首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
分子伴侣能够与其他蛋白质的不稳定构象相结合并使其稳定.它的功能之一是能够帮助蛋白质进行正确的折叠与组装.最新研究发现,在肠道致病菌的周质空间中存在着酸性条件下能帮助周质蛋白复性的分子伴侣HdeA和HdeB.HdeA在极端酸性的胃部环境中由二聚体迅速解离成具有伴侣活性的单体,HdeA单体能够和变性的底物蛋白结合防止它们酸诱导聚集,从而保护肠道致病菌安全到达肠道.本文对肠道致病菌的耐酸机制进行了总结,最后对 HdeA和HdeB作用机制的研究近况进行综述,最后对HdeA和HdeB以后的研究方向进行了展望.  相似文献   

2.
We cloned, expressed, and purified the hdeB gene product, which belongs to the hdeAB acid stress operon. We extracted HdeB from bacteria by the osmotic-shock procedure and purified it to homogeneity by ion-exchange chromatography and hydroxyapatite chromatography. Its identity was confirmed by mass spectrometry analysis. HdeB has a molecular mass of 10 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which matches its expected molecular mass. We purified the acid stress chaperone HdeA in parallel in order to compare the two chaperones. The hdeA and hdeB mutants both display reduced viability upon acid stress, and only the HdeA/HdeB expression plasmid can restore their viability to close to the wild-type level, suggesting that both proteins are required for optimal protection of the bacterial periplasm against acid stress. Periplasmic extracts from both mutants aggregate at acidic pH, suggesting that HdeA and HdeB are required for protein solubilization. At pH 2, the aggregation of periplasmic extracts is prevented by the addition of HdeA, as previously reported, but is only slightly reduced by HdeB. At pH 3, however, HdeB is more efficient than HdeA in preventing periplasmic-protein aggregation. The solubilization of several model substrate proteins at acidic pH supports the hypothesis that, in vitro, HdeA plays a major role in protein solubilization at pH 2 and that both proteins are involved in protein solubilization at pH 3. Like HdeA, HdeB exposes hydrophobic surfaces at acidic pH, in accordance with the appearance of its chaperone properties at acidic pH. HdeB, like HdeA, dissociates from dimers at neutral pH into monomers at acidic pHs, but its dissociation is complete at pH 3 whereas that of HdeA is complete at a more acidic pH. Thus, we can conclude that Escherichia coli possesses two acid stress chaperones that prevent periplasmic-protein aggregation at acidic pH.  相似文献   

3.
Enteric bacteria such as Escherichia coli utilize various acid response systems to counteract the acidic environment of the mammalian stomach. To protect their periplasmic proteome against rapid acid-mediated damage, bacteria contain the acid-activated periplasmic chaperones HdeA and HdeB. Activation of HdeA at pH 2 was shown to correlate with its acid-induced dissociation into partially unfolded monomers. In contrast, HdeB, which has high structural similarities to HdeA, shows negligible chaperone activity at pH 2 and only modest chaperone activity at pH 3. These results raised intriguing questions concerning the physiological role of HdeB in bacteria, its activation mechanism, and the structural requirements for its function as a molecular chaperone. In this study, we conducted structural and biochemical studies that revealed that HdeB indeed works as an effective molecular chaperone. However, in contrast to HdeA, whose chaperone function is optimal at pH 2, the chaperone function of HdeB is optimal at pH 4, at which HdeB is still fully dimeric and largely folded. NMR, analytical ultracentrifugation, and fluorescence studies suggest that the highly dynamic nature of HdeB at pH 4 alleviates the need for monomerization and partial unfolding. Once activated, HdeB binds various unfolding client proteins, prevents their aggregation, and supports their refolding upon subsequent neutralization. Overexpression of HdeA promotes bacterial survival at pH 2 and 3, whereas overexpression of HdeB positively affects bacterial growth at pH 4. These studies demonstrate how two structurally homologous proteins with seemingly identical in vivo functions have evolved to provide bacteria with the means for surviving a range of acidic protein-unfolding conditions.  相似文献   

4.
The acid stress chaperones HdeA and HdeB of Escherichia coli prevent the aggregation of periplasmic proteins at acidic pH. We show in this report that they also form mixed aggregates with proteins that have failed to be solubilized at acidic pH and allow their subsequent solubilization at neutral pH. HdeA, HdeB, and HdeA and HdeB together display an increasing efficiency for the solubilization of protein aggregates at pH 3. They are less efficient for the solubilization of aggregates at pH 2, whereas HdeB is the most efficient. Increasing amounts of periplasmic proteins draw increasing amounts of chaperone into pellets, suggesting that chaperones co-aggregate with their substrate proteins. We observed a decrease in the size of protein aggregates in the presence of HdeA and HdeB, from very high molecular mass aggregates to 100-5000-kDa species. Moreover, a marked decrease in the exposed hydrophobicity of aggregated proteins in the presence of HdeA and HdeB was revealed by 1,1'-bis(4-anilino)naphtalene-5,5'-disulfonic acid binding experiments. In vivo, during the recovery at neutral pH of acid stressed bacterial cells, HdeA and HdeB allow the solubilization and renaturation of protein aggregates, including those formed by the maltose receptor MalE, the oligopeptide receptor OppA, and the histidine receptor HisJ. Thus, HdeA and HdeB not only help to maintain proteins in a soluble state during acid treatment, as previously reported, but also assist, both in vitro and in vivo, in the solubilization at neutral pH of mixed protein-chaperone aggregates formed at acidic pH, by decreasing the size of protein aggregates and the exposed hydrophobicity of aggregated proteins.  相似文献   

5.
Escherichia coli and Gram-negative bacteria that live in the human gut must be able to tolerate rapid and large changes in environmental pH. Low pH irreversibly denatures and precipitates many bacterial proteins. While cytoplasmic proteins are well buffered against such swings, periplasmic proteins are not. Instead, it appears that some bacteria utilize chaperone proteins that stabilize periplasmic proteins, preventing their precipitation. Two highly expressed and related proteins, HdeA and HdeB, have been identified as acid-activated chaperones. The structure of HdeA is known and a mechanism for activation has been proposed. In this model, dimeric HdeA dissociates at low pH, and the exposed dimeric interface binds exposed hydrophobic surfaces of acid-denatured proteins, preventing their irreversible aggregation. We now report the structure and biophysical characterization of the HdeB protein. The monomer of HdeB shares a similar structure with HdeA, but its dimeric interface is different in composition and spatial location. We have used fluorescence to study the behavior of HdeB as pH is lowered, and like HdeA, it dissociates to monomers. We have identified one of the key intersubunit interactions that controls pH-induced monomerization. Our analysis identifies a structural interaction within the HdeB monomer that is disrupted as pH is lowered, leading to enhanced structural flexibility.  相似文献   

6.
Bacterial pathogens have evolved by combinations of gene acquisition, deletion, and modification, which increases their fitness. Additionally, bacteria are able to evolve in "quantum leaps" via the ability to promiscuously acquire new genes. Many bacterial pathogens - especially Gram-negative enteric pathogens - have evolved mechanisms by which to subvert signal transduction pathways of eukaryotic cells by expressing genes that mimic or regulate host protein factors involved in a variety of signaling cascades. This results in the ability to cause diseases ranging from tumor formation in plants to gastroenteritis and bubonic plague. Here, we present recent advances on mechanisms of bacterial pathogen evolution, including specific signaling cascades targeted by their virulence genes with an emphasis on the ubiquitin modification system, Rho GTPase regulators, cytoskeletal modulators, and host innate immunity. We also comment briefly on evolution of host defense mechanisms in place that limit disease caused by bacterial pathogens.  相似文献   

7.
泛素化途径和SUMO化途径是真核生物细胞内两种很重要的蛋白修饰途径,结合酶为蛋白修饰途径中的第二个酶,对于靶蛋白的修饰具有十分重要的作用。近年来,在研究细胞遭受病原体入侵时产生的免疫应答中屡次鉴定出结合酶的参与。对于结合酶在免疫反应中的功能多样性从病毒和细菌引起的免疫应答两个方面,对泛素结合酶进行了总结,同时也介绍了SUMO结合酶在免疫反应中的研究进展。  相似文献   

8.
How do neutrophils and pathogens interact?   总被引:6,自引:0,他引:6  
Many pathogens can manipulate macrophages after phagocytosis yet are efficiently killed by neutrophils. This poses the question of whether neutrophils have mechanisms that enable them to specifically recognise pathogens and have pathogens evolved mechanisms to modulate neutrophil function? Here, we review recent work on neutrophils and their interaction with four different bacteria: Staphylococcus aureus, Helicobacter pylori, Anaplasma phagocytophilum and members of the Enterobacteriae family.  相似文献   

9.
The periplasmic chaperones HdeA and HdeB are known to be important for cell survival at low pH (pH < 3) in Escherichia coli and Shigella spp. Here we investigated the roles of HdeA and HdeB in the survival of various enterohemorrhagic E. coli (EHEC) following exposure to pH 2.0. Similar to K-12 strains, the acid protections conferred by HdeA and HdeB in EHEC O145 were significant: loss of HdeA and HdeB led to over 100- to 1,000-fold reductions in acid survival, depending on the growth condition of prechallenge cells. However, this protection was much less in E. coli O157:H7 strains. Deletion of hdeB did not affect the acid survival of cells, and deletion of hdeA led to less than a 5-fold decrease in survival. Sequence analysis of the hdeAB operon revealed a point mutation at the putative start codon of the hdeB gene in all 26 E. coli O157:H7 strains analyzed, which shifted the ATG start codon to ATA. This mutation correlated with the lack of HdeB in E. coli O157:H7; however, the plasmid-borne O157-hdeB was able to restore partially the acid resistance in an E. coli O145ΔhdeAB mutant, suggesting the potential function of O157-HdeB as an acid chaperone. We conclude that E. coli O157:H7 strains have evolved acid survival strategies independent of the HdeA/B chaperones and are more acid resistant than nonpathogenic K-12 for cells grown under nonfavorable culturing conditions such as in Luria-Bertani no-salt broth at 28°C. These results suggest a divergent evolution of acid resistance mechanisms within E. coli.  相似文献   

10.
Rapid detection and elimination of pathogens invasive to intestinal tissue is essential to avoid prolonged gut inflammation, or systemic sepsis. The discovery of transmembrane or intracytoplasmic pattern recognition receptors that detect the presence of conserved microbial macromolecular structures has significantly advanced the understanding of how metazoans respond to and eliminate bacteria that have entered the intestinal mucosa. In this review, we highlight recent advances in the field of host recognition of bacterial pathogens and subsequent mucosal innate immune response. Additionally, some bacteria are pathogenic because they have evolved sophisticated mechanisms to evade the host mucosal innate immune response. We discuss advances in identifying the mechanisms by which pathogens evade detection by dampening the immune response.  相似文献   

11.
The X-ray crystal structure of the Escherichia coli stress response protein HDEA has been determined at 2.0 A resolution. The single domain alpha-helical protein is found in the periplasmic space, where it supports an acid resistance phenotype essential for infectivity of enteric bacterial pathogens, such as Shigella and E. coli. Functional studies demonstrate that HDEA is activated by a dimer-to-monomer transition at acidic pH, leading to suppression of aggregation by acid-denatured proteins. We suggest that HDEA may support chaperone-like functions during the extremely acidic conditions.  相似文献   

12.
A growing number of studies have demonstrated the importance of ATPe-signalling via P2 receptors as an important component of the inflammatory response to infection. More recent studies have shown that ATPe can also have a direct effect on infection by intracellular pathogens, by modulating membrane trafficking in cells that contain vacuoles that harbour intracellular pathogens, such as mycobacteria and chlamydiae. A conserved mechanism appears to be involved in controlling infection by both of these pathogens, as a role for phospholipase D in inducing fusion between lysosomes and the vacuoles has been demonstrated. Other P2-dependent mechanisms are most likely operative in the cases of pathogens, such as Leishmania, which survive in an acidic phagolysosomal-like compartment. ATPe may function as a “danger signal” that alerts the immune system to the presence of intracellular pathogens that damage the host cell, while different intracellular pathogens have evolved enzymes or other mechanisms to inhibit ATPe-mediated signalling, which should, thus, be viewed as virulence factors for these pathogens.  相似文献   

13.
Autophagy is a conserved membrane-traffic pathway in eukaryotic cells that sequesters cytoplasmic components and delivers them to lysosomes. Recent research indicates that the degradation of undesirable or recyclable cytoplasmic components and organelles through autophagy plays a pivotal role as an intracellular surveillance system for recognition and eradication of pathogens that have invaded the cytoplasm. Many invasive bacteria, however, have highly evolved mechanisms to circumvent cellular autophagy. Indeed, recent reports describe intracellular pathogens as being capable of subverting or modifying autophagy activation and persisting within autophagosomes.  相似文献   

14.
Arthropods and nematodes are important protagonists in human health because either they act as vectors of pathogens (bacteria, protozoa, viruses or fungus), or are themselves parasites. Fighting infectious diseases is based essentially on vaccination (prevention) or chemotherapeutic (curative) approaches in human, but one can envisage as an alternative to reduce the number of vectors or limit their ability to spread pathogens. Such strategies controlling dissemination will undoubtedly benefit from the knowledge accumulated by recent works on powerful mechanisms developed by symbiotic insect bacteria such as Wolbachia to popagate in arthropods and nematods. This review summarizes these recent data, and indicate how these mechanisms can be manipulated to reduce the dissemination of insect vectors propagating human diseases.  相似文献   

15.
Infectious diseases are a major threat to global public health and prosperity. The causative agents consist of a suite of pathogens, ranging from bacteria to viruses, including fungi, helminthes and protozoa. Although these organisms are extremely varied in their biological structure and interactions with the host, they share similar methods of evading the host immune system. Antigenic variation and drift are mechanisms by which pathogens change their exposed epitopes while maintaining protein function. Accordingly, these traits enable pathogens to establish chronic infections in the host. The varDB database was developed to serve as a central repository of protein and nucleotide sequences as well as associated features (e.g. field isolate data, clinical parameters, etc.) involved in antigenic variation. The data currently contained in varDB were mined from GenBank as well as multiple specialized data repositories (e.g. PlasmoDB, GiardiaDB). Family members and ortholog groups were identified using a hierarchical search strategy, including literature/author-based searches and HMM profiles. Included in the current release are>29,00 sequences from 39 gene families from 25 different pathogens. This resource will enable researchers to compare antigenic variation within and across taxa with the goal of identifying common mechanisms of pathogenicity to assist in the fight against a range of devastating diseases. AVAILABILITY: varDB is freely accessible at http://www.vardb.org/  相似文献   

16.
The recognition of nucleic acids is a general strategy used by the host to detect invading pathogens. Many studies have established that MITA/STING is a central component in the innate immune response to cytosolic DNA and RNA derived from pathogens. MITA can act both as a direct sensor of cyclic dinucleotides (CDNs) and as an adaptor for the recruitment of downstream signaling components. In both roles, MITA is part of signaling cascades that orchestrate innate immune defenses against various pathogens, including viruses, bacteria and parasites. Here, we highlight recent studies that have uncovered the molecular mechanisms of MITA-mediated signal transduction and regulation, and discuss some notable issues that remain elusive.  相似文献   

17.
Invertebrate animal models are experimentally tractable and have immunity and disease symptoms that mirror those of vertebrates. Therefore they are of particular utility in understanding fundamental aspects of pathogenesis. Indeed, artificial models using human pathogens and invertebrate hosts have revealed conserved and novel molecular mechanisms of bacterial infection and host immune responses. Additional insights may be gained from investigating interactions between invertebrates and pathogens they encounter in their natural environments. For example, enteric bacteria in the genera Photorhabdus and Xenorhabdus are pathogens of insects that also mutualistically associate with nematodes in the genera Heterorhabditis and Steinernema respectively. These bacteria serve as models to understand naturally occurring symbiotic associations that result in disease in or benefit for animals. Xenorhabdus nematophila is the best-studied species of its genus with regard to the molecular mechanisms of its symbiotic associations. In this review, we summarize recent advances in understanding X. nematophila –host interactions. We emphasize regulatory cascades involved in coordinating transitions between various stages of the X. nematophila life cycle: infection, reproduction and transmission.  相似文献   

18.
近几十年来,病原菌耐药性的出现和蔓延已上升为严峻的公共卫生问题。越来越多研究表明,抗菌素抗性基因(antibiotic resistance genes,ARGs)不仅仅见于临床所分离的病原体,而是包括所有的致病菌、共生菌以及环境中的细菌,它们都能在可移动遗传元件和噬菌体的作用下,通过水平基因转移(horizontal gene transfer,HGT)途径获得耐药性,进而形成抗菌素耐药基因簇(耐药基因组)。HGT可导致抗菌素的耐药性在环境共生菌和病原菌之间传播扩散,这可通过临床上一些重要的抗菌素耐药基因的传播证实。传统观念认为HGT的三种机制中,接合对ARGs的传播影响最大,最近研究表明转化和转导对ARGs播散起到不可忽视的作用。通过深入了解耐药基因组的传播及其在动员病原菌耐药中发挥的作用,对于控制这些基因的播散是至关重要的。将讨论耐药基因组的概念,提供临床相关的抗菌素抗性基因水平基因转移的例子,对当前已研究的促使抗菌素耐药性传播的各种HGT机制进行回顾。  相似文献   

19.
Whole genome plasticity in pathogenic bacteria   总被引:8,自引:0,他引:8  
The exploitation of bacterial genome sequences has so far provided a wealth of new general information about the genetic diversity of bacteria, such as that of many pathogens. Comparative genomics uncovered many genome variations in closely related bacteria and revealed basic principles involved in bacterial diversification, improving our knowledge of the evolution of bacterial pathogens. A correlation between metabolic versatility and genome size has become evident. The degenerated life styles of obligate intracellular pathogens correlate with significantly reduced genome sizes, a phenomenon that has been termed "evolution by reduction". These mechanisms can permanently alter bacterial genotypes and result in adaptation to their environment by genome optimization. In this review, we summarize the recent results of genome-wide approaches to studying the genetic diversity of pathogenic bacteria that indicate that the acquisition of DNA and the loss of genetic information are two important mechanisms that contribute to strain-specific differences in genome content.  相似文献   

20.
Pathogen recognition is the first and crucial step in innate immunity. Molecular families involved in the recognition of pathogens and activation of the innate immune responses in immunoreactive cells include the Toll-like receptor family in mammals and the peptidoglycan recognition protein (PGRP) family in Drosophila, which sense microorganisms in an extracellular or luminal compartment. Other emerging families are the intracellular recognition molecules for bacteria, such as nucleotide binding and oligomerization domain-like receptors in mammals and PGRP--LE in Drosophila, several of which have been shown to detect structures of bacterial peptidoglycan in the host cell cytosol. Exciting advances in recent studies on autophagy indicate that macroautophagy (referred to here as autophagy) is selectively induced by intracellular recognition molecules and has a crucial role in the elimination of intracellular pathogens, including bacteria, viruses and parasites. This review discusses recent studies related to intracellular recognition molecules and innate immune responses to intracellular pathogens, and highlights the role of autophagy in innate immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号