首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plasma fibronectin (pFN) has been shown to mediate phagocytosis of several types of artificial particles and tissue debris by macrophages. In the present investigation some of the dynamic aspects of this receptor-mediated cellular process have been studied. Plasma fibronectin did not bind specifically to fibronectin (FN)-receptors of rat peritoneal macrophages at either 4 degrees C or 37 degrees C. On the other hand, pFN aggregated on the surface of gelatin-coated latex beads (gLtx) and 125I-labeled pFN covalently coupled to latex beads (pFN-Ltx) bound strongly to macrophages at both temperatures. Both of these particles were also internalized at 37 degrees C. Treatment of macrophages by chymotrypsin, thermolysin, or trypsin in a protein-free tissue culture medium did not affect either of the above reactions; however, pronase treatment strongly reduced both the binding and internalization of the pFN-coated particles. The pronase-treated macrophage monolayers in time regained their ability to bind and internalize pFN-gLtx when incubated in fresh tissue culture medium. Such recovery, however, did not take place when the medium contained cycloheximide. On the other hand, phagocytosis of pFN-gLtx was not affected directly by cycloheximide with untreated macrophages; this suggests that the FN-receptor recycles during sustained phagocytosis. This assumption was substantiated by the observations that some of the established lysosomotropic amines--i.e., chloroquine, dansylcadaverine, and dimethyldansylcadaverine--caused total inhibition of internalization without affecting the binding of particles to macrophages. Furthermore, chloroquine protected the FN-receptors against destruction by pronase. Together these results suggest that macrophage receptors for FN are protein, present both on the cell surface and intracellularly, and recycle between the plasma membrane and intracellular sites during phagocytosis.  相似文献   

2.
It has been suggested that fibronectin plays a role in clearing particles from the circulation by promoting binding to phagocytes of the reticuloendothelial system. By use of a well-defined system to investigate the possible opsonic role of fibronectin, we have studied the uptake of gelatin-coated latex particles by a murine macrophage cell line (P388D1). Fibronectin promotes binding of gelatin-coated beads to these cells in both suspension and monolayer cultures. In both cases there is a requirement for heparin as a cofactor. Other glycosaminoglycans (chondroitin sulfates A and C, dermatan sulfate, and keratan sulfate) were inactive, whereas heparan sulfate was somewhat active. Proof that beads were actually endocytosed was obtained by electron microscopy, which showed beads internalized in membrane- bounded vesicles, and by immunofluorescence analyses, using antibodies to fibronectin to stain external beads. Two rapid assays for the opsonic activity of fibronectin were developed based on differential centrifugation of cell-associated beads and on the immunofluorescence procedure. Binding and endocytosis were time- and temperature-dependent and varied with the amount of gelatin on the beads and with the concentrations of fibronectin and heparin added, and could be inhibited by F(ab')2 antifibronectin. These studies provide a sound basis for a detailed analysis of the interaction of fibronectin with the cell surface and of its involvement in endocytosis.  相似文献   

3.
Previous studies from this laboratory have utilized latex beads as probes of embryonic migratory pathways. After microinjection into embryos at the time of neural crest migration, uncoated latex polystyrene beads were found to translocate to ventral sites and to settle in the vicinity of endogenous neural crest derivatives. However, latex beads coated with fibronectin did not translocate ventrally, but remained associated with cells surrounding the implantation site. Fibronectin is a large glycoprotein with a variety of biological activities and multiple binding domains. Here, the binding activities which might be responsible for immobilization of the fibronectin-coated beads are examined. Latex beads were coated with three types of fragments of the fibronectin molecule representing different functional domains: (i) a 66-kDa fragment containing collagen-binding activity; (ii) a mixture of 45- and 32-kDa fragments containing heparin-binding activity; and (iii) a 120-kDa fragment containing cell-binding activity. The beads coated with fibronectin fragments were injected into the newly formed trunk somites of avian embryos. After injection, beads coated with either the heparin- or the collagen-binding domain translocated ventrally and distributed analogously to uncoated latex beads. In contrast, the majority of beads coated with the fibronectin cell-binding domain did not translocate but remained associated with dermamyotomal cells surrounding the injection site. The cell-binding fragment, however, was not as effective as the intact fibronectin molecule in preventing translocation of the beads. The results suggest that the cell-binding domain is primarily responsible for restriction of fibronectin beads from the ventral neural crest pathway. Because intact fibronectin is more effective at immobilizing beads than is the cell-binding fragment, other binding domains of fibronectin, more efficient coating with intact fibronectin, or crosslinking of intact fibronectin molecules may also play some role in immobilization of the beads at the implantation site.  相似文献   

4.
These studies show that both liver slices and macrophages carried out fibronectin concentration-dependent uptake of 125I-labeled gelatin-coated latex (test latex). Lack of phagocytosis of test latex by liver slices was shown directly by electron microscopy and indirectly by trypsin treatment, which caused the release of all test latex taken up in response to fibronectin. Inhibitors of phagocytosis did not alter this uptake. On the other hand, trypsin released only a portion of test latex from macrophages. Inhibitors of phagocytosis did not effect the released radioactive particles from macrophages but greatly reduced the trypsin-resistant radioactivity, taken as representing phagocytized particles. Opsonization of test latex with fibronectin did not require heparin but its association with liver slices occurred only in the presence of heparin. Macrophages, however, readily bound and internalized the opsonized test latex and heparin only potentiated these reactions. Gelatin competed with test latex for fibronectin for opsonization, but did not inhibit binding and phagocytosis of fibronectin-test latex complexes. Finally, soluble fibronectin-gelatin complexes did not compete for binding and phagocytosis of fibronectin-test latex complexes. Thus, fibronectin concentrated on the surface of latex is preferred for interaction with the fibronectin receptor of macrophages. Gelatin, however, was not essential for this reaction, because fibronectin directly coupled to latex was also readily taken up.  相似文献   

5.
These studies show that both liver slices and macrophages carried out fibronectin concentration-dependent uptake of 125I-labeled gelatin-coated latex (test latex). Lack of phagocytosis of test latex by liver slices was shown directly by electron microscopy and indirectly by trypsin treatment, which caused the release of all test latex taken up in response to fibronectin. Inhibitors of phagocytosis did not alter this uptake. On the other hand, trypsin released only a portion of test latex from macrophages. Inhibitors of phagocytosis did not effect the released radioactive particles from macrophages but greatly reduced the trypsin-resistant radioactivity, taken as representing phagocytized particles. Opsonization of test latex with fibronectin did not require heparin but its association with liver slices occurred only in the presence of heparin. Macrophages, however, readily bound and internalized the opsonized test latex and heparin only potentiated these reactions. Gelatin competed with test latex for fibronectin for opsonization, but did not inhibit binding and phagocytosis of fibronectin-test latex complexes. Finally, soluble fibronectin-gelatin complexes did not compete for binding and phagocytosis of fibronectin-test latex complexes. Thus, fibronectin concentrated on the surface of latex is preferred for interaction with the fibronection receptor of macrophages. Gelatin, however, was not essential for this reaction, because fibronectin directly coupled to latex was also readily taken up.  相似文献   

6.
《The Journal of cell biology》1983,97(5):1515-1523
The binding and phagocytosis of fibronectin (pFN)-coated latex beads by baby hamster kidney (BHK) cells was studied as a function of fibronectin concentration and bead diameter. Cells were incubated with radioactive pFN-coated beads, and total bead binding (cell surface or ingested) was measured as total radioactivity associated with the cells. Of the bound beads, those that also were phagocytosed were distinguished by their insensitivity to release from the cells by trypsin treatment. In continuous incubations, binding of pFN-coated beads to cells occurred at 4 degrees C or 37 degrees C, but phagocytosis was observed only at 37 degrees C. In addition, degradation of 3H-pFN from ingested beads occurred at 37 degrees C, as shown by the release of trichloroacetic acid-soluble radioactivity into the incubation medium. When the fibronectin density on the beads was varied, binding at 4 degrees C and ingestion at 37 degrees C were found to have the same dose-response dependencies, which indicated that pFN densities that permitted bead binding were sufficient for phagocytosis to occur. The fibronectin density for maximal binding of ingestion was approximately 250 ng pFN/cm2. When various sized beads (0.085-1.091 micron), coated with similar densities of pFN, were incubated with cells at 4 degrees C, no variation in binding as a function of bead size was observed. Under these conditions, the absolute amount of pFN ranged from less than 100 molecules on the 0.085-micron beads to greater than 15,000 molecules on the 1.091-micron beads. Based upon these results it can be concluded that the critical parameter controlling fibronectin-mediated binding of latex beads by BHK cells is the spacing of the pFN molecules on the beads. Correspondingly, it can be suggested that the spacing between pFN receptors on the cell surface that is optimal for multivalent interactions to occur is approximately 18 nM. When phagocytosis of various sized beads was compared, it was found that the largest beads were phagocytosed slightly better (two fold) than the smallest beads. This occurred both in continuous incubations of cells with beads and when the beads were prebound to the cells. Finally, the kinetic constants for the binding of 0.085 microM pFN-coated beads to the cells were analyzed. There appeared to be approximately 62,000 binding sites and the KD was 4.03 X 10(-9) M. Assuming a bivalent interaction, it was calculated that BHK cells have approximately 120,000 pFN receptors/cell and the binding affinity between pFN and its receptor is approximately 6 X 10(-5) M.  相似文献   

7.
Biosynthesis of fibronectin by rabbit aorta   总被引:1,自引:0,他引:1  
The in vitro interactions between vascular cells and fibronectin have been shown to influence phenotypic expression of both cultured endothelial and smooth muscle cells. To more effectively assess the potential functional role of fibronectin in vivo in modulating vascular phenotypes, we have established methodology for studying fibronectin biosynthesis in the rabbit aorta using aortic rings that are morphologically and functionally intact and metabolically active. Aortic rings were incubated with 35S-labeled methionine in a supplemented physiological salt solution. The tissue was fractionated, and quantitative immunoprecipitation was performed using a polyclonal antibody directed against human plasma fibronectin. Newly synthesized fibronectin was most abundant in the fraction solubilized using 4% sodium dodecyl sulfate and in the incubation medium. In all fractions studied, fibronectin was present predominantly as a dimer with no detectable aggregates of fibronectin. Pulse-chase experiments showed that a substantial amount of newly synthesized fibronectin was found in the 4% sodium dodecyl sulfate extract after only 1 h, suggesting that fibronectin was rapidly incorporated into the extracellular matrix. The more soluble forms of newly synthesized fibronectin appeared to be the precursors for secreted fibronectin, and no precursor-product relationship between soluble and insoluble fibronectin was found. Dissection of aortic rings following incubation with labeled methionine showed that newly synthesized fibronectin was uniformally distributed in both intima-media and media-adventitia segments. Endothelial cell denudation caused only a 20% decrease of fibronectin biosynthesis concomitant with similar changes in total protein biosynthesis, consistent with the medial smooth muscle cell as the major source of newly synthesized fibronectin. Biosynthesis of fibronectin was increased following a 24-h preincubation of the aortic rings, and concomitant increases in steady state mRNA for fibronectin were found. These in vitro studies documented the utility of aortic rings for the general purpose of studying protein synthesis in vascular cells and provide new information on the characteristics of fibronectin biosynthesis by aortic tissue.  相似文献   

8.
The possible involvement of fibronectin receptors in growth stimulation was investigated by an analysis of fibronectin-coated latex bead binding to 3T3-L1 cells under various conditions. 3T3-L1 cells, growth-arrested in a medium with a low concentration of calf serum, bound few fibronectin-coated beads. After addition of serum at concentrations of 1.0% or higher, there was a rapid and transient increase in the number of cells with bound beads and a subsequent increase in the incorporation of bromodeoxyuridine (BrdU) into cell nuclei. Incorporation of BrdU was observed in about 60% of the cells with bound beads. Fibroblast growth factor and platelet-derived growth factor at concentrations of 5 ng/ml or higher also enhanced binding of fibronectin-coated beads to cells. Stimulation of bead binding by epidermal growth factor and insulin was weak. Fibroblast growth factor, but not epidermal growth factor, increased the incorporation of BrdU into nuclei. These results indicate a relationship between stimulation of cell proliferation in quiescent cells and increased binding by cells of fibronectin-coated latex beads.  相似文献   

9.
Chick sternal chondrocytes cultured at high cell density lack fibronectin as a surface protein, while vitamin A-treated chondrocytes contain it as the major cell surface protein. We investigated the mechanism of fibronectin accumulation under these conditions. Control chondrocytes synthesized nearly as much fibronectin as vitamin A-treated chondrocytes, but it was secreted primarily into culture medium. Althought the fibronectin of control chondrocytes was of a slightly lower apparent molecular weight than the fibronectin synthesized by the treated cells, it bound as effectively to the cell layer of both normal and treated cells. In contrast, the vitamin A-treated cultures were 2.7 fold more effective in binding fibronectin synthesized by either control or treated cells. Thus in chondrocytes, vitamin A appears to regulate the cellular accumulation of fibronectin by increasing the ability of the cell layer to bind fibronectin rather than by altering its synthesis or its adhesivity for the cell layer.  相似文献   

10.
Fibrin-enhanced endothelial cell organization   总被引:12,自引:0,他引:12  
We examined the synthesis of extracellular matrix macromolecules by human microvascular endothelial cells isolated from the dermis of neonatal (foreskin) and adult (abdominal) skin. Electron microscopy showed that both cell types produced an extracellular matrix that was strictly localized to the subendothelial space. The subendothelial matrices were initially deposited as a single discontinuous layer of filamentous, electron-dense material that progressively became multilayered. Biosynthetic studies indicated that 2-4% of the newly synthesized protein was deposited in the subendothelial matrices by both cell types. Approximately 15-20% of the radiolabeled protein was secreted into the culture medium, and the remainder was confined to the cellular compartment. Biochemical and immunochemical analyses demonstrated the extracellular secretion of type IV collagen, laminin, fibronectin, and thrombospondin by the newborn and adult cells. Whereas type IV collagen was the predominant constituent of the matrix, fibronectin was secreted into the medium, with only small amounts being deposited in the matrix. Thrombospondin was a major constituent of the matrix produced by the newborn foreskin cells but was virtually absent in the matrix elaborated by the adult cells. However, both cell types did release comparable amounts of thrombospondin into their medium. Immunoperoxidase staining for type IV collagen revealed a fibrillar network in the subendothelial matrices produced by both adult and neonatal cells. In contrast, thrombospondin, which was detected only in the matrix of newborn cells, exhibited a spotty and granular staining pattern. The results indicate that the extracellular matrices synthesized by cultured human microvascular endothelial cells isolated from anatomically distinct sites and different stages of development and age are similar in ultrastructure but differ in their macromolecular composition.  相似文献   

11.
Rat plasma fibronectin enhances the binding and ingestion of gelatin-coated, formalin-fixed, or tanned sheep erythrocytes by elicited rat peritoneal macrophages. Fibronectin binding to the gelatinized erythrocytes is required for this enhancement, because macrophages preferentially recognize the surface bound molecule. This enhancement of particle uptake by fibronectin required the presence of a renewable, trypsin-sensitive component(s) on the macrophage surface (fibronectin receptor). When subjected to plasminolysis for 3 hr, fibronectin was degraded into gelatin-binding fragments (170 to 210 kd) and a 25-kd nongelatin binding fragment. The 170 to 210 kd gelatin binding fragments retained uptake-enhancing activity but were less active on a weight and molar basis than intact, dimeric fibronectin. The nongelatin binding 25 kd fragment alone did not enhance uptake. These results indicate that the sites for interaction with both the gelatinized erythrocyte surface and macrophages are retained on 170 to 210 kd fragments. However, the fibronectin dimeric structure is required for maximal expression of opsonic activity.  相似文献   

12.
Studies on the receptor specificity and dynamics involved in fibroblast phagocytosis of latex beads revealed the following: 1) Ligands other than fibronectin such as concanavalin A (ConA) and serum spreading factor, when coated on latex beads, were found to promote phagocytosis of the beads. This indicates that fibroblast phagocytosis, like spreading, is a ligand-receptor mediated phenomenon not specifically requiring fibronectin (pFN); 2) Anti-pFN antibodies were found to inhibit the ability of cells to ingest pFN-coated beads that previously were bound on the cell surfaces. Consequently, binding of beads to the cell surfaces per se is not a sufficient signal to promote ingestion of the beads; 3) Finally, divalent cations protected receptor function necessary for phagocytosis of pFN-coated beads from proteolysis by trypsin, as previously was found for receptors involved in cell attachment and spreading on pFN-coated culture dishes. Recovery experiments carried out with cells whose surface receptors had been destroyed indicated that there was an internal (or cryptic cell surface) pool of receptors that amounted to at least 50% of the receptors normally found on the cell surface. After complete destruction of the cell surface and cryptic pools of receptors, reappearance of receptors required for bead binding and phagocytosis required several hours and did not occur in the absence of new protein synthesis.  相似文献   

13.
The present study demonstrates the ability of plasma fibronectin or cold-insoluble globulin (Clg) to promote the uptake of 125I-labeled, gelatin-coated latex beads (g-Ltx*) by monolayers of peritoneal macrophages (PM). The uptake of g-Ltx* by PM was enhanced by Clg in a concentration-dependent fashion and required the presence of heparin (10 U/ml) as an obligatory cofactor for maximal particle uptake. Treatment of PM monolayers with trypsin (1 mg/ml) for 15 min at 37 degrees C after particle uptake removed less than 15% of the radioactivity incorporated by the monolayers. However, a similar trypsin treatment of the monolayers before the addition of latex particles depressed Clg-dependent uptake by greater than 75%. Pretreatment of PM monolayers with inhibitors of glycolysis effectively reduced the Clg-dependent uptake of latex. Similarly, pretreatment of monolayers with either inhibitors of protein synthesis or agents that disrupt cytoskeletal elements also significantly depressed Clg- dependent particle uptake. Phagocytosis of g-Ltx* by PM in the presence of Clg and heparin was confirmed by electron microscopy. Finally, g- Ltx* could also be effectively opsonized with Clg at 37 degrees C before their addition to the monolayers. These studies suggest that the recognition of g-Ltx* in the presence of Clg required cell surface protein(s) and that subsequent phagocytosis of these particles by PM was energy dependent and required intact intracellular cytoskeleton elements. Thus, PM monolayers provide a suitable system for further studies on the function of Clg in the recognition and phagocytosis of gelatin-coated particles by phagocytic cells.  相似文献   

14.
《The Journal of cell biology》1989,109(6):3455-3464
We have examined the early events of cellular attachment and spreading (10-30 min) by allowing chick embryonic fibroblasts transformed by Rous sarcoma virus to interact with fibronectin immobilized on matrix beads. The binding activity of cells to fibronectin beads was sensitive to both the mAb JG22E and the GRGDS peptide, which inhibit the interaction between integrin and fibronectin. The precise distribution of cytoskeleton components and integrin was determined by immunocytochemistry of frozen thin sections. In suspended cells, the distribution of talin was diffuse in the cytoplasm and integrin was localized at the cell surface. Within 10 min after binding of cells and fibronectin beads at 22 degrees C or 37 degrees C, integrin and talin aggregated at the membrane adjacent to the site of bead attachment. In addition, an internal pool of integrin-positive vesicles accumulated. The mAb ES238 directed against the extracellular domain of the avian beta 1 integrin subunit, when coupled to beads, also induced the aggregation of talin at the membrane, whereas ES186 directed against the intracellular domain of the beta 1 integrin subunit did not. Cells attached and spread on Con A beads, but neither integrin nor talin aggregated at the membrane. After 30 min, when many of the cells were at a more advanced stage of spreading around beads or phagocytosing beads, alpha-actinin and actin, but not vinculin, form distinctive aggregates at sites along membranes associated with either fibronectin or Con A beads. Normal cells also rapidly formed aggregates of integrin and talin after binding to immobilized fibronectin in a manner that was similar to the transformed cells, suggesting that the aggregation process is not dependent upon activity of the pp60v-src tyrosine kinase. Thus, the binding of cells to immobilized fibronectin caused integrin-talin coaggregation at the sites of membrane-ECM contact, which can initiate the cytoskeletal events necessary for cell adhesion and spreading.  相似文献   

15.
Tissue-cultured chicken embryo muscle cells synthesize several molecular forms of acetylcholinesterase (AChE) which differ in oligomeric structure and fate as membrane-bound or secreted molecules. Using irreversible inhibitors to inactivate AChE molecules we show that muscle cells rapidly synthesize and assemble catalytically active oligomers which transit an obligatory pathway through the Golgi apparatus. These oligomers acquire complex oligosaccharides and are ultimately localized on the cell surface or secreted into the medium. Immunoprecipitation of isotopically labeled AChE shows that the oligomers are assembled shortly after synthesis from two allelic polypeptide chains. About two-thirds of the newly synthesized molecules are assembled into dimers and tetramers, and once assembled these forms do not interconvert. Comparison of newly synthesized catalytically active AChE molecules with isotopically labeled ones indicates that a large fraction of the immature molecules are catalytically inactive. Pulse-chase studies measuring both catalytic activity and isotopic labeling indicate that only the catalytically active oligomers are further processed by the cell, whereas inactive molecules are rapidly degraded intracellularly by an as yet unknown mechanism. Approximately 70-80% of the newly synthesized AChE molecules are degraded in this manner and do not transit the Golgi apparatus. These studies indicate that muscle cells synthesize an excess of this important synaptic component over that which is necessary for maintaining normal levels of this protein. In addition, these studies indicate the existence of an intracellular route of protein degradation which may function as a post-translational regulatory step in the control of exportable proteins.  相似文献   

16.
We recently derived a series of transformed cell lines by transfecting mouse bone marrow cells highly enriched for macrophage progenitors with a newly described human gene, R-myc, which has homology to the c-myc oncogene. In this report, we show that these lines share some features characteristic of cells of the mononuclear phagocyte lineage. Specifically, all cell lines had macrophage- or monocytelike morphology, contained nonspecific esterase, were phagocytic for latex beads, secreted lysozyme, bore the Mac-1 antigen, and contained a minority of cells with Fc receptors. However, only a single monocytelike clone had appreciable numbers of cells which bore complement receptor 1, and none were phagocytic for antibody or complement-coated particles, or constitutively secreted Interleukin-1. All these cell lines secreted a growth factor capable of supporting the in vitro proliferation of bone marrow macrophages. Radioimmunoassay and receptor binding studies indicate that this factor is colony stimulating factor 1.  相似文献   

17.
Exposure of cultured human skin fibroblasts to thrombin in serum-free medium had several effects on fibronectin, a major cell surface-associated glycoprotein. Pericellular fibronectin fibrils, visualized by immunofluorescence, were lost after exposure for 4–20 h to thrombin (1–8 U/ml). Loss of fibronectin fibrils did not occur if thrombin was inhibited by phenylmethyl-sulfonyl fluoride (PMSF), N-α-tosyl-1-lysyl chloromethane (TosLysCH2Cl), alpha-1-antithrombin, alpha-2-macroglobulin, or hirudin. Cell surface fibronectin, labeled by lactoperoxidase-catalysed iodination, and newly synthesized fibronectin, metabolically labeled with [3H]mannose, were lost after exposure for 20 h to thrombin. Within 60 min, increased concentrations of fibronectin were detected by radioimmunoassay in media of thrombin-treated cultures. Thrombin increased several-fold the total amount of fibronectin accumulating in cultures over a 20 h period by increasing the amount of fibronectin secreted or shed into the medium. Fetal calf serum, which contained inhibitors of thrombin and hence only low levels of thrombin activity (<0.05 U/ml), also stimulated fibronectin production but did not cause loss of pericellular fibronectin fibrils. Thrombin or serum, under the same experimental conditions, stimulated proliferation of human fibroblasts [46]. The effects of thrombin on fibronectin may be important in wound healing and tissue repair.  相似文献   

18.
Biosynthesis and processing of fibronectin in NIL.8 hamster cells.   总被引:12,自引:0,他引:12  
Fibronectin is synthesized as a monomeric polypeptide chain. As early as it can be detected inside the cell, it carries carbohydrate side chains. These chains are sensitive to endoglycosidase H, suggesting that they are asparagine linked and high mannose form. The monomeric chains quickly dimerize while still inside the cell. Newly synthesized fibronectin appears as a dimer, both at the cell surface and secreted into the culture medium, about 30 min after commencement of labeling. This exported fibronectin has endoglycosidase H-resistant carbohydrate side chains, indicating processing from the high mannose form to a complex form. Exit of fibronectin to the outside of the cell follows quickly on carbohydrate processing; no large pool of endoglycosidase H-resistant fibronectin exists inside the cell. The dimeric fibronectin at the cell surface is initially deoxycholate soluble but slowly becomes deoxycholate-insoluble and also slowly forms high molecular weight aggregates which require reduction of disulfide bonds for their dissociation.  相似文献   

19.
《Insect Biochemistry》1987,17(6):829-840
The pericardial cells (PCs) of fifth instar Calpodes ethlius larvae are functionally adapted for filtering hemolymph and sequestering and digesting proteins. They also have a structure appropriate for the synthesis of proteins for secretion. PC secretion has been investigated by labelling the cells with [35S]methionine ti vitro with detection of newly synthesized polypeptides appearing in the medium by electrophoresis and fluorography. Sources possibly contributing to the appearance of newly synthesized polypeptides in the medium, such as cell breakdown and fat body contamination have been ruled out. The post-incubation medium of PCs contains at least six newly synthesized polypeptides. Three of these polypeptides, having relative molecular masses of 82, 57 and 43 kDa, react with antibodies to hemolymph. At least one additional polypeptide is similar by two-dimensional analysis to that naturally present in hemolymph. PCs incubated together with the heart to which they are normally attached, secrete additional polypeptides that are presumed to come from the heart. The 82 kDa polypeptide secreted by the PCs is similar to the subunits of arylphorin secreted by fat body and other tissues. We conclude that PCs secrete proteins into the hemolymph although the amount may be small relative to that of the fat body.  相似文献   

20.
Several cell-mediated activities for the amino terminus of fibronectin have been documented. In the present study we describe a macrophage surface protein with binding activity directed to the amino terminus of the fibronectin molecule. The binding of a 29-kDa amino-terminal fibronectin fragment to macrophages reached steady state by 30 min and was half-maximal at approximately 2 x 10(-8) M. This binding was specifically inhibited by excess unlabeled 29-kDa fragment or intact fibronectin but not by a 180-kDa fibronectin fragment which lacks the amino terminus. Competitive binding studies of the 70-kDa amino-terminal fibronectin fragment to macrophages revealed a single binding site with KD = 7.14 x 10(-8) M and approximately 8 x 10(4) binding sites/cell. Radiolabeled surface proteins extracted from rat peritoneal macrophages and from the human U937 cell line were applied to an affinity column comprised of the 70-kDa amino-terminal fragment of fibronectin coupled to a solid support. A single trypsin-sensitive radiolabeled protein of 67 kDa, from either cell type, was eluted from this column with urea. This protein showed no immunologic identity with fibronectin, fibrin(ogen), or albumin. The 67-kDa protein exhibited identical apparent molecular weight under reducing and nonreducing conditions, as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. We have localized the fibronectin binding activity of this protein to within the 29-kDa amino-terminal domain of fibronectin. The 67-kDa protein eluted from the 70-kDa column failed to bind to a column comprised of the 45-kDa gelatin-binding fragment of fibronectin. Additionally, the 67-kDa protein was specifically eluted from the 70-kDa column by the 29-kDa amino-terminal fragment but not by the 45-kDa gelatin-binding fragment. These data suggest that this 67-kDa protein is a macrophage cell surface binding protein for the amino terminus of fibronectin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号