首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Dichotomy in the NRT gene families of dicots and grass species   总被引:3,自引:0,他引:3  
A large proportion of the nitrate (NO(3)(-)) acquired by plants from soil is actively transported via members of the NRT families of NO(3)(-) transporters. In Arabidopsis, the NRT1 family has eight functionally characterised members and predominantly comprises low-affinity transporters; the NRT2 family contains seven members which appear to be high-affinity transporters; and there are two NRT3 (NAR2) family members which are known to participate in high-affinity transport. A modified reciprocal best hit (RBH) approach was used to identify putative orthologues of the Arabidopsis NRT genes in the four fully sequenced grass genomes (maize, rice, sorghum, Brachypodium). We also included the poplar genome in our analysis to establish whether differences between Arabidopsis and the grasses may be generally applicable to monocots and dicots. Our analysis reveals fundamental differences between Arabidopsis and the grass species in the gene number and family structure of all three families of NRT transporters. All grass species possessed additional NRT1.1 orthologues and appear to lack NRT1.6/NRT1.7 orthologues. There is significant separation in the NRT2 phylogenetic tree between NRT2 genes from dicots and grass species. This indicates that determination of function of NRT2 genes in grass species will not be possible in cereals based simply on sequence homology to functionally characterised Arabidopsis NRT2 genes and that proper functional analysis will be required. Arabidopsis has a unique NRT3.2 gene which may be a fusion of the NRT3.1 and NRT3.2 genes present in all other species examined here. This work provides a framework for future analysis of NO(3)(-) transporters and NO(3)(-) transport in grass crop species.  相似文献   

2.
3.
We have isolated a cDNA for a putative transporter, named GmNRT1-3, in the NRT1 family from soybean. It was predicted to have a similar topological structure not only to both GmNRT1-1 and GmNRT1-2 reported previously, but also to other members of the family. Two other cDNAs isolated have parts of the sequence for putative NRT1 transporters, GmNRT1-4 and GmNRT1-5, suggesting that at least five NRT1 transporters occur in soybean. These GmNRT1 genes and the GmNRT2 gene, encoding a soybean NRT2 nitrate transporter, showed different expression patterns to each other under various nitrogen conditions. Specifically, GmNRT1-3 was constitutively expressed in both roots and leaves, while GmNRT1-2 was gradually expressed as the roots developed in the presence of ammonium as a nitrogen source, but not in the presence of both ammonium and nitrate. Based on these results, we discussed the possible regulation in the expression and role of these transporters in nitrate uptake.  相似文献   

4.
5.
6.
The Nitrate Transporter (NRT) Gene Family in Poplar   总被引:1,自引:0,他引:1  
Nitrate is an important nutrient required for plant growth. It also acts as a signal regulating plant development. Nitrate is actively taken up and transported by nitrate transporters (NRT), which form a large family with many members and distinct functions. In contrast to Arabidopsis and rice there is little information about the NRT family in woody plants such as Populus. In this study, a comprehensive analysis of the Populus NRT family was performed. Sixty-eight PtNRT1/PTR, 6 PtNRT2, and 5 PtNRT3 genes were identified in the P. trichocarpa genome. Phylogenetic analysis confirmed that the genes of the NRT family are divided into three clades: NRT1/PTR with four subclades, NRT2, and NRT3. Topological analysis indicated that all members of PtNRT1/PTR and PtNRT2 have 8 to 12 trans-membrane domains, whereas the PtNRT3 proteins have no or up to two trans-membrane domains. Four PtNRT3 members were predicted as secreted proteins. Microarray analyses revealed tissue-specific expression patterns of PtNRT genes with distinct clusters of NRTs for roots, for the elongation zone of the apical stem segment and the developing xylem and a further cluster for leaves, bark and wood. A comparison of different poplar species (P. trichocarpa, P. tremula, P. euphratica, P. fremontii x P. angustifolia, and P. x canescens) showed that the tissue-specific patterns of the NRT genes varied to some extent with species. Bioinformatic analysis of putative cis-regulatory elements in the promoter regions of PtNRT family retrieved motifs suggesting the regulation of the NRT genes by N metabolism, by energy and carbon metabolism, and by phytohormones and stress. Multivariate analysis suggested that the combination and abundance of motifs in distinct promoters may lead to tissue-specificity. Our genome wide analysis of the PtNRT genes provides a valuable basis for functional analysis towards understanding the role of nitrate transporters for tree growth.  相似文献   

7.
8.
Wang YY  Tsay YF 《The Plant cell》2011,23(5):1945-1957
This study of the Arabidopsis thaliana nitrate transporter NRT1.9 reveals an important function for a NRT1 family member in phloem nitrate transport. Functional analysis in Xenopus laevis oocytes showed that NRT1.9 is a low-affinity nitrate transporter. Green fluorescent protein and β-glucuronidase reporter analyses indicated that NRT1.9 is a plasma membrane transporter expressed in the companion cells of root phloem. In nrt1.9 mutants, nitrate content in root phloem exudates was decreased, and downward nitrate transport was reduced, suggesting that NRT1.9 may facilitate loading of nitrate into the root phloem and enhance downward nitrate transport in roots. Under high nitrate conditions, the nrt1.9 mutant showed enhanced root-to-shoot nitrate transport and plant growth. We conclude that phloem nitrate transport is facilitated by expression of NRT1.9 in root companion cells. In addition, enhanced root-to-shoot xylem transport of nitrate in nrt1.9 mutants points to a negative correlation between xylem and phloem nitrate transport.  相似文献   

9.
? Interactions between the Arabidopsis NitRate Transporter (AtNRT2.1) and Nitrate Assimilation Related protein (AtNAR2.1, also known as AtNRT3.1) have been well documented, and confirmed by the demonstration that AtNRT2.1 and AtNAR2.1 form a 150-kDa plasma membrane complex, thought to constitute the high-affinity nitrate transporter of Arabidopsis thaliana roots. Here, we have investigated interactions between the remaining AtNRT2 family members (AtNRT2.2 to AtNRT2.7) and AtNAR2.1, and their capacity for nitrate transport. ? Three different systems were used to examine possible interactions with AtNAR2.1: membrane yeast split-ubiquitin, bimolecular fluorescence complementation in A. thaliana protoplasts and nitrate uptake in Xenopus oocytes. ? All NRT2s, except for AtNRT2.7, restored growth and β-galactosidase activity in the yeast split-ubiquitin system, and split-YFP fluorescence in A. thaliana protoplasts only when co-expressed with AtNAR2.1. Thus, except for AtNRT2.7, all other NRT2 transporters interact strongly with AtNAR2.1. ? Co-injection into Xenopus oocytes of cRNA of all NRT2 genes together with cRNA of AtNAR2.1 resulted in statistically significant increases of uptake over and above that resulting from single cRNA injections.  相似文献   

10.
Little is known about the molecular and regulatory mechanisms of long-distance nitrate transport in higher plants. NRT1.5 is one of the 53 Arabidopsis thaliana nitrate transporter NRT1 (Peptide Transporter PTR) genes, of which two members, NRT1.1 (CHL1 for Chlorate resistant 1) and NRT1.2, have been shown to be involved in nitrate uptake. Functional analysis of cRNA-injected Xenopus laevis oocytes showed that NRT1.5 is a low-affinity, pH-dependent bidirectional nitrate transporter. Subcellular localization in plant protoplasts and in planta promoter-β-glucuronidase analysis, as well as in situ hybridization, showed that NRT1.5 is located in the plasma membrane and is expressed in root pericycle cells close to the xylem. Knockdown or knockout mutations of NRT1.5 reduced the amount of nitrate transported from the root to the shoot, suggesting that NRT1.5 participates in root xylem loading of nitrate. However, root-to-shoot nitrate transport was not completely eliminated in the NRT1.5 knockout mutant, and reduction of NRT1.5 in the nrt1.1 background did not affect root-to-shoot nitrate transport. These data suggest that, in addition to that involving NRT1.5, another mechanism is responsible for xylem loading of nitrate. Further analyses of the nrt1.5 mutants revealed a regulatory loop between nitrate and potassium at the xylem transport step.  相似文献   

11.
《Genomics》2023,115(2):110555
Besides manipulating nitrate uptake and allocation, nitrate transporters (NRTs) are also known to play crucial roles in pathogen defense and stress response. By blasting with the model NRT genes of poplar and Arabidopsis, a total of 408 gene members were identified from 5 maize inbred lines in which the number of NRTs ranged from 72 to 88. Phylogenetic analysis showed that the NRT genes of maize were classified into NRT1/PTR (NPF), NRT2 and NRT3 subfamilies, respectively. Marked divergence of the duplication patterns of NRT genes were identified, which may be a new basis for classification and identification of maize varieties. In terms of biotic stress, NRT2.5A showed an enhanced expression during the pathogen infection of Colletotrichum graminicola, while NRT1c4C was down-regulated, suggesting that maize NRT transporters may have both positive and negative roles in the disease resistance response. This work will promote the further studies of NRT gene families in maize, as well as be beneficial for further understanding of their potential roles in plant-pathogen interactions.  相似文献   

12.
From the soil to the seeds: the long journey of nitrate in plants   总被引:1,自引:0,他引:1  
Under temperate climates and in cultivated soils, nitrate is the most important source of nitrogen (N) available for crops and, before its reduction and assimilation into amino acids, must enter the root cells and then move in the whole plant. The aim of this review is to provide an overall picture of the numerous membrane proteins that achieve these processes by being localized in different compartments and in different tissues. Nitrate transporters (NRT) from the NRT1 and NRT2 families ensure the capacity of root cells to take up nitrate, through high- and low-affinity systems (HATS and LATS) depending on nitrate concentrations in the soil solution. Other members of the NRT1 family are involved subsequently in loading and unloading of nitrate to and from the xylem vessels, allowing its distribution to aerial organs or its remobilization from old leaves. Once in the cell, nitrate can be stored in the vacuole by passing through the tonoplast, a step that involves chloride channels (CLC) or a NRT2 member. Finally, with the exception of one NRT1 member, the transport of nitrite towards the chloroplast is still largely unknown. All these fluxes are controlled by key factors, the 'major tour operators' like the internal nutritional status of the plant but also by external abiotic factors.  相似文献   

13.
In Arabidopsis the NRT2.1 gene encodes a main component of the root high-affinity nitrate uptake system (HATS). Its regulation has been thoroughly studied showing a strong correlation between NRT2.1 expression and HATS activity. Despite its central role in plant nutrition, nothing is known concerning localization and regulation of NRT2.1 at the protein level. By combining a green fluorescent protein fusion strategy and an immunological approach, we show that NRT2.1 is mainly localized in the plasma membrane of root cortical and epidermal cells, and that several forms of the protein seems to co-exist in cell membranes (the monomer and at least one higher molecular weight complex). The monomer is the most abundant form of NRT2.1, and seems to be the one involved in NO(3)(-) transport. It strictly requires the NAR2.1 protein to be expressed and addressed at the plasma membrane. No rapid changes in NRT2.1 abundance were observed in response to light, sucrose, or nitrogen treatments that strongly affect both NRT2.1 mRNA level and HATS activity. This suggests the occurrence of post-translational regulatory mechanisms. One such mechanism could correspond to the cleavage of NRT2.1 C terminus, which results in the presence of both intact and truncated proteins in the plasma membrane.  相似文献   

14.
Nitrate transporters received little attention to legumes probably because these species are able to adapt to N starvation by developing biological N2 fixation. Still it is important to study nitrate transport systems in legumes because nitrate intervenes as a signal in regulation of nodulation probably through nitrate transporters. The aim of this work is to achieve a molecular characterization of nitrate transporter 2 (NRT2) and NAR2 (NRT3) families to allow further work that would unravel their involvement in nitrate transport and signaling. Browsing the latest version of the Medicago truncatula genome annotation (v4 version) revealed three putative NRT2 members that we have named MtNRT2.1 (Medtr4g057890.1), MtNRT2.2 (Medtr4g057865.1) and MtNRT2.3 (Medtr8g069775.1) and two putative NAR2 members we named MtNAR2.1 (Medtr4g104730.1) and MtNAR2.2 (Medtr4g104700.1). The regulation and the spatial expression profiles of MtNRT2.1, the coincidence of its expression with that of MtNAR2.1 and MtNAR2.2 and the size of the encoded protein with 12 transmembrane (TM) spanning regions strongly support the idea that MtNRT2.1 is a nitrate transporter with a major contribution to the high‐affinity transport system (HATS), while a very low level of expression characterized MtNRT2.2. Unlike MtNRT2.1, MtNRT2.3 showed a lower level of expression in the root system but was expressed in the shoots and in the nodules thus suggesting an involvement of the encoded protein in nitrate transport inside the plant and/or in nitrate signaling pathways controlling post‐inoculation processes that govern nodule functioning.  相似文献   

15.
Plants have evolved a variety of mechanisms to adapt to N starvation. NITRATE TRANSPORTER2.4 (NRT2.4) is one of seven NRT2 family genes in Arabidopsis thaliana, and NRT2.4 expression is induced under N starvation. Green fluorescent protein and β-glucuronidase reporter analyses revealed that NRT2.4 is a plasma membrane transporter expressed in the epidermis of lateral roots and in or close to the shoot phloem. The spatiotemporal expression pattern of NRT2.4 in roots is complementary with that of the major high-affinity nitrate transporter NTR2.1. Functional analysis in Xenopus laevis oocytes and in planta showed that NRT2.4 is a nitrate transporter functioning in the high-affinity range. In N-starved nrt2.4 mutants, nitrate uptake under low external supply and nitrate content in shoot phloem exudates was decreased. In the absence of NRT2.1 and NRT2.2, loss of function of NRT2.4 (triple mutants) has an impact on biomass production under low nitrate supply. Together, our results demonstrate that NRT2.4 is a nitrate transporter that has a role in both roots and shoots under N starvation.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号