首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of astroglial cells on hypoxia-induced permeability in PBMEC cells   总被引:11,自引:0,他引:11  
An in vitro model of the blood-brain barrier (BBB),consisting of porcine brain-derived microvascular endothelial cells(PBMEC), was used to evaluate the effect of astrocytes in theBBB disruption during hypoxia. Hypoxia-induced hyperpermeability wasdecreased significantly in a coculture model of astroglia cells, either astrocytes or C6 glioma cells, with PBMEC and, to the same extent, whenglia cell-conditioned medium was used. Corresponding to effects onhypoxia-induced hyperpermeability, astrocyte- and C6 cell-conditioned medium diminished hypoxia-induced vascular endothelial growth factor(VEGF) mRNA and protein expression, which recently was shown to beresponsible for hypoxia-induced permeability changes in vitro. Theeffect on hypoxia-induced hyperpermeability and VEGF expression wasspecific for astroglia cells because conditioned medium from bovinesmooth muscle cells (BSMC) did not show any effect. Immunocytochemistryrevealed that 24 h of hypoxia disrupted the continuity of thetight junction protein, zonula occludens-1 (ZO-1), which lines thecytoplasmic face of intact tight junctions. These changes wereprevented when hypoxia was performed in glia cell-conditioned medium.Results suggest that astrocytes protect the BBB from hypoxia-inducedparacellular permeability changes by decreasing hypoxia-induced VEGFexpression in microvascular endothelial cells.

  相似文献   

2.
Vascular endothelial growth factor (VEGF), a potent mediator of endothelial proliferation and migration, has an important role also in brain edema formation during hypoxia and ischemia. VEGF binds to the tyrosine kinase receptors Flt-1 and Flk-1. Yet, their relative importance for hypoxia-induced hyperpermeability is not well understood. We used an in vitro blood-brain barrier (BBB) model consisting of porcine brain microvascular endothelial cells (BMEC) to determine the role of Flt-1 in VEGF-induced endothelial cell (EC) barrier dysfunction. Soluble Flt-1 abolished hypoxia/VEGF-induced hyperpermeability. Furthermore, selective antisense oligonucleotides to Flt-1, but not to Flk-1, inhibited hypoxia-induced permeability changes. Consistent with these data, addition of the receptor-specific homolog placenta-derived growth factor, which binds Flt-1 but not Flk-1, increased endothelial permeability to the same extent as VEGF, whereas adding VEGF-E, a viral VEGF molecule from the orf virus family activating Flk-1 and neuropilin-1, but not Flt-1, did not show any effect. Using the carcinoma submandibular gland cell line (CSG), only expressing Flt-1, it was demonstrated that activation of Flt-1 is sufficient to induce hyperpermeability by hypoxia and VEGF. Hyperpermeability, induced by hypoxia/VEGF, depends on activation of phosphatidylinositol 3-kinase/Akt (PI3-K/Akt), nitric oxide synthase (NOS) and protein kinase G (PKG). The activation of the PI3-K/Akt pathway by hypoxia was confirmed using an in vivo mice hypoxia model. These results demonstrate that hypoxia/VEGF-induced hyperpermeability can be mediated by activation of Flt-1 independently on the presence of Flk-1 and indicate a central role for activation of the PI3-K/Akt pathway, followed by induction of NOS and PKG activity.  相似文献   

3.
Tight junctions between brain microvessel endothelial cells (BMECs) maintain the blood-brain barrier. Barrier breakdown is associated with brain tumors and central nervous system diseases. Tumor cell-secreted vascular endothelial growth factor (VEGF) increases microvasculature permeability in vivo and is correlated with the induction of clinically severe brain tumor edema. Here we investigated the permeability-increasing effect and tight junction formation of VEGF. By measuring [(14)C]sucrose flux and transendothelial electrical resistance (TER) across BMEC monolayer cultures, we found that VEGF increased sucrose permeability and decreased TER. VEGF also caused a loss of occludin and ZO-1 from the endothelial cell junctions and changed the staining pattern of the cell boundary. Western blot analysis of BMEC lysates revealed that the level of occludin but not of ZO-1 was lowered by VEGF treatment. These results suggest that VEGF increases BMEC monolayer permeability by reducing occludin expression and disrupting ZO-1 and occludin organization, which leads to tight junction disassembly. Occludin and ZO-1 appear to be downstream effectors of the VEGF signaling pathway.  相似文献   

4.
Podokinesis in endothelial cell migration: role of nitric oxide   总被引:12,自引:0,他引:12  
Previously, we demonstrated the role of nitric oxide (NO) intransforming epithelial cells from a stationary to locomoting phenotype[E. Noiri, T. Peresleni, N. Srivastava, P. Weber, W. F. Bahou, N. Peunova, and M. S. Goligorsky. Am. J. Physiol. 270 (CellPhysiol. 39): C794-C802, 1996] and itspermissive function in endothelin-1-stimulated endothelial cellmigration (E. Noiri, Y. Hu, W. F. Bahou, C. Keese, I. Giaever, and M. S. Goligorsky. J. Biol. Chem. 272:1747-1753, 1997). In the present study, the role of functional NOsynthase in executing the vascular endothelial growth factor(VEGF)-guided program of endothelial cell migration and angiogenesiswas studied in two independent experimental settings. First, VEGF,shown to stimulate NO release from simian virus 40-immortalized microvascular endothelial cells, induced endothelial cell transwell migration, whereasNG-nitro-L-arginine methyl ester(L-NAME) or antisenseoligonucleotides to endothelial NO synthase suppressed this effect ofVEGF. Second, in a series of experiments on endothelial cell woundhealing, the rate of VEGF-stimulated cell migration was significantlyblunted by the inhibition of NO synthesis. To gain insight into thepossible mode of NO action, we next addressed the possibility that NOmodulates cell matrix adhesion by performing impedance analysis ofendothelial cell monolayers subjected to NO. The data showed thepresence of spontaneous fluctuations of the resistance in ostensiblystationary endothelial cells. Spontaneous oscillations were induced byNO, which also inhibited cell matrix adhesion. This process we propose to term "podokinesis" to emphasize a scalar form ofmicromotion that, in the presence of guidance cues, e.g., VEGF, istransformed to a vectorial movement. In conclusion, execution of theprogram for directional endothelial cell migration requires twocoexisting messages: NO-induced podokinesis (scalar motion) andguidance cues, e.g., VEGF, which imparts a vectorial component to themovement. Such a requirement for the dual signaling may explain amismatch in the demand and supply with newly formed vessels indifferent pathological states accompanied by the inhibition of NOsynthase.

  相似文献   

5.
Increased endothelial permeability is involved in the pathogenesis of many cardiovascular and pulmonary diseases. Vascular endothelial growth factor (VEGF) is a permeability-increasing cytokine. At the same time, VEGF is known to have a beneficial effect on endothelial cells (EC), increasing their survival. Pulmonary endothelium, particularly, may be exposed to higher VEGF concentrations, since the VEGF level is the higher in the lungs than in any other organ. The purpose of this work was to evaluate the effects of VEGF on barrier function and motility of cultured human pulmonary EC. Using transendothelial resistance measurements as an indicator of permeability, we found that 10 ng/ml VEGF significantly improved barrier properties of cultured human pulmonary artery EC (118.6+/-0.6% compared with 100% control, P<0.001). In contrast, challenge with 100 ng/ml VEGF decreased endothelial barrier (71.6+/-1.0% compared with 100% control, P<0.001) and caused disruption of adherens junctions. VEGF at both concentrations increased cellular migration; however, 10 ng/ml VEGF had a significantly stronger effect. VEGF caused a dose-dependent increase in intracellular Ca2+ concentration; however, phosphorylation of myosin light chain was detectably elevated only after treatment with 100 ng/ml. In contrast, 10 ng/ml but not 100 ng/ml VEGF caused a significant increase in intracellular cAMP (known barrier-protective stimulus) compared with nonstimulated cells (1,096+/-157 and 610+/-86 fmol/mg, respectively; P<0.024). Y576-specific phosphorylation of focal adhesion kinase was also stimulated by 10 ng/ml VEGF. Our data suggest that, depending on its concentration, VEGF may cause diverse effects on pulmonary endothelial permeability via different signaling pathways.  相似文献   

6.
It appears thatthe expression of vascular endothelial growth factor (VEGF) isincreased during brain injury and thus may contribute to disruption ofthe blood-brain barrier (BBB) during cerebrovascular trauma. The firstgoal of this study was to determine the effect of VEGF on permeabilityof the BBB in vivo. The second goal was to determine possible cellularmechanisms by which VEGF increases permeability of the BBB. We examinedthe pial microcirculation in rats using intravital fluorescencemicroscopy. Permeability of the BBB [clearance of FITC-labeleddextran of molecular mass 10,000 Da (FITC-dextran-10K)] anddiameter of pial arterioles were measured in absence and presence ofVEGF (0.01 and 0.1 nM). During superfusion with vehicle (saline),clearance of FITC-dextran-10K from pial vessels was minimal anddiameter of pial arterioles remained constant. Topical application ofVEGF (0.01 nM) did not alter permeability of the BBB toFITC-dextran-10K or arteriolar diameter. However, superfusion with VEGF(0.1 nM) produced a marked increase in clearance of FITC-dextran-10Kand a modest dilatation of pial arterioles. To determine a potentialrole for nitric oxide and stimulation of soluble guanylate cyclase inVEGF-induced increases in permeability of the BBB and arteriolardilatation, we examined the effects ofNG-monomethyl-L-arginine(L-NMMA; 10 µM) and1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 1.0 µM), respectively.L-NMMA and ODQ inhibitedVEGF-induced increases in permeability of the BBB and arteriolardilatation. The findings of the present study suggest that VEGF, whichappears to be increased in brain tissue during cerebrovascular trauma, increases the permeability of the BBB via the synthesis/release ofnitric oxide and subsequent activation of soluble guanylate cyclase.  相似文献   

7.
Endothelium of the cerebral blood microvessels, which constitutes the major component of the blood-brain barrier, controls leukocyte and metastatic cancer cell adhesion and trafficking into the brain parenchyma. In this study, using rat primary brain microvascular endothelial cells (BMEC), we demonstrate that the vascular endothelial growth factor (VEGF), a potent promoter of angiogenesis, up-regulates the expression of the intracellular adhesion molecule-1 (ICAM-1) through a novel pathway that includes phosphatidylinositol 3 OH-kinase (PI3K), AKT, and nitric oxide (NO), resulting in the migration of BMEC. Upon VEGF treatment, AKT is phosphorylated in a PI3K-dependent manner. AKT activation leads to NO production and release and activation-deficient AKT attenuates NO production stimulated by VEGF. Transfection of the constitutive myr-AKT construct significantly increased basal NO release in BMEC. In these cells, VEGF and the endothelium-derived NO synergistically up-regulated the expression of ICAM-1, which was mediated by the PI3K pathway. This activity was blocked by the PI3K-specific inhibitor, wortmannin. Furthermore, VEGF and NO significantly increased BMEC migration, which was mediated by the up-regulation of ICAM-1 expression and was dependent on the integrity of the PI3K/AKT/NO pathway. This effect was abolished by wortmannin, by the specific ICAM-1 antibody, by the specific inhibitor of NO synthase, N(G)-l-monomethyl-arginine (l-NMMA) or by a combination of wortmannin, ICAM-1 antibody, and l-NMMA. These findings demonstrate that the angiogenic factor VEGF up-regulates ICAM-1 expression and signals to ICAM-1 as an effector molecule through the PI3K/AKT/NO pathway, which leads to brain microvessel endothelial cell migration. These observations may contribute to a better understanding of BMEC angiogenesis and the physiological as well as pathophysiological function of the blood-brain barrier, whose integrity is crucial for normal brain function.  相似文献   

8.
Estradiol had abiphasic effect on permeability across cultures of human umbilical veinendothelial cells (HUVEC): at nanomolar concentrations it decreased theHUVEC culture permeability, but at micromolar concentrations itincreased the permeability. The objective of the present study was totest the hypothesis that the changes in permeability were mediated bynitric oxide (NO)-related mechanisms. The results revealed dualmodulation of endothelial paracellular permeability by estrogen.1) An endothelial NO synthase (eNOS)-, NO-, and cGMP-related,Ca2+-dependent decrease inpermeability was activated by nanomolar concentrations of estradiol,resulting in enhanced Clinflux, increased cell size, and increases in the resistance of thelateral intercellular space(RLIS) and inthe resistance of the tight junctions(RTJ); theseeffects appeared to be limited by the ability of cells to generate cGMPin response to NO. 2) An inducibleNO synthase (iNOS)- and NO-related,Ca2+-independent increase inpermeability was activated by micromolar concentrations of estradiol,resulting in enhanced Clefflux, decreased cell size, and decreasedRLIS andRTJ. We conclude that the net effect on transendothelial permeability across HUVEC depends on the relative contributions of each of these two systems tothe total paracellular resistance.  相似文献   

9.
Brain hypoxiainduces an increase in brain vascularity, presumably mediated byvascular endothelial growth factor (VEGF), but it is unclear whetherVEGF is required to maintain the increase. In these studies, brain VEGFmRNA and protein levels were measured in adult mice kept in hypobaricchambers at 0.5 atm for 0, 0.5, 1, 2, 4, 7, and 21 days. Hypoxia wasaccompanied by a transient increase of VEGF mRNA expression: twofold by0.5 day and a maximum of fivefold by 2 days; these were followed by adecrease at 4 days and a return to basal levels by 7-21 days. VEGFprotein expression induced by hypoxia was bimodal, initiallyparalleling VEGF mRNA. There was an initial small increase at 12 h thatreached a maximum by day 2, and, aftera transient decrease on day 4, theprotein expression increased again on day7 before it returned to normoxic levels after 21 days.Thus, despite continued hypoxia, both VEGF mRNA and protein levelsreturned to basal after 7 days. These data suggest a metabolicnegative-feedback system for VEGF expression during prolonged hypoxiain the brain.

  相似文献   

10.
We recently demonstrated that deficiency in endothelial nitric oxide synthase (eNOS) results in congenital septal defects and postnatal heart failure. The aim of this study was to investigate the role of eNOS in cardiomyocyte proliferation and maturation during postnatal development. Cultured eNOS knockout (eNOS–/–) cardiomyocytes displayed fewer cells and lower bromodeoxyuridine (BrdU) incorporation in vitro compared with wild-type (WT) cardiomyocytes (P < 0.05). Treatment with the nitric oxide (NO) donor diethylenetriamine NONOate increased BrdU incorporation and cell counts in eNOS–/– cardiomyocytes (P < 0.05). Inhibition of nitric oxide synthase activity using NG-nitro-L-arginine methyl ester decreased the level of BrdU incorporation and cell counts in WT cardiomyocytes (P < 0.05). Vascular endothelial growth factor (VEGF) increased the level of BrdU incorporation in cultured WT cardiomyocytes in a dose- and time-dependent manner (P < 0.05). Conversely, VEGF did not alter BrdU incorporation in eNOS–/– cardiomyocytes (P = not significant). Furthermore, deficiency in eNOS significantly decreased BrdU labeling indexes in neonatal hearts in vivo. Although WT hearts displayed a rapid decrease in atrial natriuretic peptide (ANP) expression in the first week of neonatal life, ANP expression in eNOS–/– hearts remain elevated. Our study demonstrated that NO production from eNOS is necessary for postnatal cardiomyocyte proliferation and maturation, suggesting that eNOS plays an important role during postnatal heart development. proliferation; heart development  相似文献   

11.
Athree-dimensional magnetic resonance imaging (MRI) method to measurepulmonary edema and lung microvascular barrier permeability wasdeveloped and compared with conventional methods in nine mongrel dogs.MRIs were obtained covering the entire lungs. Injury was induced byinjection of oleic acid (0.021-0.048 ml/kg) into a jugularcatheter. Imaging followed for 0.75-2 h. Extravascular lung waterand permeability-related parameters were measured from multiple-indicator dilution curves. Edema was measured as magnetic resonance signal-to-noise ratio (SNR). Postinjury wet-to-dry lung weight ratio was 5.30 ± 0.38 (n = 9). Extravascular lung water increased from 2.03 ± 1.11 to 3.00 ± 1.45 ml/g(n = 9, P < 0.01). Indicatordilution studies yielded parameters characterizing capillary exchangeof urea and butanediol: the product of the square root of equivalentdiffusivity of escape from the capillary and capillary surface area(D1/2S)and the capillary permeability-surface area product(PS). The ratio ofD1/2Sfor urea toD1/2Sfor butanediol increased from 0.583 ± 0.027 to 0.852 ± 0.154 (n = 9, P < 0.05). Whole lung SNR atbaseline, before injury, correlated withD1/2Sand PS ratios (both P < 0.02). By using rate of SNR change, the mismatch of transcapillaryfiltration flow and lymph clearance was estimated to be0.2-1.8 ml/min. The filtration coefficient was estimated fromthese values. Results indicate that pulmonary edema formation duringoleic acid injury can be imaged regionally and quantified globally, andthe results suggest possible regional quantification by usingthree-dimensional MRI.

  相似文献   

12.
Nitric oxide decreases lung injury after intestinal ischemia   总被引:1,自引:0,他引:1  
Terada, Lance S., Nancy N. Mahr, and Eugene D. Jacobson.Nitric oxide decreases lung injury after intestinal ischemia. J. Appl. Physiol. 81(6):2456-2460, 1996.After injury to a primary organ, mediators arereleased into the circulation and may initiate inflammation of remoteorgans. We hypothesized that the local production of nitric oxide (NO)may act to limit the spread of inflammation to secondarily targetedorgans. In anesthetized rats, 30 min of intestinal ischemia followed by2 h of reperfusion (I/R) did not increase lung albumin leak. However,after treatment with NG-nitro-L-arginine methyl ester(L-NAME), intestinal I/R led to increased lung leak, suggesting a protective effect of endogenous NO.The site of action of NO appeared to be the lung and not the gutbecause 1) after treatment withL-NAME, local delivery of NO tothe lung by inhalation abolished the increase in intestinal I/R-inducedlung leak; 2)L-NAME had no effect onepithelial permeability (51Cr-labeled EDTA clearance) ofreperfused small bowel; and 3) after treatment with L-NAME, localdelivery of NO to the gut by luminal perfusion did not improveepithelial permeability of reperfused intestines. Furthermore,L-NAME increased, and inhaled NOde- creased, the density of lung neutrophils in rats subjected to intestinal I/R, and treatment with the selectin antagonist fucoidan abolished L-NAME-induced lungleak in rats subjected to intestinal I/R. We conclude thatendogenous lung NO limits secondary lung injury after intestinal I/R bydecreasing pulmonary neutrophil retention.

  相似文献   

13.
Engelke, Keith A., John R. Halliwill, David N. Proctor, NikiM. Dietz, and Michael J. Joyner. Contribution of nitric oxide andprostaglandins to reactive hyperemia in the human forearm. J. Appl. Physiol. 81(4):1807-1814, 1996.We investigated the separate and combinedcontributions of nitric oxide (NO) and vasodilating prostaglandins asmediators of reactive hyperemia in the human forearm. Forearm bloodflow (FBF) was measured with venous occlusion plethysmography after 5 min of ischemia. In one protocol (n = 12), measurements were made before and after intra-arterialadministration of the NO synthase inhibitorNG-monomethyl-L-arginine(L-NMMA) to one forearm. In aseparate protocol (n = 7),measurements were made before and after systemic administration of thecyclooxygenase inhibitor ibuprofen and again afterL-NMMA.L-NMMA reduced baseline FBF atrest (2.7 ± 0.4 to 1.6 ± 0.2 ml · 100 ml1 · min1;P < 0.05) and had a modesteffect on peak forearm vascular conductance and flow (forearm vascularconductance = 31.1 ± 3.1 vs. 25.7 ± 2.5 ml · min1 · 100 mlforearm1 · 100 mmHg of perfusionpressure1 · min1,P < 0.05; FBF = 26.6 ± 2.9 vs.22.8 ± 2.6 ml · 100 ml1 · min1,P = 0.055). Total excessflow above baseline during reactive hyperemia was unaffected byL-NMMA (14.3 ± 3.0 vs. 13.1 ± 2.3 ml/100 ml; P < 0.05).Ibuprofen did not change FBF at rest, reduced peak FBF from 27.6 ± 1.9 to 20.3 ± 2.7 ml · 100 ml1 · min1(P < 0.05), but had no effect ontotal excess flow above baseline. Infusion ofL-NMMA after ibuprofen reducedFBF at rest by 40%, had no effect on peak flow, but reduced totalexcess flow above baseline from 12.0 ± 2.5 to 7.6 ± 1.3 ml/100ml (P < 0.05). These datademonstrate that NO synthase inhibition has a modest effect on peakvasodilation during reactive hyperemia but plays a minimal role later.Prostaglandins appear to be important determinants of peak flow. Theeffects of NO synthase inhibition during reactive hyperemia may also bepotentiated by concurrent cyclooxygenase inhibition.

  相似文献   

14.
In the present study, we used laser scanning confocal microscopy in combination with fluorescent indicator dyes to investigate the effects of nitric oxide (NO) produced endogenously by stimulation of the mitochondria-specific NO synthase (mtNOS) or applied exogenously through a NO donor, on mitochondrial Ca2+ uptake, membrane potential, and gating of mitochondrial permeability transition pore (PTP) in permeabilized cultured calf pulmonary artery endothelial (CPAE) cells. Higher concentrations (100–500 µM) of the NO donor spermine NONOate (Sper/NO) significantly reduced mitochondrial Ca2+ uptake and Ca2+ extrusion rates, whereas low concentrations of Sper/NO (<100 µM) had no effect on mitochondrial Ca2+ levels ([Ca2+]mt). Stimulation of mitochondrial NO production by incubating cells with 1 mM L-arginine also decreased mitochondrial Ca2+ uptake, whereas inhibition of mtNOS with 10 µM L-N5-(1-iminoethyl)ornithine resulted in a significant increase of [Ca2+]mt. Sper/NO application caused a dose-dependent sustained mitochondrial depolarization as revealed with the voltage-sensitive dye tetramethylrhodamine ethyl ester (TMRE). Blocking mtNOS hyperpolarized basal mitochondrial membrane potential and partially prevented Ca2+-induced decrease in TMRE fluorescence. Higher concentrations of Sper/NO (100–500 µM) induced PTP opening, whereas lower concentrations (<100 µM) had no effect. The data demonstrate that in calf pulmonary artery endothelial cells, stimulation of mitochondrial Ca2+ uptake can activate NO production in mitochondria that in turn can modulate mitochondrial Ca2+ uptake and efflux, demonstrating a negative feedback regulation. This mechanism may be particularly important to protect against mitochondrial Ca2+ overload under pathological conditions where cellular [NO] can reach very high levels. nitric oxide synthase; permeability transition pore; endothelium  相似文献   

15.
Adropin is a peptide encoded by the energy homeostasis associated gene (Enho) and plays a critical role in the regulation of lipid metabolism, insulin sensitivity, and endothelial function. Little is known of the effects of adropin in the brain and whether this peptide modulates ischemia-induced blood-brain barrier (BBB) injury. Here, we used an in vitro BBB model of rat brain microvascular endothelial cells (RBE4) and hypothesized that adropin would reduce endothelial permeability during ischemic conditions. To mimic ischemic conditions in vitro, RBE4 cell monolayers were subjected to 16 h hypoxia/low glucose (HLG). This resulted in a significant increase in paracellular permeability to FITC-labeled dextran (40 kDa), a dramatic upregulation of vascular endothelial growth factor (VEGF), and the loss of junction proteins occludin and VE-cadherin. Notably, HLG also significantly decreased Enho expression and adropin levels. Treatment of RBE4 cells with synthetic adropin (1, 10 and 100 ng/ml) concentration-dependently reduced endothelial permeability after HLG, but this was not mediated through protection to junction proteins or through reduced levels of VEGF. We found that HLG dramatically increased myosin light chain 2 (MLC2) phosphorylation in RBE4 cells, which was significantly reduced by adropin treatment. We also found that HLG significantly increased Rho-associated kinase (ROCK) activity, a critical upstream effector of MLC2 phosphorylation, and that adropin treatment attenuated that effect. These data indicate that treatment with adropin reduces endothelial cell permeability after HLG insult by inhibition of the ROCK-MLC2 signaling pathway. These promising findings suggest that adropin protects against endothelial barrier dysfunction during ischemic conditions.  相似文献   

16.
To determine theinitial signaling event in the vascular permeability increase afterhigh airway pressure injury, we compared groups of lungs ventilated atdifferent peak inflation pressures (PIPs) with (gadolinium group) andwithout (control group) infusion of 20 µM gadolinium chloride, aninhibitor of endothelial stretch-activated cationchannels. Microvascular permeability was assessed by using the capillary filtration coefficient(Kfc), ameasure of capillary hydraulic conductivity.Kfc was measuredafter ventilation for 30-min periods with 7, 20, and 30 cmH2O PIP with 3 cmH2O positive end-expiratorypressure and with 35 cmH2O PIPwith 8 cmH2O positive end-expiratory pressure. In control lungs,Kfc increasedsignificantly to 1.8 and 3.7 times baseline after 30 and 35 cmH2O PIP, respectively. In thegadolinium group,Kfc was unchangedfrom baseline (0.060 ± 0.010 ml · min1 · cmH2O1 · 100 g1) after any PIPventilation period. Pulmonary vascular resistance increasedsignificantly from baseline in both groups before the lastKfc measurementbut was not different between groups. These results suggest thatmicrovascular permeability is actively modulated by a cellular responseto mechanical injury and that stretch-activated cation channels mayinitiate this response through increases in intracellular calciumconcentration.

  相似文献   

17.
Recent studies showed that heatshock protein 90 (HSP90) enhances nitric oxide (NO) synthesis fromendothelial and neuronal NO synthase (eNOS and nNOS, respectively).However, these findings were based on indirect NO measurements.Moreover, although our previous studies showed that the action of HSP90involves increased Ca2+/calmodulin (Ca2+/CaM)binding, quantitative measurements of the effect of HSP90 on CaMbinding to nNOS have been lacking. With electron paramagnetic resonancespectroscopy, we directly measured NO signals from purified nNOS. HSP90augmented NO formation from nNOS in a dose-dependent manner. Tryptophanfluorescence-quenching measurements revealed that HSP90 markedlyreduced the Kd of CaM to nNOS (0.5 ± 0.1 nM vs. 9.4 ± 1.8 nM in the presence and absence of HSP90,P < 0.01). Ca2+ ionophore triggered strongNO production from nNOS-transfected cells, and this was significantlyreduced by the HSP90 inhibitor geldanamycin. Thus these studies providedirect evidence demonstrating that HSP90 enhances nNOS catalyticfunction in vitro and in intact cells. The effect of HSP90 is mediatedby the enhancement of CaM binding to nNOS.

  相似文献   

18.
Thrombinreceptor is activated by thrombin-mediated cleavage of the receptor'sNH2 terminus between Arg-41 andSer-42, generating a new NH2terminus that functions as a "tethered ligand" by binding tosites on the receptor. We prepared antibodies (Abs) directed againstspecific receptor domains to study the tethered ligand-receptor interactions required for signaling the increase in endothelial permeability to albumin. We used polyclonal Abs directed against thepeptide sequences corresponding to the extracellularNH2 terminus [residues70-99 (AbDD) and 1-160 (AbEE)] and extracellular loops 1 and 2 [residues 161-178 (AbL1) and 244-265(AbL2)] of the seven-transmembrane thrombin receptor. Receptoractivation was determined by measuring changes in cytosolicCa2+ concentration([Ca2+]i)in human dermal microvascular endothelial cells (HMEC) loaded withCa2+-sensitive fura2-acetoxymethyl ester dye. The transendothelial 125I-labeled albumin clearancerate (a measure of endothelial permeability) was determined across theconfluent HMEC monolayers. AbEE (300 µg/ml), directed against theentire extracellular NH2-terminal extension, inhibited the thrombin-induced increases in[Ca2+]iand the endothelial 125I-albuminclearance rate (>90% reduction in both responses). AbDD (300 µg/ml), directed against a sequence within theNH2-terminal extension, inhibited70% of the thrombin-induced increase in[Ca2+]iand 60% of the increased125I-albumin clearance rate. AbL2(300 µg/ml) inhibited these responses by 70 and 80%, respectively.However, AbL1 (300 µg/ml) had no effect on either response. Weconclude that NH2-terminalextension and loop 2 are critical sites for thrombin receptoractivation in endothelial cells and thus lead to increased[Ca2+]iand transendothelial permeability to albumin.

  相似文献   

19.
Rhesus macaque monkey brain microvessel endothelial cells (BMECs) were isolated and grown in culture in an effort to establish an appropriate primate in vitro model of the endothelial component of the blood-brain barrier. The presence of Factor VIII antigen, alkaline phosphatase, -glutamyl transpeptidase, lactate dehydrogenanse, total protein, and the passive permeability properties was documented for both primary and passaged cultures. Primate BMECs were shown to exhibit similar morphological and biochemical properties described for other BMEC culture systems derived from other species. In addition, the passaged primate BMECs were particularly notable for the changes in enzyme activities and total protein that parallel age-dependent changes in brain capillary endothelia. This study provides further support for the possible application of BMEC culture systems in investigations of blood-brain barrier functions under normal, aging, and diseased conditions.To whom to address reprint requests. Phone (913)864-3609; FAX (913)864-3578.  相似文献   

20.
Hinder, Frank, Michael Booke, Lillian D. Traber, and DanielL. Traber. Nitric oxide and endothelial permeability.J. Appl. Physiol. 83(6):1941-1946, 1997.Nitric oxide synthase inhibition reversessystemic vasodilation during sepsis but may increase endothelialpermeability. To assess adverse effects on the pulmonary vasculature,12 sheep were chronically instrumented with lung lymph fistulas andhydraulic pulmonary venous occluders. Escherichia coli endotoxin (lipopolysaccharide; 10 ng · kg1 · min1)was continuously infused for 32 h. After 24 h, six animals received 25 mg/kg of N-nitro-L-argininemethyl ester (L-NAME), and sixreceived saline. All sheep developed a hyperdynamic circulatoryresponse and elevated lymph flows by 24 h of lipopolysaccharideinfusion. L-NAME reversed systemic vasodilation, increased pre- and postcapillary pulmonary vascular resistance index, pulmonary arterial pressure, and,transiently, effective pulmonary capillary pressure. Lung lymph flowswere not different between groups at 24 h or thereafter. Calculated aschanges from baseline, however, lung lymph flow was higher in theL-NAME group than in the controlanimals, with a trend toward lower lymph-to-plasma proteinconcentration ratio at 25 h. Permeability analysis at 32 h by thevenous occlusion technique showed normal reflection coefficients andelevated filtration coefficients without differences between groups.Reversal by L-NAME of thesystemic vasodilation during endotoxemia was associated with highpulmonary vascular resistance without evidence of impaired pulmonaryendothelial barrier function.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号