首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Dimethyl sulfide (DMS) is a climatically active gas released into the atmosphere from oceans. It is produced mainly by bacterial enzymatic cleavage of dimethylsulfoniopropionate (DMSP), and six DMSP lyases have been identified to date. To determine the biogeographical distribution of bacteria relevant to DMS production, we investigated the diversity of dddP—the most abundant DMS-producing gene—in the northwestern Pacific Ocean using newly developed primers and the pyrosequencing method. Consistent with previous studies, the major dddP-containing bacteria in coastal areas were those belonging to the Roseobacter clade. However, genotypes closely related to the SAR116 group were found to represent a large portion of dddP-containing bacteria in the surface waters of the oligotrophic ocean. The addition of DMSP to a culture of the SAR116 strain Candidatus Puniceispirillum marinum IMCC1322 resulted in the production of DMS and upregulated expression of the dddP gene. Considering the large area of oligotrophic water and the wide distribution of the SAR116 group in oceans worldwide, we propose that these bacteria may play an important role in oceanic DMS production and biogeochemical sulfur cycles, especially via bacteria-mediated DMSP degradation.  相似文献   

5.
马敏  唐敏  洪葵 《微生物学通报》2013,40(7):1231-1240
[目的]探究红树林土壤中聚酮合酶(Polyketide synthase,PKS)基因的多样性和新颖性.[方法]用Ⅰ型和Ⅱ型PKS基因酮基合成酶(Ketosynthase,KS)域的简并引物对海南清澜港红树林海莲、黄槿、银叶、老鼠簕4种红树根际土壤样品中DNA进行PCR扩增,之后利用PCR-限制性酶切片段多样性(PCR-RFLP)和测序分析法对Ⅰ型和Ⅱ型PKS基因的多样性进行探讨.[结果]对得到的72条Ⅰ型PKS基因的酮基合成酶(Ketosynthase,KS)域DNA序列进行PCR-RFLP分析,共得到51个可操作分类单元(Operational taxonomic unit,OTUs),其中37个OTUs为单克隆产生,没有明显的优势OTU.选取了26个代表不同OTU的克隆进行测序分析,这些序列与GenBank中已知序列的最大相似率均未超过85%. KS域氨基酸序列的系统发育分析显示,所得KS域来源广泛,包括蓝细菌门(Cyanobacteria)、变形杆菌门(Proteobacteria)、厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)和一些未可培养细菌;对55条PKSⅡ基因KS域DNA序列的PCR-RFLP分析后共得到25个OTUs,有两个明显的优势OTUs,代表的克隆子数所占比例超过10%.[结论]PCR-RFLP分析表明红树林根际土壤中存在着丰富多样的Ⅰ型和Ⅱ型PKS基因,且前者多样性更高;低的序列相似度表明所获得的PKSⅠ基因KS域序列独特;系统发育分析表明得到的PKSⅠ基因来源广泛.  相似文献   

6.
Many bacteria have been reported as degraders of long-chain (LC) n-alkanes, but the mechanism is poorly understood. Flavin-binding monooxygenase (AlmA) was recently found to be involved in LC-alkane degradation in bacteria of the Acinetobacter and Alcanivorax genera. However, the diversity of this gene and the role it plays in other bacteria remains unclear. In this study, we surveyed the diversity of almA in marine bacteria and in bacteria found in oil-enrichment communities. To identify the presence of this gene, a pair of degenerate PCR primers were was designed based on conserved motifs of the almA gene sequences in public databases. Using this approach, we identified diverse almA genes in the hydrocarbon-degrading bacteria and in bacterial communities from the surface seawater of the Xiamen coastal area, the South China Sea, the Indian Ocean, and the Atlantic Ocean. As a result, almA was positively detected in 35 isolates belonging to four genera, and a total of 39 different almA sequences were obtained. Five isolates were confirmed to harbor two to three almA genes. From the Xiamen coastal area and the Atlantic Ocean oil-enrichment communities, a total of 60 different almA sequences were obtained. These sequences mainly formed two clusters in the phylogenetic tree, named Class I and Class II, and these shared 45-56% identity at the amino acid level. Class I contained 11 sequences from bacteria represented by the Salinisphaera and Parvibaculum genera. Class II was larger and more diverse, and it was composed of 88 sequences from Proteobacteria, Gram-negative bacteria, and the enriched bacterial communities. These communities were represented by the Alcanivorax and Marinobacter genera, which are the two most popular genera hosting the almA gene. AlmA was also detected across a wide geographical range, as determined by the origin of the bacterial host. Our results demonstrate the diversity of almA and confirm its high rate of occurrence in hydrocarbon-degrading bacteria, indicating that this gene plays an important role in the degradation of LC alkanes in marine environments.  相似文献   

7.
Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies.  相似文献   

8.
Plasmid metagenome nucleotide sequence data were recently obtained from wastewater treatment plant (WWTP) bacteria with reduced susceptibility to selected antimicrobial drugs by applying the ultrafast 454-sequencing technology. The sequence dataset comprising 36,071,493 bases (346,427 reads with an average read length of 104 bases) was analysed for genetic diversity and composition by using a newly developed bioinformatic pipeline based on assignment of environmental gene tags (EGTs) to protein families stored in the Pfam database. Short amino acid sequences deduced from the plasmid metagenome sequence reads were compared to profile hidden Markov models underlying Pfam. Obtained matches evidenced that many reads represent genes having predicted functions in plasmid replication, stability and plasmid mobility which indicates that WWTP bacteria harbour genetically stabilised and mobile plasmids. Moreover, the data confirm a high diversity of plasmids residing in WWTP bacteria. The mobile organic peroxide resistance plasmid pMAC from Acinetobacter baumannii was identified as reference plasmid for the most abundant replication module type in the sequenced sample. Accessory plasmid modules encode different transposons, insertion sequences, integrons, resistance and virulence determinants. Most of the matches to Transposase protein families were identified for transposases similar to the one of the chromate resistance transposon Tn5719. Noticeable are hits to beta-lactamase protein families which suggests that plasmids from WWTP bacteria encode different enzymes possessing beta-lactam-hydrolysing activity. Some of the sequence reads correspond to antibiotic resistance genes that were only recently identified in clinical isolates of human pathogens. EGT analysis thus proofed to be a very valuable method to explore genetic diversity and composition of the present plasmid metagenome dataset.  相似文献   

9.
Mangroves are complex ecosystems that regulate nutrient and sediment fluxes to the open sea. The importance of bacteria and fungi in regulating nutrient cycles has led to an interest in their diversity and composition in mangroves. However, very few studies have assessed Archaea in mangroves, and virtually nothing is known about whether mangrove rhizospheres affect archaeal diversity and composition. Here, we studied the diversity and composition of Archaea in mangrove bulk sediment and the rhizospheres of two mangrove trees, Rhizophora mangle and Laguncularia racemosa, using denaturing gradient gel electrophoresis (DGGE) and pyrosequencing of archaeal 16S rRNA genes with a nested-amplification approach. DGGE profiles revealed significant structural differences between bulk sediment and rhizosphere samples, suggesting that roots of both mangrove species influence the sediment archaeal community. Nearly all of the detected sequences obtained with pyrosequencing were identified as Archaea, but most were unclassified at the level of phylum or below. Archaeal richness was, furthermore, the highest in the L. racemosa rhizosphere, intermediate in bulk sediment, and the lowest in the R. mangle rhizosphere. This study shows that rhizosphere microhabitats of R. mangle and L. racemosa, common plants in subtropical mangroves located in Rio de Janeiro, Brazil, hosted distinct archaeal assemblages.  相似文献   

10.
Sediment samples were collected worldwide from 16 locations on four continents (in New York, California, New Jersey, Virginia, Puerto Rico, Venezuela, Italy, Latvia, and South Korea) to assess the extent of the diversity and the distribution patterns of sulfate-reducing bacteria (SRB) in contaminated sediments. The SRB communities were examined by terminal restriction fragment (TRF) length polymorphism (TRFLP) analysis of the dissimilatory sulfite reductase genes (dsrAB) with NdeII digests. The fingerprints of dsrAB genes contained a total of 369 fluorescent TRFs, of which <20% were present in the GenBank database. The global sulfidogenic communities appeared to be significantly different among the anthropogenically impacted (petroleum-contaminated) sites, but nearly all were less diverse than pristine habitats, such as mangroves. A global SRB indicator species of petroleum pollution was not identified. However, several dsrAB gene sequences corresponding to hydrocarbon-degrading isolates or consortium members were detected in geographically widely separated polluted sites. Finally, a cluster analysis of the TRFLP fingerprints indicated that many SRB microbial communities were most similar on the basis of close geographic proximity (tens of kilometers). Yet, on larger scales (hundreds to thousands of kilometers) SRB communities could cluster with geographically widely separated sites and not necessarily with the site with the closest proximity. These data demonstrate that SRB populations do not adhere to a biogeographic distribution pattern similar to that of larger eukaryotic organisms, with the greatest species diversity radiating from the Indo-Pacific region. Rather, a patchy SRB distribution is encountered, implying an initially uniform SRB community that has differentiated over time.  相似文献   

11.
The α-proteobacterium Sulfitobacter EE-36 makes the gas dimethylsulfide (DMS) from dimethylsulfoniopropionate (DMSP), an abundant antistress molecule made by many marine phytoplankton. We screened a cosmid library of Sulfitobacter for clones that conferred to other bacteria the ability to make DMS. One gene, termed dddL , was sufficient for this phenotype when cloned in pET21a and introduced into Escherichia coli . Close DddL homologues exist in the marine α-proteobacteria Fulvimarina , Loktanella Oceanicola and Stappia , all of which made DMS when grown on DMSP. There was also a dddL homologue in Rhodobacter sphaeroides strain 2.4.1, but not in strain ATCC 17025; significantly, the former, but not the latter, emits DMS when grown with DMSP. Escherichia coli containing the cloned, overexpressed dddL genes of R. sphaeroides 2.4.1 and Sulfitobacter could convert DMSP to acrylate plus DMS. This is the first identification of such a 'DMSP lyase'. Thus, DMS can be made either by this DddL lyase or by a DMSP acyl CoA transferase, specified by dddD , a gene that we had identified in several other marine bacteria.  相似文献   

12.
Here we describe the natural occurrence of bacteria of the class Dehalococcoidia (DEH) and their diversity at different depths in anoxic waters of a remote meromictic lake (Lake Pavin) using 16S rRNA gene amplicon sequencing and quantitative PCR. Detected DEH are phylogenetically diverse and the majority of 16S rRNA sequences have less than 91% similarity to previously isolated DEH 16S rRNA sequences. To predict the metabolic potential of detected DEH subgroups and to assess if they encode genes to transform halogenated compounds, we enriched DEH-affiliated genomic DNA by using a specific-gene capture method and probes against DEH-derived 16S rRNA genes, reductive dehalogenase genes and known insertion sequences. Two reductive dehalogenase homologous sequences were identified from DEH-enriched genomic DNA, and marker genes in the direct vicinity confirm that gene fragments were derived from DEH. The low sequence similarity with known reductive dehalogenase genes suggests yet-unknown catabolic potential in the anoxic zone of Lake Pavin.  相似文献   

13.
The composition of free-living nitrogen-fixing microbial communities in rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings was studied by the presence of nifH genes using Polymerase Chain Reaction-Denatured Gradient Gel Electrophoresis (PCR-DGGE) approach. Eleven rhizosphere tailing samples and nine non-rhizosphere tailing samples from six plant communities were collected from two wastelands with different discarded periods. The nested PCR method was used to amplify the nifH genes from environmental DNA extracted from tailing samples. Twenty-two of 37 nifH gene sequences retrieved from DGGE gels clustered in Proteobacteria (α-Proteobacteria and β-Proteobacteria) and 15 nifH gene sequences in Cyanobacteria. Most nifH gene fragments sequenced were closely related to uncultured bacteria and cyanobacteria and exhibited less than 90% nucleotide acid identity with bacteria in the database, suggesting that the nifH gene fragments detected in copper mine tailings may represent novel sequences of nitrogen-fixers. Our results indicated that the non-rhizosphere tailings generally presented higher diversity of nitrogen-fixers than rhizosphere tailings and the diversity of free-living nitrogen-fixers in tailing samples was mainly affected by the physico-chemical properties of the wastelands and plant species, especially the changes of nutrient and heavy metal contents caused by the colonization of plant community.  相似文献   

14.
This paper describes the ddd genes that are involved in theproduction of the gas dimethyl sulphide from the substrate dimethylsulphoniopropionate(DMSP), an abundant molecule that is a stress protectant inmany marine algae and a few genera of angiosperms. What is knownof the arrangement of the ddd genes in different bacteria thatcan undertake this reaction is reviewed here, stressing thefact that these genes are probably subject to horizontal genetransfer and that the same functions (e.g. DMSP transport) maybe accomplished by very different mechanisms. A surprising numberof DMS-emitting bacteria are associated with the roots of higherplants, these including strains of Rhizobium and some rhizospherebacteria in the genus Burkholderia. One newly identified strainthat is predicted to make DMS is B. phymatum which is a highlyunusual β-proteobacterium that forms N2-fixing noduleson some tropical legumes, in this case, the tree Machaeriumlunatum, which inhabits mangroves. The importance of DMSP catabolismand DMS production is discussed, not only in terms of nutritionalacquisition by the bacteria but also in a speculative scheme(the ‘messy eater’ model) in which the bacteriamay make DMS as an info-chemical to attract other organisms,including invertebrates and other plankton. Key words: Acyl CoA transferase, Burkholderia, CLAW hypothesis, dimethyl sulphide, dimethylsulphoniopropionate, Marinomonas, nitrogen fixation, Rhizobium, rhizosphere, root nodules, Spartina Received 30 May 2007; Revised 27 September 2007 Accepted 1 October 2007  相似文献   

15.
A PCR-based approach was developed to detect ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) form I large-subunit genes (cbbL) as a functional marker of autotrophic bacteria that fix carbon dioxide via the Calvin-Benson-Bassham cycle. We constructed two different primer sets, targeting the green-like and red-like phylogenetic groups of cbbL genes. The diversity of these cbbL genes was analyzed by the use of three differently managed agricultural soils from a long-term field experiment. cbbL gene fragments were amplified from extracted soil DNAs, and PCR products were cloned and screened by restriction fragment length polymorphism analysis. Selected unique cbbL clones were sequenced and analyzed phylogenetically. The green-like cbbL sequences revealed a very low level of diversity, being closely related to the cbbL genes of Nitrobacter winogradskyi and Nitrobacter vulgaris. In contrast, the red-like cbbL gene libraries revealed a high level of diversity in the two fertilized soils and less diversity in unfertilized soil. The majority of environmental red-like cbbL genes were only distantly related to already known cbbL sequences and even formed separate clusters. In order to extend the database of available red-like cbbL sequences, we amplified cbbL sequences from bacterial type culture strains and from bacterial isolates obtained from the investigated soils. Bacterial isolates harboring the cbbL gene were analyzed phylogenetically on the basis of their 16S rRNA gene sequences. These analyses revealed that bacterial genera such as Bacillus, Streptomyces, and Arthrobacter harbor red-like cbbL genes which fall into the cbbL gene clusters retrieved from the investigated soils.  相似文献   

16.
Ammonia-oxidizing bacteria are believed to be an important source of the climatically important trace gas nitrous oxide (N(2)O). The genes for nitrite reductase (nirK) and nitric oxide reductase (norB), putatively responsible for nitrous oxide production, have been identified in several ammonia-oxidizing bacteria, but not in Nitrosospira strains that may dominate ammonia-oxidizing communities in soil. In this study, sequences from nirK and norB genes were detected in several cultured Nitrosospira species and the diversity and phylogeny of these genes were compared with those in other ammoniaoxidizing bacteria and in classical denitrifiers. The nirK and norB gene sequences obtained from Nitrosospira spp. were diverse and appeared to be less conserved than 16S rRNA genes and functional ammonia monooxygenase (amoA) genes. The nirK and norB genes from some Nitrosospira spp. were not phylogenetically distinct from those of denitrifiers, and phylogenetic analysis suggests that the nirK and norB genes in ammonia-oxidizing bacteria have been subject to lateral transfer.  相似文献   

17.
研究了某焦化废水处理厂接触氧化池中降酚菌群的苯酚羟化酶大亚基基因(thelargestsubunitofthemulti-componentphenolhydroxylase,LmPH)的多样性。通过温度梯度凝胶电泳(temperaturegradientgelelectrophoresis,TGGE)对比分析了氧化池4个区段(O1—O4)中降酚菌群LmPH的组成。它们的TGGE图谱完全一样,相似性为100%,表明该处理池中不同区段的降酚菌群的功能基因组成是高度相似的。以O4段的菌群为代表建立LmPH基因克隆文库,从中挑选了49个克隆测序。依据LmPH基因的DNA序列所推测的氨基酸序列完全相同的归为一类的原则,49个克隆被分为16种类型,其中优势LmPH基因主要有5种类型(多于4个克隆),而另外11种类型都只有1个克隆。与已知基因同源性超过90%的有7种类型,低于80%的有2种类型。基于氨基酸序列的系统进化树分析表明,LmPH文库中绝大部分的类型都属于低亲和常数(low-Ks)的LmPH,占所有克隆的92%。只有一个类型属于高亲和常数(high-Ks)的。因此,处理焦化废水的工业装置中不仅具有丰富多样的苯酚羟化酶基因类型,而且以编码低亲和常数的占优势地位,而过去报道的通过富集培养分离得到的降酚菌则多带有高亲和常数的酶。这提示我们传统的富集培养方法并不能筛选到生态环境中的真正优势功能菌。  相似文献   

18.
Uncultured soil bacteria are a reservoir of new antibiotic resistance genes   总被引:11,自引:0,他引:11  
Antibiotic resistance genes are typically isolated by cloning from cultured bacteria or by polymerase chain reaction (PCR) amplification from environmental samples. These methods do not access the potential reservoir of undiscovered antibiotic resistance genes harboured by soil bacteria because most soil bacteria are not cultured readily, and PCR detection of antibiotic resistance genes depends on primers that are based on known genes. To explore this reservoir, we isolated DNA directly from soil samples, cloned the DNA and selected for clones that expressed antibiotic resistance in Escherichia coli. We constructed four libraries that collectively contain 4.1 gigabases of cloned soil DNA. From these and two previously reported libraries, we identified nine clones expressing resistance to aminoglycoside antibiotics and one expressing tetracycline resistance. Based on the predicted amino acid sequences of the resistance genes, the resistance mechanisms include efflux of tetracycline and inactivation of aminoglycoside antibiotics by phosphorylation and acetylation. With one exception, all the sequences are considerably different from previously reported sequences. The results indicate that soil bacteria are a reservoir of antibiotic resistance genes with greater genetic diversity than previously accounted for, and that the diversity can be surveyed by a culture-independent method.  相似文献   

19.
Many bacteria, particularly actinomycetes, are known to produce secondary metabolites synthesized by polyketide synthases (PKS). Bacterial polyketides are a particularly rich source of bioactive molecules, many of which are of potential pharmaceutical relevance. To directly access PKS gene diversity from soil, we developed degenerate PCR primers for actinomycete type II KS(alpha) (ketosynthase) genes. Twenty-one soil samples were collected from diverse sources in New Jersey, and their bacterial communities were compared by terminal restriction fragment length polymorphism (TRFLP) analysis of PCR products generated using bacterial 16S rRNA gene primers (27F and 1525R) as well as an actinomycete-specific forward primer. The distribution of actinomycetes was highly variable but correlated with the overall bacterial species composition as determined by TRFLP. Two samples were identified to contain a particularly rich and unique actinomycete community based on their TRFLP patterns. The same samples also contained the greatest diversity of KS(alpha) genes as determined by TRFLP analysis of KS(alpha) PCR products. KS(alpha) PCR products from these and three additional samples with interesting TRFLP pattern were cloned, and seven novel clades of KS(alpha) genes were identified. Greatest sequence diversity was observed in a sample containing a moderate number of peaks in its KS(alpha) TRFLP. The nucleotide sequences were between 74 and 81% identical to known sequences in GenBank. One cluster of sequences was most similar to the KS(alpha) involved in ardacin (glycopeptide antibiotic) production by Kibdelosporangium aridum. The remaining sequences showed greatest similarity to the KS(alpha) genes in pathways producing the angucycline-derived antibiotics simocyclinone, pradimicin, and jasomycin.  相似文献   

20.
Municipal sewage, urban runoff and accidental oil spills are common sources of pollutants in urban mangrove forests and may have drastic effects on the microbial communities inhabiting the sediment. However, studies on microbial communities in the sediment of urban mangroves are largely lacking. In this study, we explored the diversity of bacterial communities in the sediment of three urban mangroves located in Guanabara Bay (Rio de Janeiro, Brazil). Analysis of sediment samples by means of denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments suggested that the overall bacterial diversity was not significantly affected by the different levels of hydrocarbon pollution at each sampling site. However, DGGE and sequence analyses provided evidences that each mangrove sediment displayed a specific structure bacterial community. Although primer sets for Pseudomonas, alphaproteobacterial and actinobacterial groups also amplified ribotypes belonging to taxa not intended to be enriched, sequence analyses of dominant DGGE bands revealed ribotypes related to Alteromonadales, Burkholderiales, Pseudomonadales, Rhodobacterales and Rhodocyclales. Members of these groups were often shown to be involved in aerobic or anaerobic degradation of hydrocarbon pollutants. Many of these sequences were only detected in the sampling sites with high levels of anthropogenic inputs of hydrocarbons. Many dominant DGGE ribotypes showed low levels of sequence identity to known sequences, indicating a large untapped bacterial diversity in mangrove ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号