首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), collectively termed human pluripotent stem cells (hPSCs), are typically derived and maintained in adherent and semi-defined culture conditions. Recently a number of groups, including Chen et al., 2012, have demonstrated that hESCs can now be expanded efficiently and maintain pluripotency over long-term passaging as aggregates in a serum-free defined suspension culture system, permitting the preparation of scalable cGMP derived hPSC cultures for cell banking, high throughput research programs and clinical applications. In this short commentary we describe the utility and potential future uses of suspension culture systems for hPSCs.  相似文献   

2.
The use of human embryonic stem cells (hESCs) for cell-based therapies will require large quantities of genetically stable pluripotent cells and their differentiated progeny. Traditional hESC propagation entails adherent culture and is sensitive to enzymatic dissociation. These constraints hamper modifying method from 2-dimensional flat-bed culture, which is expensive and impractical for bulk cell production. Large-scale culture for clinical use will require innovations such as suspension culture for bioprocessing. Here we describe the attachment and growth kinetics of both murine embryonic stem cells (mESCs) and hESCs on trimethyl ammonium-coated polystyrene microcarriers for feeder-free, 3-dimensional suspension culture. mESCs adhered and expanded according to standard growth kinetics. For hESC studies, we tested aggregate (collagenase-dissociated) and single-cell (TrypLE-dissociated) culture. Cells attached rapidly to beads followed by proliferation. Single-cell cultures expanded 3-fold over approximately 5 days, slightly exceeding that of hESC aggregates. Importantly, single-cell cultures were maintained through 6 passages with a 14-fold increase in cell number while still expressing the undifferentiated markers Oct-4 and Tra 1-81. Finally, hESCs retained their capacity to differentiate towards pancreatic, neuronal, and cardiomyocyte lineages. Our studies provide proof-of-principle of suspension-based expansion of hESCs on microcarriers, as a novel, economical and practical feeder-free means of bulk hESC production.  相似文献   

3.
As a result of their pluripotency and potential for unlimited self‐renewal, human embryonic stem cells (hESCs) hold tremendous promise in regenerative medicine. An essential prerequisite for the widespread application of hESCs is the establishment of effective and efficient protocols for large‐scale cell culture, storage, and distribution. At laboratory scales hESCs are cultured adherent to tissue culture plates; these culture techniques are labor‐intensive and do not scale to high cell numbers. In an effort to facilitate larger scale hESC cultivation, we investigated the feasibility of culturing hESCs adherent to microcarriers. We modified the surface of Cytodex 3 microcarriers with either Matrigel or mouse embryonic fibroblasts (MEFs). hESC colonies were effectively expanded in a pluripotent, undifferentiated state on both Matrigel‐coated microcarriers and microcarriers seeded with a MEF monolayer. While the hESC expansion rate on MEF‐microcarriers was less than that on MEF‐plates, the doubling time of hESCs on Matrigel‐microcarriers was indistinguishable from that of hESCs expanded on Matrigel‐coated tissue culture plates. Standard hESC cryopreservation methodologies are plagued by poor viability and high differentiation rates upon thawing. Here, we demonstrate that cryopreservation of hESCs adherent to microcarriers in cryovials provides a higher recovery of undifferentiated cells than cryopreservation of cells in suspension. Together, these results suggest that microcarrier‐based stabilization and culture may facilitate hESC expansion and storage for research and therapeutic applications. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

4.
Human embryonic stem cells (hESCs) can serve as an unlimited cell source for cellular transplantation and tissue engineering due to their prolonged proliferation capacity and their unique ability to differentiate into derivatives of all three-germ layers. In order to reliably and safely produce hESCs, use of reagents that are defined, qualified, and preferably derived from a non-animal source is desirable. Traditionally, mouse embryonic fibroblasts (MEFs) have been used as feeder cells to culture undifferentiated hESCs. We recently reported a scalable feeder-free culture system using medium conditioned by MEFs. The base and conditioned medium (CM) still contain unknown bovine and murine-derived components, respectively. In this study, we report the development of a hESC culture system that utilizes a commercially available serum-free medium (SFM) containing human sourced and recombinant proteins supplemented with recombinant growth factor(s) and does not require conditioning with feeder cells. In this system, which employs human laminin coated surface and high concentration of hbFGF, the hESCs maintained undifferentiated hESC morphology and had a twofold increase in expansion compared to hESCs grown in MEF-CM. The hESCs also expressed surface markers SSEA-4 and Tra-1-60 and maintained expression of hTERT, Oct4, and Cripto genes similar to cells cultured in MEF-CM. In addition, hESCs maintained in this culture system were able to differentiate in vitro and in vivo into cells of all three-germ layers. The cells maintained a normal karyotype after prolonged culture in SFM. In summary, this study demonstrates that the hESCs cultured in defined non-conditioned serum-free medium (NC-SFM) supplemented with growth factor(s) retain the characteristics and replicative potential of hESCs. The use of defined culture system with NC-SFM on human laminin simplifies scale-up and allows for reproducible generation of hESCs under defined and controlled conditions that would serve as a starting material for production of hESC derived cells for therapeutic use.  相似文献   

5.
Son MY  Kim HJ  Kim MJ  Cho YS 《PloS one》2011,6(5):e19134
Spherical three-dimensional cell aggregates called embryoid bodies (EBs), have been widely used in in vitro differentiation protocols for human pluripotent stem cells including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Recent studies highlight the new devices and techniques for hEB formation and expansion, but are not involved in the passaging or subculture process. Here, we provide evidence that a simple periodic passaging markedly improved hEB culture condition and thus allowed the size-controlled, mass production of human embryoid bodies (hEBs) derived from both hESCs and hiPSCs. hEBs maintained in prolonged suspension culture without passaging (>2 weeks) showed a progressive decrease in the cell growth and proliferation and increase in the apoptosis compared to 7-day-old hEBs. However, when serially passaged in suspension, hEB cell populations were significantly increased in number while maintaining the normal rates of cell proliferation and apoptosis and the differentiation potential. Uniform-sized hEBs produced by manual passaging using a 1∶4 split ratio have been successfully maintained for over 20 continuous passages. The passaging culture method of hEBs, which is simple, readily expandable, and reproducible, could be a powerful tool for improving a robust and scalable in vitro differentiation system of human pluripotent stem cells.  相似文献   

6.
Routine commercial and clinical applications of human pluripotent stem cells (hPSCs) and their progenies will require increasing cell quantities that cannot be provided by conventional adherent culture technologies. Here we describe a straightforward culture protocol for the expansion of undifferentiated human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) in suspension culture. This culture technique was successfully tested on two hiPSC clones, three hESC lines and on a nonhuman primate ESC line. It is based on a defined medium and single-cell inoculation, but it does not require culture preadaptation, use of microcarriers or any other matrices. Over a time course of 4-7 d, hPSCs can be expanded up to sixfold. Preparation of a high-density culture and its subsequent translation to scalable stirred suspension in Erlenmeyer flasks and stirred spinner flasks are also feasible. Importantly, hPSCs maintain pluripotency and karyotype stability for more than ten passages.  相似文献   

7.
Objectives: Human embryonic stem cells (hESC) are promising for tissue engineering (TE) purposes due to their unique properties. However, current standard mechanical passaging techniques limit rates of possible TE experiments, as it is difficult to obtain high enough numbers of the cells for experimentation. In this study, several dissociative solutions and application methods are tested for their applicability to, and influence on, hESC culture and expansion. Materials and methods: Expansion of two hESC lines, H1 and VUB01, subjected to different passaging techniques, was evaluated. Four dissociative solutions – TrypLE? Express, Trypsin‐EDTA, Cell Dissociation Solution and Accutase?– were combined with two application protocols. As reference conditions, manual and bead‐based passaging techniques were used. Results: Results showed that use of Cell Dissociation Solution in combination with a slow adaptation protocol, generated the best expansion profile for both cell lines. The hESC single cell lines remained pluripotent, had good expansion profiles and were capable of differentiation into representatives of all three germ layers. Reproducibility of the results was confirmed by adaptation for three other hESC lines. Conclusion: Use of Cell Dissociation Solution, combined with slow adaptation protocol, allows a fast switch from the mechanical passaging technique to a single‐cell split technique, generating stable and robust hESC cell lines, which allow for large scale expansion of hESC for TE purposes.  相似文献   

8.
9.
Melichar H  Li O  Ross J  Haber H  Cado D  Nolla H  Robey EA  Winoto A 《PloS one》2011,6(5):e19854
Directed differentiation of human embryonic stem cells (hESCs) into any desired cell type has been hailed as a therapeutic promise to cure many human diseases. However, substantial roadblocks still exist for in vitro differentiation of hESCs into distinct cell types, including T lymphocytes. Here we examined the hematopoietic differentiation potential of six different hESC lines. We compare their ability to develop into CD34(+) or CD34(+)CD45(+) hematopoietic precursor populations under several differentiation conditions. Comparison of lymphoid potential of hESC derived- and fetal tissue derived-hematopoietic precursors was also made. We found diverse hematopoietic potential between hESC lines depending on the culture or passage conditions. In contrast to fetal-derived hematopoietic precursors, none of the CD34(+) precursors differentiated from hESCs were able to develop further into T cells. These data underscore the difficulties in the current strategy of hESC forward differentiation and highlight distinct differences between CD34(+) hematopoietic precursors generated in vitro versus in vivo.  相似文献   

10.
The successful implementation of human embryonic stem cells (hESCs)-based technologies requires the production of relevant numbers of well-characterized cells and their efficient long-term storage. In this study, cells were microencapsulated in alginate to develop an integrated bioprocess for expansion and cryopreservation of pluripotent hESCs. Different three-dimensional (3D) culture strategies were evaluated and compared, specifically, microencapsulation of hESCs as: i) single cells, ii) aggregates and iii) immobilized on microcarriers. In order to establish a scalable bioprocess, hESC-microcapsules were cultured in stirred tank bioreactors.The combination of microencapsulation and microcarrier technology resulted in a highly efficient protocol for the production and storage of pluripotent hESCs. This strategy ensured high expansion ratios (an approximately twenty-fold increase in cell concentration) and high cell recovery yields (>70%) after cryopreservation. When compared with non-encapsulated cells, cell survival post-thawing demonstrated a three-fold improvement without compromising hESC characteristics.Microencapsulation also improved the culture of hESC aggregates by protecting cells from hydrodynamic shear stress, controlling aggregate size and maintaining cell pluripotency for two weeks.This work establishes that microencapsulation technology may prove a powerful tool for integrating the expansion and cryopreservation of pluripotent hESCs. The 3D culture strategy developed herein represents a significant breakthrough towards the implementation of hESCs in clinical and industrial applications.  相似文献   

11.
Human embryonic stem cells (hESC) are undifferentiated cells derived from an early embryo that can grow in vitro indefinitely, while retaining their capability to differentiate into specialized somatic cell types. Over the last decade there has been great interest in derivation and culture of these cells, as they can potentially provide a supply of readily available differentiated cells and tissues of all types to be used for therapeutic purposes in cell transplantation in humans, as well as for other medical uses such as drug discovery. The source of hESC lines is usually excess human embryos from in vitro fertilization treatments, although novel ways of producing hESCs have been suggested recently. The actual methods of hESC derivation have not changed greatly since the first report by Thomson et al. in 1998 . However, the main emphasis over the last several years has been in finding defined conditions for derivation and culture of hESCs, because to enable the clinical use of hESC for cell transplantation, the use of animal derived biological components is no longer acceptable. For basic research, the aim is to replace even human derived materials with completely defined systems. In this paper we describe methods utilized in our laboratory for hESC derivation and describe two studies conducted in an attempt to improve derivation efficiency and to enable research outcomes to be achieved using fewer embryos.  相似文献   

12.
Microfluidic systems create significant opportunities to establish highly controlled microenvironmental conditions for screening pluripotent stem cell fate. However, since cell fate is crucially dependent on this microenvironment, it remains unclear as to whether continual perfusion of culture medium supports pluripotent stem cell maintenance in feeder-free, chemically defined conditions, and further, whether optimum perfusion conditions exist for subsequent use of human embryonic stem cell (hESCs) in other microfludic systems. To investigate this, we designed microbioreactors based on resistive flow to screen hESCs under a linear range of flowrates. We report that at low rates (conditions where glucose transport is convection-limited with Péclet number <1), cells are affected by apparent nutrient depletion and waste accumulation, evidenced by reduced cell expansion and altered morphology. At higher rates, cells are spontaneously washed out, and display morphological changes which may be indicative of early-stage differentiation. However, between these thresholds exists a narrow range of flowrates in which hESCs expand comparably to the equivalent static culture system, with regular morphology and maintenance of the pluripotency marker TG30 in >95% of cells over 7 days. For MEL1 hESCs the optimum flowrate also coincided with the time-averaged medium exchange rate in static cultures, which may therefore provide a good first estimate of appropriate perfusion rates. Overall, we demonstrate hESCs can be maintained in microbioreactors under continual flow for up to 7 days, a critical outcome for the future development of microbioreactor-based screening systems and assays for hESC culture.  相似文献   

13.
Previously we reported that feeders formed from human placental fibroblasts (hPFs) support derivation and long-term self-renewal of human embryonic stem cells (hESCs) under serum-free conditions. Here, we show, using antibody array and ELISA platforms, that hPFs secrete ~6-fold higher amounts of the CXC-type chemokine, GROα, than IMR 90, a human lung fibroblast line, which does not support hESC growth. Furthermore, immunocytochemistry and immunoblot approaches revealed that hESCs express CXCR, a GROα receptor. We used this information to develop defined culture medium for feeder-free propagation of hESCs in an undifferentiated state. Cells passaged as small aggregates and maintained in the GROα-containing medium had a normal karyotype, expressed pluripotency markers, and exhibited apical-basal polarity, i.e., had the defining features of pluripotent hESCs. They also differentiated into the three primary (embryonic) germ layers and formed teratomas in immunocompromised mice. hESCs cultured as single cells in the GROα-containing medium also had a normal karyotype, but they downregulated markers of pluripotency, lost apical-basal polarity, and expressed markers that are indicative of the early stages of neuronal differentiation-βIII tubulin, vimentin, radial glial protein, and nestin. These data support our hypothesis that establishing and maintaining cell polarity is essential for the long-term propagation of hESCs in an undifferentiated state and that disruption of cell-cell contacts can trigger adoption of a neuronal fate.  相似文献   

14.
Many applications of human embryonic stem cells (hESCs) will require fully defined growth and differentiation conditions including media devoid of fetal calf serum. To identify factors that control lineage differentiation we have analyzed a serum-free (SF) medium conditioned by the cell line END2, which efficiently induces hESCs to form cardiomyocytes. Firstly, we noted that insulin, a commonly used medium supplement, acted as a potent inhibitor of cardiomyogenesis in multiple hESC lines and was rapidly cleared by medium conditioning. In the presence of insulin or IGF-1, which also suppressed cardiomyocyte differentiation, the PI3/Akt pathway was activated in undifferentiated hESC, suggesting that insulin/IGF-1 effects were mediated by this signaling cascade. Time course analysis and quantitative RT-PCR revealed impaired expression of endoderm and mesoderm markers in the presence of insulin, particularly if added during early stages of hESC differentiation. Relatively high levels of the neural ectoderm marker Sox1 were expressed under these conditions. Secondly, comparative gene expression showed that two key enzymes in the prostaglandin I2 (PGI2) synthesis pathway were highly up-regulated in END2 cells compared with a related, but non-cardiogenic, cell line. Biochemical analysis confirmed 6-10-fold higher PGI2 levels in END2 cell-conditioned medium (END2-CM) vs. controls. Optimized concentrations of PGI2 in a fully synthetic, insulin-free medium resulted in a cardiogenic activity equivalent to END2-CM. Addition of the p38 mitogen-activated protein kinase-inhibitor SB203580, which we have shown previously to enhance hESC cardiomyogenesis, to these insulin-free and serum-free conditions resulted in a cardiomyocyte content of >10% in differentiated cultures without any preselection. This study represents a significant step toward developing scalable production for cardiomyocytes from hESC using clinically compliant reagents compatible with Good Manufacturing Practice.  相似文献   

15.
Large‐scale manufacture of human embryonic stem cells (hESCs) is prerequisite to their widespread use in biomedical applications. However, current hESC culture strategies are labor‐intensive and employ highly variable processes, presenting challenges for scaled production and commercial development. Here we demonstrate that passaging of the hESC lines, HUES7, and NOTT1, with trypsin in feeder‐free conditions, is compatible with complete automation on the CompacT SelecT, a commercially available and industrially relevant robotic platform. Pluripotency was successfully retained, as evidenced by consistent proliferation during serial passage, expression of stem cell markers (OCT4, NANOG, TRA1‐81, and SSEA‐4), stable karyotype, and multi‐germlayer differentiation in vitro, including to pharmacologically responsive cardiomyocytes. Automation of hESC culture will expedite cell‐use in clinical, scientific, and industrial applications. Biotechnol. Bioeng. 2009;102: 1636–1644. © 2008 Wiley Periodicals, Inc.  相似文献   

16.
17.
Robust expansion and genetic manipulation of human embryonic stem cells (hESCs) and induced-pluripotent stem (iPS) cells are limited by poor cell survival after enzymatic dissociation into single cells. Although inhibition of apoptosis is implicated for the single-cell survival of hESCs, the protective role of attenuation of apoptosis in hESC survival has not been elucidated. Bcl-xL is one of several anti-apoptotic proteins, which are members of the Bcl-2 family of proteins. Using an inducible system, we ectopically expressed Bcl-xL gene in hESCs, and found a significant increase of hESC colonies in the single-cell suspension cultures. Overexpression of Bcl-xL in hESCs decreased apoptotic caspase-3+ cells, suggesting attenuation of apoptosis in hESCs. Without altering the kinetics of pluripotent gene expression, the efficiency to generate embryoid bodies (EBs) in vitro and the formation of teratoma in vivo were significantly increased in Bcl-xL-overexpressing hESCs after single-cell dissociation. Interestingly, the number and size of hESC colonies from cluster cultures were not affected by Bcl-xL overexpression. Several genes of extracellular matrix and adhesion molecules were upregulated by Bcl-xL in hESCs without single-cell dissociation, suggesting that Bcl-xL regulates adhesion molecular expression independent of cell dissociation. In addition, the gene expressions of FAS and several TNF signaling mediators were downregulated by Bcl-xL.These data support a model in which Bcl-xL promotes cell survival and increases cloning efficiency of dissociated hESCs without altering hESC self-renewal by i) attenuation of apoptosis, and ii) upregulation of adhesion molecules to facilitate cell-cell or cell-matrix interactions.  相似文献   

18.
犬肾细胞MDCK无血清贴壁及单细胞悬浮培养   总被引:1,自引:0,他引:1  
旨在挖掘用于鉴定金黄色葡萄球菌的高特异性靶点及其PCR检测引物。采用C++语言编程,以金黄色葡萄球菌Staphylococcus aureus MRSA 252基因组编码序列为对象,对2 656个可编码区进行分析,获得特异性靶点序列,并设计PCR扩增引物。对包括葡萄球菌属11个种及其他细菌属在内的共计137株细菌验证引物特异性,筛选获得9个DNA序列,并设计了4对引物。经验证2对引物的特异性较好,其中引物SA3的基因组DNA检测限为13.7 fg/μL,菌体检测限为9.25×102 CFU/mL。结果验证  相似文献   

19.
近年来,因病毒侵害人类每年都要蒙受巨大的经济损失和社会损失。犬肾细胞MDCK以其具有的培养容易、增殖快、流感病毒感染效率高等特点,成为适用于流感病毒疫苗生产的重要细胞系之一。以MDCK细胞为研究对象,在自制无血清培养基中成功实现了MDCK细胞从有血清培养到无血清培养的驯化;并通过单细胞悬浮培养驯化过程实现了MDCK细胞的无血清单细胞悬浮培养,获得了适于无血清单细胞悬浮生长的ssf-MDCK细胞株,无血清单细胞悬浮批培养最大活细胞密度可达3.81×106 cells/mL,最大比生长速率可达0.056 h?  相似文献   

20.
Mouse embryonic fibroblasts (MEFs) were used to establish human embryonic stem cells (hESCs) cultures after blastocyst isolation1. This feeder system maintains hESCs from undergoing spontaneous differentiation during cell expansion. However, this co-culture method is labor intensive, requires highly trained personnel, and yields low hESC purity4. Many laboratories have attempted to minimize the number of feeder cells in hESC cultures (i.e. incorporating matrix-coated dishes or other feeder cell types5-8). These modified culture systems have shown some promise, but have not supplanted the standard method for culturing hESCs with mitomycin C-treated mouse embyronic fibroblasts in order to retard unwanted spontaneous differentiation of the hESC cultures. Therefore, the feeder cells used in hESC expansion should be removed during differentiation experiments. Although several techniques are available for purifying the hESC colonies (FACS, MACS, or use of drug resistant vectors) from feeders, these techniques are labor intensive, costly and/or destructive to the hESC. The aim of this project was to invent a method of purification that enables the harvesting of a purer population of hESCs. We have observed that in a confluent hESC culture, the MEF population can be removed using a simple and rapid aspiration of the MEF sheet. This removal is dependent on several factors, including lateral cell-to-cell binding of MEFs that have a lower binding affinity to the styrene culture dish, and the ability of the stem cell colonies to push the fibroblasts outward during the generation of their own "niche". The hESC were then examined for SSEA-4, Oct3/4 and Tra 1-81 expression up to 10 days after MEF removal to ensure maintenance of pluripotency. Moreover, hESC colonies were able to continue growing from into larger formations after MEF removal, providing an additional level of hESC expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号