首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ectothermic animals rely on external heat sources and behavioral thermoregulation to control body temperature, and are characterized by possessing physiological and behavioural traits which are temperature dependent. It has therefore been suggested that constraints on the range of body temperatures available to individuals imposed by phenotypic properties, such as coloration, may translate into differential fitness and selection against thermally inferior phenotypes. In this paper, I report an association between thermal preferences and thermal capacity (the ability to warm up when insolated) across different genetically coded color morphs of the pygmy grasshopper Tetrix subulata. Data on behavioral thermoregulation of individuals in a laboratory thermal gradient revealed a preference for higher body temperatures in females than in males, and significant variation among colour morphs in preferred body temperatures in females, but not in males. The variation in females was in perfect accordance with estimates of morph-specific differences in thermal capacity. Thus, dark morphs not only attain higher temperatures when exposed to augmented illumination, but also prefer higher body temperatures, compared to paler morphs. This intra-population divergence probably reflects an underlying variation among colour morphs in temperature optima, and is consistent with the notion that coloration, behaviour and physiology evolve in concert.  相似文献   

2.
Numerous plant species are shifting their range polewards in response to ongoing climate change. Range shifts typically involve the repeated establishment and growth of leading-edge populations well ahead of the main species range. How these populations recover from founder events and associated diversity loss remains poorly understood. To help fill this gap, we exhaustively investigated a newly established population of holm oak (Quercus ilex) growing more than 30 km ahead of the nearest larger stands. Pedigree reconstructions showed that plants belong to two non-overlapping generations and that the whole population originates from only two founder trees. The four first-generation trees that have reached maturity showed disparate mating patterns despite being full-sibs. Long-distance pollen immigration was notable despite the strong isolation of the stand: 6 per cent gene flow events in acorns collected on the trees (n = 255), and as much as 27 per cent among their established offspring (n = 33). Our results show that isolated leading-edge populations of wind-pollinated forest trees can rapidly restore their genetic diversity through the interacting effects of efficient long-distance pollen flow and purging of inbred individuals during recruitment. They imply that range expansions of these species are primarily constrained by initial propagule arrival rather than by subsequent gene flow.  相似文献   

3.
Cohesion establishment is central to sister chromatid tethering reactions and requires Ctf7/Eco1-dependent acetylation of the cohesin subunit Smc3. Ctf7/Eco1 is essential during S phase, and a number of replication proteins (RFC complexes, PCNA and the DNA helicase Chl1) all play individual roles in sister chromatid cohesion. While the mechanism of cohesion establishment is largely unknown, a popular model is that Ctf7/Eco1 acetylates cohesins encountered by and located in front of the fork. In turn, acetylation is posited both to allow fork passage past cohesin barriers and convert cohesins to a state competent to capture subsequent production of sister chromatids. Here, we report evidence that challenges this pre-replicative cohesion establishment model. Our genetic and biochemical studies link Ctf7/Eco1 to the Okazaki fragment flap endonuclease, Fen1. We further report genetic and biochemical interactions between Fen1 and the cohesion-associated DNA helicase, Chl1. These results raise a new model wherein cohesin deposition and establishment occur in concert with lagging strand-processing events and in the presence of both sister chromatids.  相似文献   

4.
Bacterial gut symbiont communities are critical for the health of many insect species. However, little is known about how microbial communities vary among host species or how they respond to anthropogenic disturbances. Bacterial communities that differ in richness or composition may vary in their ability to provide nutrients or defenses. We used deep sequencing to investigate gut microbiota of three species in the genus Bombus (bumble bees). Bombus are among the most economically and ecologically important non-managed pollinators. Some species have experienced dramatic declines, probably due to pathogens and land-use change. We examined variation within and across bee species and between semi-natural and conventional agricultural habitats. We categorized as ‘core bacteria'' any operational taxonomic units (OTUs) with closest hits to sequences previously found exclusively or primarily in the guts of honey bees and bumble bees (genera Apis and Bombus). Microbial community composition differed among bee species. Richness, defined as number of bacterial OTUs, was highest for B. bimaculatus and B. impatiens. For B. bimaculatus, this was due to high richness of non-core bacteria. We found little effect of habitat on microbial communities. Richness of non-core bacteria was negatively associated with bacterial abundance in individual bees, possibly due to deeper sampling of non-core bacteria in bees with low populations of core bacteria. Infection by the gut parasite Crithidia was negatively associated with abundance of the core bacterium Gilliamella and positively associated with richness of non-core bacteria. Our results indicate that Bombus species have distinctive gut communities, and community-level variation is associated with pathogen infection.  相似文献   

5.
The causes of variation in individual reproductive success over a lifetime are not well understood. In long-lived vertebrates, reproductive output usually increases during early adulthood, but it is difficult to disentangle the roles of development and learning on this gain of reproductive success. Lekking lance-tailed manakins provide an opportunity to separate these processes, as the vast majority of male reproduction occurs after a bird obtains alpha status and maintains a display area in the lek, but the age at which males achieve alpha status varies widely. Using 11 years of longitudinal data on age, social status and genetic siring success, I assessed the factors influencing variation in siring success by individuals over their lifetimes. The data show increases in annual reproductive success with both age and alpha experience. At advanced ages, these gains were offset by senescence in fecundity. Individual ontogeny, rather than compositional change of the population, generated a nonlinear relationship of breeding tenure with lifetime success; age of assuming alpha status was unrelated to tenure as a breeder, or success in the alpha role. Importantly, these findings suggest that social experience can mitigate the negative effects of senescence in older breeders.  相似文献   

6.
Challenges in the conservation and sustainable use of genetic resources   总被引:2,自引:0,他引:2  
The meeting on 'Genetic Resources in the Face of New Environmental, Economic and Social Challenges' held in Montpellier (France) from 20-22 September 2011 brought together about 200 participants active in research and management of the genetic diversity of plant, animal, fungal and microbial species. Attendees had the rare opportunity to hear about agronomy, botany, microbiology, mycology, the social sciences and zoology in the same conference. The research teams presented the results of about 50 projects funded by the French Foundation for Research on Biodiversity to preserve genetic diversity carried out in Africa, Asia, Europe and the Americas. These projects aimed to better understand and manage genetic resources in a rapidly changing world (e.g. structural changes in the agricultural industry, the need for climate change mitigation and adaptation, the challenge of achieving food security despite the growing world population and changing dietary habits, the opportunities provided by the many new molecular biology tools, the problems caused by widespread scientific budget cuts). The meeting also hosted some roundtables open to all participants which provided a forum to establish a much needed dialogue between policy-makers, managers and researchers.  相似文献   

7.
In the course of liquid culture, serial passage experiments with Escherichia coli K-12 bearing a mutator gene deletion (DeltamutS) we observed the evolution of strains that appeared to kill or inhibit the growth of the bacteria from where they were derived, their ancestors. We demonstrate that this inhibition occurs after the cells stop growing and requires physical contact between the evolved and ancestral bacteria. Thereby, it is referred to as stationary phase contact-dependent inhibition (SCDI). The evolution of this antagonistic relationship is not anticipated from existing theory and experiments of competition in mass (liquid) culture. Nevertheless, it occurred in the same way (parallel evolution) in the eight independent serial transfer cultures, through different single base substitutions in a gene in the glycogen synthesis pathway, glgC. We demonstrate that the observed mutations in glgC, which codes for ADP-glucose pyrophosphorylase, are responsible for both the ability of the evolved bacteria to inhibit or kill their ancestors and their immunity to that inhibition or killing. We present evidence that without additional evolution, mutator genes, or known mutations in glgC, other strains of E. coli K-12 are also capable of SCDI or sensitive to this inhibition. We interpret this, in part, as support for the generality of SCDI and also as suggesting that the glgC mutations responsible for the SCDI, which evolved in our experiments, may suppress the action of one or more genes responsible for the sensitivity of E. coli to SCDI. Using numerical solutions to a mathematical model and in vitro experiments, we explore the population dynamics of SCDI and postulate the conditions responsible for its evolution in mass culture. We conclude with a brief discussion of the potential ecological significance of SCDI and its possible utility for the development of antimicrobial agents, which unlike existing antibiotics, can kill or inhibit the growth of bacteria that are not growing.  相似文献   

8.
9.
We present the outcome of a century of post-bottleneck isolation of a long-lived species, the little spotted kiwi (Apteryx owenii, LSK) and demonstrate that profound genetic consequences can result from protecting few individuals in isolation. LSK were saved from extinction by translocation of five birds from South Island, New Zealand to Kapiti Island 100 years ago. The Kapiti population now numbers some 1200 birds and provides founders for new populations. We used 15 microsatellite loci to compare genetic variation among Kapiti LSK and the populations of Red Mercury, Tiritiri Matangi and Long Islands that were founded with birds from Kapiti. Two LSK native to D''Urville Island were also placed on Long Island. We found extremely low genetic variation and signatures of acute and recent genetic bottleneck effects in all four populations, indicating that LSK have survived multiple genetic bottlenecks. The Long Island population appears to have arisen from a single mating pair from Kapiti, suggesting there is no genetic contribution from D''Urville birds among extant LSK. The Ne/NC ratio of Kapiti Island LSK (0.03) is exceptionally low for terrestrial vertebrates and suggests that genetic diversity might still be eroding in this population, despite its large census size.  相似文献   

10.
The origin of cultivated tree peonies, known as the ‘king of flowers'' in China for more than 1000 years, has attracted considerable interest, but remained unsolved. Here, we conducted phylogenetic analyses of explicitly sampled traditional cultivars of tree peonies and all wild species from the shrubby section Moutan of the genus Paeonia based on sequences of 14 fast-evolved chloroplast regions and 25 presumably single-copy nuclear markers identified from RNA-seq data. The phylogeny of the wild species inferred from the nuclear markers was fully resolved and largely congruent with morphology and classification. The incongruence between the nuclear and chloroplast trees suggested that there had been gene flow between the wild species. The comparison of nuclear and chloroplast phylogenies including cultivars showed that the cultivated tree peonies originated from homoploid hybridization among five wild species. Since the origin, thousands of cultivated varieties have spread worldwide, whereas four parental species are currently endangered or on the verge of extinction. The documentation of extensive homoploid hybridization involved in tree peony domestication provides new insights into the mechanisms underlying the origins of garden ornamentals and the way of preserving natural genetic resources through domestication.  相似文献   

11.
Stressful conditions experienced by individuals during their early development have long-term consequences on various life-history traits such as survival until first reproduction. Oxidative stress has been shown to affect various fitness-related traits and to influence key evolutionary trade-offs but whether an individual''s ability to resist oxidative stress in early life affects its survival has rarely been tested. In the present study, we used four years of data obtained from a free-living great tit population (Parus major; n = 1658 offspring) to test whether pre-fledging resistance to oxidative stress, measured as erythrocyte resistance to oxidative stress and oxidative damage to lipids, predicted fledging success and local recruitment. Fledging success and local recruitment, both major correlates of survival, were primarily influenced by offspring body mass prior to fledging. We found that pre-fledging erythrocyte resistance to oxidative stress predicted fledging success, suggesting that individual resistance to oxidative stress is related to short-term survival. However, local recruitment was not influenced by pre-fledging erythrocyte resistance to oxidative stress or oxidative damage. Our results suggest that an individual ability to resist oxidative stress at the offspring stage predicts short-term survival but does not influence survival later in life.  相似文献   

12.
The coloration of species can have multiple functions, such as predator avoidance and sexual signalling, that directly affect fitness. As selection should favour traits that positively affect fitness, the genes underlying the trait should reach fixation, thereby preventing the evolution of polymorphisms. This is particularly true for aposematic species that rely on coloration as a warning signal to advertise their unprofitability to predators. Nonetheless, there are numerous examples of aposematic species showing remarkable colour polymorphisms. We examined whether colour polymorphism in the wood tiger moth is maintained by trade-offs between different functions of coloration. In Finland, males of this species have two distinct colour morphs: white and yellow. The efficacy of the warning signal of these morphs was tested by offering them to blue tits in the laboratory. Birds hesitated significantly longer to attack yellow than white males. In a field experiment, the survival of the yellow males was also higher than white males. However, mating experiments in the laboratory revealed that yellow males had lower mating success than white males. Our results offer an explanation for the maintenance of polymorphism via trade-off between survival selection and mating success.  相似文献   

13.
J Guo  Y Liu  Y Wang  J Chen  Y Li  H Huang  L Qiu  Y Wang 《Annals of botany》2012,110(4):777-785
Background and Aims Wild soybean (Glycine soja), a native species of East Asia, is the closest wild relative of the cultivated soybean (G. max) and supplies valuable genetic resources for cultivar breeding. Analyses of the genetic variation and population structure of wild soybean are fundamental for effective conservation studies and utilization of this valuable genetic resource. Methods In this study, 40 wild soybean populations from China were genotyped with 20 microsatellites to investigate the natural population structure and genetic diversity. These results were integrated with previous microsatellite analyses for 231 representative individuals from East Asia to investigate the genetic relationships of wild soybeans from China. Key Results Analysis of molecular variance (AMOVA) revealed that 43·92 % of the molecular variance occurred within populations, although relatively low genetic diversity was detected for natural wild soybean populations. Most of the populations exhibited significant effects of a genetic bottleneck. Principal co-ordinate analysis, construction of a Neighbor-Joining tree and Bayesian clustering indicated two main genotypic clusters of wild soybean from China. The wild soybean populations, which are distributed in north-east and south China, separated by the Huang-Huai Valley, displayed similar genotypes, whereas those populations from the Huang-Huai Valley were different. Conclusions The previously unknown population structure of the natural populations of wild soybean distributed throughout China was determined. Two evolutionarily significant units were defined and further analysed by combining genetic diversity and structure analyses from Chinese populations with representative samples from Eastern Asia. The study suggests that during the glacial period there may have been an expansion route between south-east and north-east China, via the temperate forests in the East China Sea Land Bridge, which resulted in similar genotypes of wild soybean populations from these regions. Genetic diversity and bottleneck analysis supports that both extensive collection of germplasm resources and habitat management strategies should be undertaken for effective conservation studies of these important wild soybean resources.  相似文献   

14.
While pathogens are often assumed to limit the growth of wildlife populations, experimental evidence for their effects is rare. A lack of food resources has been suggested to enhance the negative effects of pathogen infection on host populations, but this theory has received little investigation. We conducted a replicated two-factor enclosure experiment, with introduction of the bacterium Bordetella bronchiseptica and food supplementation, to evaluate the individual and interactive effects of pathogen infection and food availability on vole populations during a boreal winter. We show that prior to bacteria introduction, vole populations were limited by food availability. Bordetella bronchiseptica introduction then reduced population growth and abundance, but contrary to predictions, primarily in food supplemented populations. Infection prevalence and pathological changes in vole lungs were most common in food supplemented populations, and are likely to have resulted from increased congregation and bacteria transmission around feeding stations. Bordetella bronchiseptica-infected lungs often showed protozoan co-infection (consistent with Hepatozoon erhardovae), together with more severe inflammatory changes. Using a multidisciplinary approach, this study demonstrates a complex picture of interactions and underlying mechanisms, leading to population-level effects. Our results highlight the potential for food provisioning to markedly influence disease processes in wildlife mammal populations.  相似文献   

15.
Evolutionary theory predicts that in metapopulations subject to rapid extinction–recolonization dynamics, natural selection should favour evolution of traits that enhance dispersal and recolonization ability. Metapopulations of field voles (Microtus agrestis) on islands in the Stockholm archipelago, Sweden, are characterized by frequent local extinction and recolonization of subpopulations. Here, we show that voles on the islands were larger and had longer feet than expected for their body size, compared with voles from the mainland; that body size and size-specific foot length increased with increasing geographical isolation and distance from mainland; and that the differences in body size and size-specific foot length were genetically based. These findings provide rare evidence for relatively recent (less than 1000 years) and rapid (corresponding to 100–250 darwins) evolution of traits facilitating dispersal and recolonization in island metapopulations.  相似文献   

16.
Bacterial recombination is believed to be a major factor explaining the prevalence of multi-drug-resistance (MDR) among pathogenic bacteria. Despite extensive evidence for exchange of resistance genes from retrospective sequence analyses, experimental evidence for the evolutionary benefits of bacterial recombination is scarce. We compared the evolution of MDR between populations of Acinetobacter baylyi in which we manipulated both the recombination rate and the initial diversity of strains with resistance to single drugs. In populations lacking recombination, the initial presence of multiple strains resistant to different antibiotics inhibits the evolution of MDR. However, in populations with recombination, the inhibitory effect of standing diversity is alleviated and MDR evolves rapidly. Moreover, only the presence of DNA harbouring resistance genes promotes the evolution of resistance, ruling out other proposed benefits for recombination. Together, these results provide direct evidence for the fitness benefits of bacterial recombination and show that this occurs by mitigation of functional interference between genotypes resistant to single antibiotics. Although analogous to previously described mechanisms of clonal interference among alternative beneficial mutations, our results actually highlight a different mechanism by which interactions among co-occurring strains determine the benefits of recombination for bacterial evolution.  相似文献   

17.
The long-term study of animal populations facilitates detailed analysis of processes otherwise difficult to measure, and whose significance may appear only when a large sample size from many years is available for analysis. For example, inbreeding is a rare event in most natural populations, and therefore many years of data are needed to estimate its effect on fitness. A key behaviour hypothesized to play an important role in avoiding inbreeding is natal dispersal. However, the functional significance of natal dispersal with respect to inbreeding has been much debated but subject to very few empirical tests. We analysed 44 years of data from a wild great tit Parus major population involving over 5000 natal dispersal events within Wytham Woods, UK. Individuals breeding with a relative dispersed over several-fold shorter distances than those outbreeding; within the class of inbreeding birds, increased inbreeding was associated with reduced dispersal distance, for both males and females. This led to a 3.4-fold increase (2.3-5, 95% CI) in the likelihood of close (f=0.25) inbreeding relative to the population average when individuals dispersed less than 200m. In the light of our results, and published evidence showing little support for active inbreeding avoidance in vertebrates, we suggest that dispersal should be considered as a mechanism of prime importance for inbreeding avoidance in wild populations.  相似文献   

18.
Drosophila performs elaborate well-defined rituals of courtship, which involve several types of sensory inputs. Here, we report that Or47b-neurons promote male-mating success. Males with Or47b-neurons silenced/ablated exhibit reduced copulation frequency and increased copulation latency. Copulation latency of Or47b-manipulated flies increased proportionately with size of the assay arena, whereas in controls it remained unchanged. While competing for mates, Or47b-ablated males are outperformed by intact controls. These results suggest the role of Or47b-neurons in promoting male-mating success.  相似文献   

19.
The genetic heterogeneity of two M. arenaria race 2 populations (designated Pelion and Govan) was examined using RFLP analysis of 12 clonal lines established from single egg masses (six distinct clonal lines from each population). These populations are essentially identical by traditional biochemical and race identification schemes; however, the Govan population is more aggressive than the Pelion population, producing larger galls and exhibiting greater reproductive capabilities on many soybean cultivars and experimental accessions. Variation at the genomic DNA level was examined using probes representative of expressed DNA sequences present in the eukaryotic genome. Ribosomal DNA, interspersed repeated sequences, and cDNA probes were tested for detection of polymorphism within and between single egg mass lines of each population. Cloned cDNAs and ribosomal intergenic spacer sequences detect polymorphism both within and between populations, demonstrating the usefulness of these sequence classes for molecular genetic analysis of population structure and genome evolution.  相似文献   

20.
We present an interactive key that is available online through any web browser without the need to install any additional software, making it an easily accessible tool for the larger public. The key can be found at http://identify.naturalis.nl/lithocolletinae. The key includes all 86 North-West European Lithocolletinae, a subfamily of smaller moths (“micro-moths”) that is commonly not treated in field guides. The user can input data on several external morphological character systems in addition to distribution, host plant and even characteristics of the larval feeding traces to reach an identification. We expect that this will enable more people to contribute with reliable observation data on this group of moths and alleviate the workload of taxonomic specialists, allowing them to focus on other new keys or taxonomic work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号