首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Deinococcus radiodurans R1 recovering from acute dose of gamma radiation shows a biphasic mechanism of DNA double-strand break repair. The possible involvement of microsequence homology-dependent, or non-homologous end joining type mechanisms during initial period followed by RecA-dependent homologous recombination pathways has been suggested for the reconstruction of complete genomes in this microbe. We have exploited the known roles of exonuclease I in DNA recombination to elucidate the nature of recombination involved in DNA double-strand break repair during post-irradiation recovery of D. radiodurans. Transgenic Deinococcus cells expressing exonuclease I functions of Escherichia coli showed significant reduction in gamma radiation radioresistance, while the resistance to far-UV and hydrogen peroxide remained unaffected. The overexpression of E. coli exonuclease I in Deinococcus inhibited DNA double-strand break repair. Such cells exhibited normal post-irradiation expression kinetics of RecA, PprA and single-stranded DNA-binding proteins but lacked the divalent cation manganese [(Mn(II)]-dependent protection from gamma radiation. The results strongly suggest that 3' (rho) 5' single-stranded DNA ends constitute an important component in recombination pathway involved in DNA double-strand break repair and that absence of sbcB from deinococcal genome may significantly aid its extreme radioresistance phenotype.  相似文献   

2.
Protein oxidation can contribute to radiation-induced cell death by two mechanisms: (1) by reducing the fidelity of DNA repair, and (2) by decreasing cell viability directly. Previously, we explored the first mechanism by developing a mathematical model and applying it to data on Deinococcus radiodurans . Here we extend the model to both mechanisms, and analyze a recently published data set of protein carbonylation and cell survival in D. radiodurans and Escherichia coli exposed to gamma and ultraviolet radiation. Our results suggest that similar cell survival curves can be produced by very different mechanisms. For example, wild-type E. coli and DNA double-strand break (DSB) repair-deficient recA- D. radiodurans succumb to radiation doses of similar magnitude, but for different reasons: wild-type E. coli proteins are easily oxidized, causing cell death even at low levels of DNA damage, whereas proteins in recA- D. radiodurans are well protected from oxidation, but DSBs are not repaired correctly even when most proteins are intact. Radioresistant E. coli mutants survive higher radiation doses than the wild-type because of superior protection of cellular proteins from radiogenic oxidation. In contrast, wild-type D. radiodurans is much more radioresistant than the recA- mutant because of superior DSB repair, whereas protein protection in both strains is similar. With further development, the modeling approach presented here can also quantify the causes of radiation-induced cell death in other organisms. Enhanced understanding of these causes can stimulate research on novel radioprotection strategies.  相似文献   

3.
赵烨  华跃进 《生命科学》2014,(11):1136-1142
耐辐射球菌对于电离辐射等DNA损伤剂具有极强的抗性,能够将同一个基因组中同时产生的高达100个以上的DNA双链断裂在数十小时内高效而精准地进行修复,是研究DNA双链断裂修复机制的重要模式生物。同源重组、非同源末端连接和单链退火途径作为3个主要的修复途径参与了耐辐射球菌基因组DNA双链断裂的修复过程。此外,一系列新发现的重要蛋白质,如Ppr I、Ddr B等对于耐辐射球菌基因组的修复过程同样至关重要。根据本实验室和国内外在这一研究领域近年来的报道,以不同的修复途径为线索,综述该菌DNA双链断裂修复机制的最新研究成果。  相似文献   

4.
A multiprotein DNA processing complex isolated from Deinococcus radiodurans contains the DNA repair protein PprA, an ATP-type DNA repair ligase (LigB) encoded by the drB0100 gene, and protein kinase activity. An ATP-dependent DNA end-joining activity was detected in the complex. To elucidate the function of the drB0100 gene, we generated the deletion mutant for the DR_B0100 ORF. The mutant exhibited a nearly 2-log cycle reduction in growth rate when exposed to a 10,000 Gray dose of γ-radiation, and a significant loss in mitomycin C and methylmethane sulphonate tolerance as compared with wild type. Functional complementation of these phenotypes required the wild-type copy of drB0100 along with other genes such as drb0099 and drb0098, organized downstream in the operon. The in vitro DNA ligase activity of LigB was stimulated severalfold by PprA in the presence of the recombinant DRB0098 protein. However, this activity did not improve when PprA was substituted with purified DRB0099 protein or when DRB0098 protein was substituted with the DRB0099 protein in the presence of PprA in solution. These results suggest that PprA and DRB0098 protein are required for LigB function. Furthermore, they also suggest that the LigB operon components contribute to radiation resistance and double-strand break (DSB) repair in D. radiodurans.  相似文献   

5.
Orthologs of proteins SbcD (Mre11) and SbcC (Rad50) exist in all kingdoms of life and are involved in a wide variety of DNA repair and maintenance functions, including homologous recombination and nonhomologous end joining. Here, we have inactivated the sbcC and/or sbcD genes of Deinococcus radiodurans, a highly radioresistant bacterium able to mend hundreds of radiation-induced DNA double-strand breaks (DSB). Mutants devoid of the SbcC and/or SbcD proteins displayed reduced survival and presented a delay in kinetics of DSB repair and cell division following gamma-irradiation. It has been recently reported that D. radiodurans DNA polymerase X (PolX) possesses a structure-modulated 3'-to-5' exonuclease activity reminiscent of specific nuclease activities displayed by the SbcCD complex from Escherichia coli. We constructed a double mutant devoid of SbcCD and PolX proteins. The double-mutant DeltasbcCD DeltapolX(Dr) (where Dr indicates D. radiodurans) bacteria are much more sensitive to gamma-irradiation than the single mutants, suggesting that the deinococcal SbcCD and PolX proteins may play important complementary roles in processing damaged DNA ends. We propose that they are part of a backup repair system acting to rescue cells containing DNA lesions that are excessively numerous or difficult to repair.  相似文献   

6.
Transgenic bacteria producing pyrroloquinoline quinone, a known cofactor for dehydrogenases and an inducer of a periplasmic protein kinase activity, show resistance to both oxidative stress and protection from nonoxidative effects of radiation and DNA-damaging agents. Deinococcus radiodurans R1 encodes an active pyrroloquinoline quinone synthase, and constitutive synthesis of pyrroloquinoline quinone occurred in wild-type bacteria. Disruption of a genomic copy of pqqE resulted in cells that lacked this cofactor. The mutant showed a nearly 3-log decrease in gamma radiation resistance and a 2-log decrease in mitomycin C tolerance compared to wild-type cells. The mutant cells did not show sensitivity to UVC radiation. Expression of pyrroloquinoline quinone synthase in trans showed that there was functional complementation of gamma resistance and mitomycin C tolerance in the pqqE mutant. The sensitivity to gamma radiation was due to impairment or slow kinetics of DNA double strand break repair. Low levels of (32)P incorporation were observed in total soluble proteins of mutant cells compared to the wild type. The results suggest that pyrroloquinoline quinone has a regulatory role as a cofactor for dehydrogenases and an inducer of selected protein kinase activity in radiation resistance and DNA strand break repair in a radioresistant bacterium.  相似文献   

7.
Gao G  Tian B  Liu L  Sheng D  Shen B  Hua Y 《DNA Repair》2003,2(12):1419-1427
PprI, a newly identified gene switch responsible for extreme radioresistance of Deinococcus radiodurans, plays a central regulatory role in multiple DNA damage repair and protection pathways in response to radiation stress [Biochem. Biophy. Res. Commun. 306 (2003) 354]. To evaluate whether PprI also functions in the radioresistance in other organisms, D. radiodurans PprI protein (Deira-PprI) was expressed in Escherichia coli. The complemented E. coli strain showed an increase of approximately 1.6-fold radioresistance with a high dose of gamma irradiation. Immunoblotting assays showed that the expression of Deira-PprI in E. coli resulted in a significant increase in RecA protein expression following high dose ionizing radiation. The expression of Deira-PprI protein also significantly enhanced the scavenging ability of free radicals by inducing the enzymatic activity of KatG. These results indicate that exogenous expression of Deira-PprI promotes DNA repair and protection pathways and enhances the radioresistance of E. coli.  相似文献   

8.
Effect of microgravity on recovery of bacterial cells from radiation damage was examined in IML-2, S/MM-4 and S/MM-9 experiments using the extremely radioresistant bacterium Deinococcus radiodurans. The cells were irradiated with gamma rays before the space flight and incubated on board the Space Shuttle. The survival of the wild type cells incubated in space increased compared with the ground controls, suggesting that the recovery of this bacterium from radiation damage was enhanced under the space environment. No difference was observed between the survivals of radiosensitive mutant rec30 cells incubated in space and on the ground. The amount of DNA-repair related RecA protein induced under microgravity was similar to those of ground controls, however, induction of PprA protein, product of a unique radiation-inducible gene (designated pprA) responsible for loss of radiation resistance in repair-deficient mutant, KH311, was enhanced under microgravity compared with ground controls. Recent investigation in vitro showed that PprA preferentially bound to double-stranded DNA carrying strand breaks, inhibited Escherichia coli exonuclease III activity, and stimulated the DNA end-joining reaction catalyzed by DNA ligases. These results suggest that D. radiodurans has a radiation-induced non-homologous end-joining (NHEJ) repair mechanism in which PprA plays a critical role.  相似文献   

9.
The involvement of signal transduction in the repair of radiation-induced damage to DNA has been known in eukaryotes but remains understudied in bacteria. This article for the first time demonstrates a role for the periplasmic lipoprotein (YfgL) with protein kinase activity transducing a signal for DNA strand break repair in Escherichia coli. Purified YfgL protein showed physical as well as functional interaction with pyrroloquinoline-quinone in solution and the protein kinase activity of YfgL was strongly stimulated in the presence of pyrroloquinoline-quinone. Transgenic E. coli cells producing Deinococcus radiodurans pyrroloquinoline-quinone synthase showed nearly four log cycle improvement in UVC dark survival and 10-fold increases in gamma radiation resistance as compared with untransformed cells. Pyrroloquinoline-quinone enhanced the UV resistance of E. coli through the YfgL protein and required the active recombination repair proteins. The yfgL mutant showed higher sensitivity to UVC, mitomycin C and gamma radiation as compared with wild-type cells and showed a strong impairment in homologous DNA recombination. The mutant expressing an active YfgL in trans recovered the lost phenotypes to nearly wild-type levels. The results strongly suggest that the periplasmic phosphoquinolipoprotein kinase YfgL plays an important role in radiation-induced DNA strand break repair and homologous recombination in E. coli.  相似文献   

10.
The bacterium Deinococcus radiodurans is resistant to extremely high levels of DNA-damaging agents such as UV light, ionizing radiation, and chemicals such as hydrogen peroxide and mitomycin C. The organism is able to repair large numbers of double-strand breaks caused by ionizing radiation, in spite of the lack of the RecBCD enzyme, which is essential for double-strand DNA break repair in Escherichia coli and many other bacteria. The D. radiodurans genome sequence indicates that the organism lacks recB and recC genes, but there is a gene encoding a protein with significant similarity to the RecD protein of E. coli and other bacteria. We have generated D. radiodurans strains with a disruption or deletion of the recD gene. The recD mutants are more sensitive than wild-type cells to irradiation with gamma rays and UV light and to treatment with hydrogen peroxide, but they are not sensitive to treatment with mitomycin C and methyl methanesulfonate. The recD mutants also show greater efficiency of transformation by exogenous homologous DNA. These results are the first indication that the D. radiodurans RecD protein has a role in DNA damage repair and/or homologous recombination in the organism.  相似文献   

11.
Deinococcus radiodurans R1 and other members of this genus share extraordinary resistance to the lethal and mutagenic effects of ionizing radiation. We have recently identified a RecA homolog in strain R1 and have shown that mutation of the corresponding gene causes marked radiosensitivity. We show here that following high-level exposure to gamma irradiation (1.75 megarads, the dose required to yield 37% of CFU for plateau-phase wild-type R1), the wild-type strain repairs > 150 double-strand breaks per chromosome, whereas a recA-defective mutant (rec30) repairs very few or none. A heterologous Escherichia coli-D. radiodurans shuttle plasmid (pMD68) was constructed and found to be retained in surviving D. radiodurans R1 and rec30 following any radiation exposure up to the highest dose tested, 3 megarads. Plasmid repair was monitored in vivo following irradiation with 1.75 megarads in both R1/pMD68 and rec30/pMD68. Immediately after irradiation, plasmids from both strains contained numerous breaks and failed to transform E. coli. While irradiation with 1.75 megarads was lethal to rec30 cultures, a small amount of supercoiled plasmid was regenerated, but it lacked the ability to transform E. coli. In contrast, wild-type cultures showed a cell division arrest of about 10 h, followed by exponential growth. Supercoiled plasmid was regenerated at normal levels, and it readily transformed E. coli. These studies show that D. radiodurans retains a heterologous plasmid following irradiation and repairs it with the same high efficiency as its chromosomal DNA, while the repair defect in rec30 prevents repair of the plasmid. Taken together, the results of this study suggest that plasmid DNA damaged in vivo in D. radiodurans is repaired by recA-dependent mechanisms similar to those employed in the repair of chromosomal DNA.  相似文献   

12.
The extraordinary radiation resistance of Deinococcus radiodurans results from the efficient capacity of the bacterium to repair DNA double-strand breaks. By analysing the DNA damage repair-deficient mutant, KH311, a unique radiation-inducible gene (designated pprA) responsible for loss of radiation resistance was identified. Investigations in vitro showed that the gene product of pprA (PprA) preferentially bound to double-stranded DNA carrying strand breaks, inhibited Escherichia coli exonuclease III activity, and stimulated the DNA end-joining reaction catalysed by ATP-dependent and NAD-dependent DNA ligases. These results suggest that D. radiodurans has a radiation-induced non-homologous end-joining repair mechanism in which PprA plays a critical role.  相似文献   

13.
14.
It has been shown previously that the RecA protein of Deinococcus radiodurans plays a unique role in the repair of DNA damage in this highly DNA damage-resistant organism. Despite the high level of amino-acid identity, previous work has shown that Escherichia coli RecA does not complement D. radiodurans RecA mutants, further suggesting the uniqueness of D. radiodurans RecA. The work presented here shows that E. coli RecA does in fact provide partial complementation to a D. radiodurans RecA null mutant, suggesting that the RecA protein from D. radiodurans may not be as unique as believed previously.  相似文献   

15.
Deinococcus radiodurans lacks a homologue of the recB and recC genes, and the sbcA/B genes, of Escherichia coli. Thus, DNA strand break repair in Deinococcus proceeds by pathways that do not utilize these proteins. Unlike E. coli, the absence of recBC and sbcA/sbcB, and presence of only sbcC and sbcD in Deinococcus, indicates an enigmatic role of SbcCD in this bacterium. Studies on sbcCD mutation in Deinococcus showed nearly a 100-fold increase in gamma radiation sensitivity as compared to wild type. The mutant showed a higher rate of in vivo DNA degradation during the post-irradiation recovery period that corresponds to the RecA-dependent DSB repair phase. These cells showed a typical NotI pattern of DNA reassembly during the early phase of DSB repair, but were defective for the subsequent RecA-dependent phase II of DSB repair. Hydrogen peroxide had no effect on cell survival of the mutant. While its tolerance to higher doses of UVC and mitomycin C was significantly decreased as compared to wild type. Purified recombinant SbcCD proteins showed single-stranded endonuclease and 3′  5′ double-stranded DNA exonuclease activities similar to that of the Mre11–Rad50 complex, which is required for DNA strand break repair in higher organisms. These results suggested that the Mre11–Rad50 type nuclease activity of SbcCD proteins contributes to the radiation resistance of D. radiodurans perhaps by promoting the RecA-dependent DSB repair required for polyploid genome maturation.  相似文献   

16.
抗辐射菌中DNA损伤修复主要基因群的研究进展   总被引:1,自引:0,他引:1  
施美星  屠振力 《激光生物学报》2007,16(3):374-378,F0003
抗辐射红色球菌对电离辐射具有很高的放射线抵抗性,该菌具有惊人的DNA的二条链切断的修复能力,由辐射等引起的切断损伤DNA在几至十几小时内能高效正确地进行完全修复。在对切断的双链DNA进行修复时,除了大肠杆菌等生物在切断的双链DNA修复时出现的蛋白质以外,还有该菌所特有的修复蛋白质也参与修复。本文对该菌所特有的DNA二条链的切断损伤修复的主要基因及其相互作用进行了简要介绍。  相似文献   

17.
18.
The bacterium Deinococcus radiodurans shows remarkable resistance to a range of damage caused by ionizing radiation, desiccation, UV radiation, oxidizing agents, and electrophilic mutagens. D. radiodurans is best known for its extreme resistance to ionizing radiation; not only can it grow continuously in the presence of chronic radiation (6 kilorads/h), but also it can survive acute exposures to gamma radiation exceeding 1,500 kilorads without dying or undergoing induced mutation. These characteristics were the impetus for sequencing the genome of D. radiodurans and the ongoing development of its use for bioremediation of radioactive wastes. Although it is known that these multiple resistance phenotypes stem from efficient DNA repair processes, the mechanisms underlying these extraordinary repair capabilities remain poorly understood. In this work we present an extensive comparative sequence analysis of the Deinococcus genome. Deinococcus is the first representative with a completely sequenced genome from a distinct bacterial lineage of extremophiles, the Thermus-Deinococcus group. Phylogenetic tree analysis, combined with the identification of several synapomorphies between Thermus and Deinococcus, supports the hypothesis that it is an ancient group with no clear affinities to any of the other known bacterial lineages. Distinctive features of the Deinococcus genome as well as features shared with other free-living bacteria were revealed by comparison of its proteome to the collection of clusters of orthologous groups of proteins. Analysis of paralogs in Deinococcus has revealed several unique protein families. In addition, specific expansions of several other families including phosphatases, proteases, acyltransferases, and Nudix family pyrophosphohydrolases were detected. Genes that potentially affect DNA repair and recombination and stress responses were investigated in detail. Some proteins appear to have been horizontally transferred from eukaryotes and are not present in other bacteria. For example, three proteins homologous to plant desiccation resistance proteins were identified, and these are particularly interesting because of the correlation between desiccation and radiation resistance. Compared to other bacteria, the D. radiodurans genome is enriched in repetitive sequences, namely, IS-like transposons and small intergenic repeats. In combination, these observations suggest that several different biological mechanisms contribute to the multiple DNA repair-dependent phenotypes of this organism.  相似文献   

19.
耐辐射球菌(Deinococcus radiodurans R1)有着极强的辐射抗性.研究其抗辐射的机理对于处理放射性废料有着潜在的应用价值.在耐辐射球菌的基因组中,许多序列的功能未知.其中DRB0099尤为引人注意.将DRB0099缺失突变构建该基因的突变株.对野生型和突变体进行比较后发现,在正常生长条件下的前期阶段(0~16 h),突变体生长速度比野生型慢.16 h以后,野生型逐渐进入稳定生长期.这时,突变株的生长速度高于野生型.但是,野生型的浓度一直高于突变株.表明在DRB0099被删除后,耐辐射球菌的生长可能受到了阻滞.在紫外线照射的条件下,尽管野生型随着照射剂量的增加,存活率越来越低,但是要比突变体高许多.野生型具有比突变体更强的修复DNA双链断裂的能力.DRB0099可能直接参与了对DNA的修复.突变体对H2O2的敏感程度高于野生型,表明野生型耐辐射球菌在对抗活性氧保护其蛋白质、DNA或者DNA修复方面具有比突变体更强的功能.在低浓度H2O2处理条件下,尽管野生型和突变体的存活率都出现下降趋势,但二者的差值并不大.随着H2O2剂量的增加,二者的差值越来越大.表明随着活性氧浓度的增加,蛋白质和DNA损伤的数量增加,失去DRB0099基因功能的突变体比野生型更容易受到损伤.在紫外线照射处理或者H2O2处理条件下,DRB0099能够保护蛋白质和DNA.  相似文献   

20.
Deinococcus radiodurans and other species of the same genus share extreme resistance to ionizing radiation and many other agents that damage DNA. Two different DNA damage-sensitive strains generated by chemical mutagenesis were found to be defective in a gene that has extended DNA and protein sequence homology with polA of Escherichia coli. Both mutant strains lacked DNA polymerase, as measured in activity gels. Transformation of this gene from wild-type D. radiodurans restored to the mutants both polymerase activity and DNA damage resistance. A technique for targeted insertional mutagenesis in D. radiodurans is presented. This technique was employed to construct a pol mutant isogenic with the wild type (the first example of targeted mutagenesis in this eubacterial family). This insertional mutant lacked DNA polymerase activity and was even more sensitive to DNA damage than the mutants derived by chemical mutagenesis. In the case of ionizing radiation, the survival of the wild type after receiving 1 Mrad was 100% while survival of the insertional mutant extrapolated to 10(-24). These results demonstrate that the gene described here encodes a DNA polymerase and that defects in this pol gene cause a dramatic loss of resistance of D. radiodurans to DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号