首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Lens formation in mouse is critically dependent on proper development of the retinal neuroectoderm that is located close beneath the head surface ectoderm. Signaling from the prospective retina triggers lens‐specific gene expression in the surface‐ectoderm. Supression of canonical Wnt/β‐catenin signaling in the surface ectoderm is one of the prerequisites for lens development because, as we show here, ectopic Wnt activation in the retina and lens abrogates lens formation. Wnt inhibiton is mediated by signals coming from the retina but its exact mechanism is unknown. We show that Pax6 directly controls expression of several Wnt inhibitors such as Sfrp1, Sfrp2, and Dkk1 in the presumptive lens. In accordance, absence of Pax6 function leads to aberrant canonical Wnt activity in the presumptive lens that subsequently impairs lens development. Thus Pax6 is required for down‐regulation of canonical Wnt signaling in the presumptive lens ectoderm. genesis 48:86–95, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
6.
7.
8.
9.
10.
The Ca(2+) signaling pathway appears to regulate the processes of the early development through its antagonism of canonical Wnt/β-catenin signaling pathway. However, the underlying mechanism is still poorly understood. Here, we show that nuclear factor of activated T cells (NFAT), a component of Ca(2+) signaling, interacts directly with Dishevelled (Dvl) in a Ca(2+)-dependent manner. A dominant negative form of NFAT rescued the inhibition of the Wnt/β-catenin pathway triggered by the Ca(2+) signal. NFAT functioned downstream of β-catenin without interfering with its stability, but influencing the interaction of β-catenin with Dvl by its competitively binding to Dvl. Furthermore, we demonstrate that NFAT is a regulator in the proliferation and differentiation of neural progenitor cells by modulating canonical Wnt/β-catenin signaling pathway in the neural tube of chick embryo. Our findings suggest that NFAT negatively regulates canonical Wnt/β-catenin signaling by binding to Dvl, thereby participating in vertebrate neurogenesis.  相似文献   

11.
12.
13.
14.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号