50) from 423.2 +/- 54.9 to 276.9 +/- 14. 4 nm. The effect of NADPH on InsP(3)-stimulated Ca(2+) release was blocked by catalase and by diphenyleneiodonium and was not observed in cells lacking functional Rac1 protein. Thus, NADPH oxidase-derived H(2)O(2) increases the sensitivity of intracellular Ca(2+) stores to InsP(3) in human endothelial cells. Since Ca(2+)-dependent signaling pathways are critical to normal endothelial function, this effect may be of great importance in endothelial signal transduction.  相似文献   

7.
8.
This study examines the extent to which the antiapoptotic Bcl-2 proteins Bcl-2 and Bcl-x(L) contribute to diabetic Ca(2+) dysregulation and vessel contractility in vascular smooth muscle cells (VSMCs) through their interaction with inositol 1,4,5-trisphosphate receptor (InsP(3)R) intracellular Ca(2+) release channels. Measurements of intracellular ([Ca(2+)](i)) and sarcoplasmic reticulum ([Ca(2+)](SR)) calcium concentrations were made in primary cells isolated from diabetic (db/db) and nondiabetic (db/m) mice. In addition, [Ca(2+)](i) and constriction were recorded simultaneously in isolated intact arteries. Protein expression levels of Bcl-x(L) but not Bcl-2 were elevated in VSMCs isolated from db/db compared with db/m age-matched controls. In single cells, InsP(3)-evoked [Ca(2+)](i) signaling was enhanced in VSMCs from db/db mice compared with db/m. This was attributed to alterations in the intrinsic properties of the InsP(3)R itself because there were no differences between db/db and db/m in the steady-state [Ca(2+)](SR) or InsP(3)R expression levels. Moreover, in permeabilized cells the rate of InsP(3)R-dependent SR Ca(2+) release was increased in db/db compared with db/m VSMCs. The enhanced InsP(3)-dependent SR Ca(2+) release was attenuated by the Bcl-2 protein inhibitor ABT-737 only in diabetic cells. Application of ABT-737 similarly attenuated enhanced agonist-induced [Ca(2+)](i) signaling only in intact aortic and mesenteric db/db vessels. In contrast, ABT-737 had no effect on agonist-evoked contractility in either db/db or db/m vessels. Taken together, the data suggest that in type 2 diabetes the mechanism for [Ca(2+)](i) dysregulation in VSMCs involves Bcl-2 protein-dependent increases in InsP(3)R excitability and that dysregulated [Ca(2+)](i) signaling does not appear to contribute to increased vessel reactivity.  相似文献   

9.
A rise in cytosolic Ca(2+) concentration is used as a key activation signal in virtually all animal cells, where it triggers a range of responses including neurotransmitter release, muscle contraction, and cell growth and proliferation [1]. During intracellular Ca(2+) signaling, mitochondria rapidly take up significant amounts of Ca(2+) from the cytosol, and this stimulates energy production, alters the spatial and temporal profile of the intracellular Ca(2+) signal, and triggers cell death [2-10]. Mitochondrial Ca(2+) uptake occurs via a ruthenium-red-sensitive uniporter channel found in the inner membrane [11]. In spite of its critical importance, little is known about how the uniporter is regulated. Here, we report that the mitochondrial Ca(2+) uniporter is gated by cytosolic Ca(2+). Ca(2+) uptake into mitochondria is a Ca(2+)-activated process with a requirement for functional calmodulin. However, cytosolic Ca(2+) subsequently inactivates the uniporter, preventing further Ca(2+) uptake. The uptake pathway and the inactivation process have relatively low Ca(2+) affinities of approximately 10-20 microM. However, numerous mitochondria are within 20-100 nm of the endoplasmic reticulum, thereby enabling rapid and efficient transmission of Ca(2+) release into adjacent mitochondria by InsP(3) receptors on the endoplasmic reticulum. Hence, biphasic control of mitochondrial Ca(2+) uptake by Ca(2+) provides a novel basis for complex physiological patterns of intracellular Ca(2+) signaling.  相似文献   

10.
Fertilization in mammals stimulates a series of Ca(2+) oscillations that continue for 3-4 h. Cell-cycle-dependent changes in the ability to release Ca(2+) are one mechanism that leads to the inhibition of Ca(2+) transients after fertilization. The downregulation of InsP(3)Rs at fertilization may be an additional mechanism for inhibiting Ca(2+) transients. In the present study we examine the mechanism of this InsP(3)R downregulation. We find that neither egg activation nor Ca(2+) transients are necessary or sufficient for the stimulation of InsP(3)R downregulation. First, parthenogenetic activation fails to stimulate downregulation. Second, downregulation persists when fertilization-induced Ca(2+) transients and egg activation are inhibited using BAPTA. Third, downregulation can be induced in immature oocytes that do not undergo egg activation. Other than fertilization, the only stimulus that downregulated InsP(3)Rs was microinjection of the potent InsP(3)R agonist adenophostin A. InsP(3)R downregulation was inhibited by the cysteine protease inhibitor ALLN but MG132 and lactacystin were not effective. Finally, we have injected maturing oocytes with adenophostin A and produced MII eggs depleted of InsP(3)Rs. We show that sperm-induced Ca(2+) signaling is inhibited in such InsP(3)R-depleted eggs. These data show that InsP(3)R binding is sufficient for downregulation and that Ca(2+) signaling at fertilization is mediated via the InsP(3)R.  相似文献   

11.
It has been proposed that the inositol 1,4,5-trisphosphate receptor (InsP(3)R) type III acts as a trigger for InsP(3)-mediated calcium (Ca(2+)) signaling, because this InsP(3) isoform lacks feedback inhibition by cytosolic Ca(2+). We tested this hypothesis in RIN-m5F cells, which express predominantly the type III receptor. Extracellular ATP increases Ca(2+) in these cells, and we found that this effect is independent of extracellular Ca(2+) but is blocked by the InsP(3)R antagonist heparin. There was a dose-dependent increase in the number of cells responding to ATP and two-photon flash photolysis of caged-Ca(2+) heightened the sensitivity of RIN-m5F cells to this increase. These findings provide evidence that Ca(2+) increases the sensitivity of the InsP(3)R type III in intact cells and supports the idea that this isoform can act as a trigger for hormone-induced Ca(2+) signaling.  相似文献   

12.
Calcium release through inositol (1,4,5)-trisphosphate receptors (InsP(3)R) is the primary signal driving digestive enzyme and fluid secretion from pancreatic acinar cells. The type 2 (InsP(3)R2) and type 3 (InsP(3)R3) InsP(3)R are the predominant isoforms expressed in acinar cells and are required for proper exocrine gland function. Both InsP(3)R2 and InsP(3)R3 are positively regulated by cytosolic ATP, but InsP(3)R2 is 10-fold more sensitive than InsP(3)R3 to this form of modulation. In this study, we examined the role of InsP(3)R2 in setting the sensitivity of InsP(3)-induced Ca(2+) release (IICR) to ATP in pancreatic acinar cells. IICR was measured in permeabilized acinar cells from wild-type (WT) and InsP(3)R2 knock-out (KO) mice. ATP augmented IICR from WT pancreatic cells with an EC(50) of 38 mum. However, the EC(50) was 10-fold higher in acinar cells isolated from InsP(3)R2-KO mice, indicating a role for InsP(3)R2 in setting the sensitivity of IICR to ATP. Consistent with this idea, heterologous expression of InsP(3)R2 in RinM5F cells, which natively express predominately InsP(3)R3, increased the sensitivity of IICR to ATP. Depletion of ATP attenuated agonist-induced Ca(2+) signaling in WT pancreatic acinar cells. This effect was more profound in acinar cells prepared from InsP(3)R2-KO mice. These data suggest that the sensitivity of IICR to ATP depletion is regulated by the particular complement of InsP(3)R expressed in an individual cell. The effects of metabolic stress on intracellular Ca(2+) signals can therefore be determined by the relative amount of InsP(3)R2 expressed in cells.  相似文献   

13.
The type 1 inositol 1,4,5-trisphosphate receptor (InsP(3)R1) is a ubiquitous intracellular Ca(2+) release channel that is vital to intracellular Ca(2+) signaling. InsP(3)R1 is a proteolytic target of calpain, which cleaves the channel to form a 95-kDa carboxyl-terminal fragment that includes the transmembrane domains, which contain the ion pore. However, the functional consequences of calpain proteolysis on channel behavior and Ca(2+) homeostasis are unknown. In the present study we have identified a unique calpain cleavage site in InsP(3)R1 and utilized a recombinant truncated form of the channel (capn-InsP(3)R1) corresponding to the stable, carboxyl-terminal fragment to examine the functional consequences of channel proteolysis. Single-channel recordings of capn-InsP(3)R1 revealed InsP(3)-independent gating and high open probability (P(o)) under optimal cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) conditions. However, some [Ca(2+)](i) regulation of the cleaved channel remained, with a lower P(o) in suboptimal and inhibitory [Ca(2+)](i). Expression of capn-InsP(3)R1 in N2a cells reduced the Ca(2+) content of ionomycin-releasable intracellular stores and decreased endoplasmic reticulum Ca(2+) loading compared with control cells expressing full-length InsP(3)R1. Using a cleavage-specific antibody, we identified calpain-cleaved InsP(3)R1 in selectively vulnerable cerebellar Purkinje neurons after in vivo cardiac arrest. These findings indicate that calpain proteolysis of InsP(3)R1 generates a dysregulated channel that disrupts cellular Ca(2+) homeostasis. Furthermore, our results demonstrate that calpain cleaves InsP(3)R1 in a clinically relevant injury model, suggesting that Ca(2+) leak through the proteolyzed channel may act as a feed-forward mechanism to enhance cell death.  相似文献   

14.
The formation of intra-neuronal mutant protein aggregates is a characteristic of several human neurodegenerative disorders, like Alzheimer's disease, Parkinson's disease (PD) and polyglutamine disorders, including Huntington's disease (HD). Autophagy is a major clearance pathway for the removal of mutant huntingtin associated with HD, and many other disease-causing, cytoplasmic, aggregate-prone proteins. Autophagy is negatively regulated by the mammalian target of rapamycin (mTOR) and can be induced in all mammalian cell types by the mTOR inhibitor rapamycin. It can also be induced by a recently described cyclical mTOR-independent pathway, which has multiple drug targets, involving links between Ca(2+)-calpain-G(salpha) and cAMP-Epac-PLC-epsilon-IP(3) signalling. Both pathways enhance the clearance of mutant huntingtin fragments and attenuate polyglutamine toxicity in cell and animal models. The protective effects of rapamycin in vivo are autophagy-dependent. In Drosophila models of various diseases, the benefits of rapamycin are lost when the expression of different autophagy genes is reduced, implicating that its effects are not mediated by autophagy-independent processes (like mild translation suppression). Also, the mTOR-independent autophagy enhancers have no effects on mutant protein clearance in autophagy-deficient cells. In this review, we describe various drugs and pathways inducing autophagy, which may be potential therapeutic approaches for HD and related conditions.  相似文献   

15.
Regulation of Ca(2+) release through inositol 1,4,5-trisphosphate receptors (InsP(3)R) has important consequences for defining the particular spatio-temporal properties of intracellular Ca(2+) signals. In this study, regulation of Ca(2+) release by phosphorylation of type 1 InsP(3)R (InsP(3)R-1) was investigated by constructing "phosphomimetic" charge mutations in the functionally important phosphorylation sites of both the S2+ and S2- InsP(3)R-1 splice variants. Ca(2+) release was investigated following expression in Dt-40 3ko cells devoid of endogenous InsP(3)R. In cells expressing either the S1755E S2+ or S1589E/S1755E S2- InsP(3)R-1, InsP(3)-induced Ca(2+) release was markedly enhanced compared with nonphosphorylatable S2+ S1755A and S2- S1589A/S1755A mutants. Ca(2+) release through the S2- S1589E/S1755E InsP(3)R-1 was enhanced approximately 8-fold over wild type and approximately 50-fold when compared with the nonphosphorylatable S2- S1589A/S1755A mutant. In cells expressing S2- InsP(3)R-1 with single mutations in either S1589E or S1755E, the sensitivity of Ca(2+) release was enhanced approximately 3-fold; sensitivity was midway between the wild type and the double glutamate mutation. Paradoxically, forskolin treatment of cells expressing either single Ser/Glu mutation failed to further enhance Ca(2+) release. The sensitivity of Ca(2+) release in cells expressing S2+ S1755E InsP(3)R-1 was comparable with the sensitivity of S2- S1589E/S1755E InsP(3)R-1. In contrast, mutation of S2+ S1589E InsP(3)R-1 resulted in a receptor with comparable sensitivity to wild type cells. Expression of S2- S1589E/S1755E InsP(3)R-1 resulted in robust Ca(2+) oscillations when cells were stimulated with concentrations of alpha-IgM antibody that were threshold for stimulation in S2- wild type InsP(3)R-1-expressing cells. However, at higher concentrations of alpha-IgM antibody, Ca(2+) oscillations of a similar period and magnitude were initiated in cells expressing either wild type or S2- phosphomimetic mutations. Thus, regulation by phosphorylation of the functional sensitivity of InsP(3)R-1 appears to define the threshold at which oscillations are initiated but not the frequency or amplitude of the signal when established.  相似文献   

16.
The inositol 1,4,5-trisphosphate (InsP(3)) receptor is a tetrameric intracellular calcium channel. It is an integral component of the InsP(3) signaling pathway in multicellular organisms, where it regulates cellular calcium dynamics in many different contexts. In order to understand how the primary structure of the InsP(3)R affects its functional properties, the kinetics of Ca(2+)-release in vitro from single point mutants of the Drosophila InsP(3)R have been determined earlier. Among these, the Ka901 mutant in the putative selectivity-filter of the pore is of particular interest. It is non-functional in the homomeric form whereas it forms functional channels (with altered channel properties) when co-expressed with wild-type channels. Here we show that due to its changed functional properties the Ka901 mutant protein has dominant-negative effects in vivo. Cells expressing Ka901:WT channels exhibit much higher levels of cytosolic Ca(2+) upon stimulation as compared with cells over-expressing just the wild-type DmInsP(3)R, thus supporting our in vitro observations that increased Ca(2+) release is a property of heteromeric Ka901:WT channels. Furthermore, ectopic expression of the Ka901 mutant channel in aminergic cells of Drosophila alters electrophysiological properties of a flight circuit and results in defective flight behavior.  相似文献   

17.
Mutations in presenilins (PS) are the major cause of familial Alzheimer's disease (FAD) and have been associated with calcium (Ca2+) signaling abnormalities. Here, we demonstrate that FAD mutant PS1 (M146L)and PS2 (N141I) interact with the inositol 1,4,5-trisphosphate receptor (InsP3R) Ca2+ release channel and exert profound stimulatory effects on its gating activity in response to saturating and suboptimal levels of InsP3. These interactions result in exaggerated cellular Ca2+ signaling in response to agonist stimulation as well as enhanced low-level Ca2+signaling in unstimulated cells. Parallel studies in InsP3R-expressing and -deficient cells revealed that enhanced Ca2+ release from the endoplasmic reticulum as a result of the specific interaction of PS1-M146L with the InsP3R stimulates amyloid beta processing,an important feature of AD pathology. These observations provide molecular insights into the "Ca2+ dysregulation" hypothesis of AD pathogenesis and suggest novel targets for therapeutic intervention.  相似文献   

18.
Secretagogue-stimulated intracellular Ca(2+) signals are fundamentally important for initiating the secretion of the fluid and ion component of saliva from parotid acinar cells. The Ca(2+) signals have characteristic spatial and temporal characteristics, which are defined by the specific properties of Ca(2+) release mediated by inositol 1,4,5-trisphosphate receptors (InsP(3)R). In this study we have investigated the role of adenine nucleotides in modulating Ca(2+) release in mouse parotid acinar cells. In permeabilized cells, the Ca(2+) release rate induced by submaximal [InsP(3)] was increased by 5 mM ATP. Enhanced Ca(2+) release was not observed at saturating [InsP(3)]. The EC(50) for the augmented Ca(2+) release was ~8 μM ATP. The effect was mimicked by nonhydrolysable ATP analogs. ADP and AMP also potentiated Ca(2+) release but were less potent than ATP. In acini isolated from InsP(3)R-2-null transgenic animals, the rate of Ca(2+) release was decreased under all conditions but now enhanced by ATP at all [InsP(3)]. In addition the EC(50) for ATP potentiation increased to ~500 μM. These characteristics are consistent with the properties of the InsP(3)R-2 dominating the overall features of InsP(3)R-induced Ca(2+) release despite the expression of all isoforms. Finally, Ca(2+) signals were measured in intact parotid lobules by multiphoton microscopy. Consistent with the release data, carbachol-stimulated Ca(2+) signals were reduced in lobules exposed to experimental hypoxia compared with control lobules only at submaximal concentrations. Adenine nucleotide modulation of InsP(3)R in parotid acinar cells likely contributes to the properties of Ca(2+) signals in physiological and pathological conditions.  相似文献   

19.
The current study provides biochemical and functional evidence that the targeting of protein kinase A (PKA) to sites of localized Ca(2+) release confers rapid, specific phosphoregulation of Ca(2+) signaling in pancreatic acinar cells. Regulatory control of Ca(2+) release by PKA-dependent phosphorylation of inositol 1,4, 5-trisphosphate (InsP(3)) receptors was investigated by monitoring Ca(2+) dynamics in pancreatic acinar cells evoked by the flash photolysis of caged InsP(3) prior to and following PKA activation. Ca(2+) dynamics were imaged with high temporal resolution by digital imaging and electrophysiological methods. The whole cell patch clamp technique was used to introduce caged compounds and to record the activity of a Ca(2+)-activated Cl(-) current. Photolysis of low concentrations of caged InsP(3) evoked Cl(-) currents that were inhibited by treatment with dibutryl-cAMP or forskolin. In contrast, PKA activators had no significant inhibitory effect on the activation of Cl(-) current evoked by uncaging Ca(2+) or by the photolytic release of higher concentrations of InsP(3). Treatment with Rp-adenosine-3',5'-cyclic monophoshorothioate, a selective inhibitor of PKA, or with Ht31, a peptide known to disrupt the targeting of PKA, largely abolished forskolin-induced inhibition of Ca(2+) release. Further evidence for the targeting of PKA to the sites of Ca(2+) mobilization was revealed using immunocytochemical methods demonstrating that the R(IIbeta) subunit of PKA was localized to the apical regions of acinar cells and co-immunoprecipitated with the type III but not the type I or type II InsP(3) receptors. Finally, we demonstrate that the pattern of signaling evoked by acetylcholine can be converted to one that is more "CCK-like" by raising cAMP levels. Our data provide a simple mechanism by which distinct oscillatory Ca(2+) patterns can be shaped.  相似文献   

20.
The inositol 1,4,5-trisphosphate receptors   总被引:8,自引:0,他引:8  
Bezprozvanny I 《Cell calcium》2005,38(3-4):261-272
The inositol (1,4,5)-trisphosphate receptors (InsP3R) are the intracellular calcium (Ca2+) release channels that play a key role in Ca2+ signaling in cells. Three InsP3R isoforms-InsP3R type 1 (InsP3R1), InsP3R type 2 (InsP3R2), and InsP3R type 3 (InsP3R3) are expressed in mammals. A single InsP3R isoform is expressed in Drosophila melanogaster (DmInsP3R) and Caenorhabditis elegans (CeInsP3R). The progress made during last decade towards understanding the function and the properties of the InsP3R is briefly reviewed in this chapter. The main emphasis is on studies that revealed structural determinants responsible for the ligand recognition by the InsP3R, ion permeability of the InsP3R, modulation of the InsP3R by cytosolic Ca2+, ATP and PKA phosphorylation and on the recently identified InsP3R-binding partners. The main focus is on the InsP3R1, but the recent information about properties of other InsP3R isoforms is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号