首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Read the full article ‘Loss of Bace2 in zebrafish affects melanocyte migration and is distinct from Bace1 knock out phenotypes’ on doi: 10.1111/jnc.12198 .  相似文献   

3.
4.
5.
Two types of syntaxin 1 isoforms, HPC‐1/syntaxin 1A (STX1A) and syntaxin 1B (STX1B), are thought to have similar functions in exocytosis of synaptic vesicles. STX1A?/? mice which we generated previously develop normally, possibly because of compensation by STX1B. We produced STX1B?/? mice using targeted gene disruption and investigated their phenotypes. STX1B?/? mice were born alive, but died before postnatal day 14, unlike STX1A?/? mice. Morphologically, brain development in STX1B?/? mice was impaired. In hippocampal neuronal culture, the cell viability of STX1B?/? neurons was lower than that of WT or STX1A?/? neurons after 9 days. Interestingly, STX1B?/? neurons survived on WT or STX1A?/? glial feeder layers as well as WT neurons. However, STX1B?/? glial feeder layers were less effective at promoting survival of STX1B?/? neurons. Conditioned medium from WT or STX1A?/? glial cells had a similar effect on survival, but that from STX1B?/? did not promote survival. Furthermore, brain‐derived neurotrophic factor (BDNF) or neurotrophin‐3 supported survival of STX1B?/? neurons. BDNF localization in STX1B?/? glial cells was disrupted, and BDNF secretion from STX1B?/? glial cells was impaired. These results suggest that STX1A and STX1B may play distinct roles in supporting neuronal survival by glia.

  相似文献   


6.
The Snf1 protein kinase of Saccharomyces cerevisiae has been shown to have a role in regulating haploid invasive growth in response to glucose depletion. Cells contain three forms of the Snf1 kinase, each with a different beta-subunit isoform, either Gal83, Sip1, or Sip2. We present evidence that different Snf1 kinases play distinct roles in two aspects of invasive growth, namely, adherence to the agar substrate and filamentation. The Snf1-Gal83 form of the kinase is required for adherence, whereas either Snf1-Gal83 or Snf1-Sip2 is sufficient for filamentation. Genetic evidence indicates that Snf1-Gal83 affects adherence by antagonizing Nrg1- and Nrg2-mediated repression of the FLO11 flocculin and adhesin gene. In contrast, the mechanism(s) by which Snf1-Gal83 and Snf1-Sip2 affect filamentation is independent of FLO11. Thus, the Snf1 kinase regulates invasive growth by at least two distinct mechanisms.  相似文献   

7.
NAADP participates in the response of starfish oocytes to sperm by triggering the fertilization potential (FP) through the activation of a Ca2+ current which depolarizes the membrane to the threshold of activation of the voltage-gated Ca2+ channels. The aim of this study was to investigate whether this Ca2+ influx is linked to the onset of the concomitant InsP3-mediated Ca2+ wave by simultaneously employing Ca2+ imaging and single-electrode intracellular recording techniques. In control oocytes, the sperm-induced membrane depolarization always preceded by a few seconds the onset of the Ca2+ wave. Strikingly, the self-desensitization of NAADP receptors either abolished the Ca2+ response or resulted in abnormal oocyte activation, i.e., the membrane depolarization followed the Ca2+ wave and the oocyte was polyspermic. The inhibition of InsP3 signaling only impaired the propagation of the Ca2+ wave and shortened the FP. The duration of FP was also reduced in low-Na+ sea water. Finally, uncaged InsP3 produced a Ca2+ increase, which depolarized the membrane upon the activation of a Ca2+-sensitive cation current. These results support the hypothesis that Ca2+ entry during the NAADP-triggered FP is required for the onset of the Ca2+ wave at fertilization. The InsP3-mediated Ca2+ wave, in turn, may interact with the NAADP-evoked depolarization by activating a Ca2+-dependent Na+ entry.  相似文献   

8.
Sonic Hedgehog (Shh) signaling plays a critical role during dorsoventral (DV) patterning of the developing neural tube by modulating the expression of neural patterning genes. Overlapping activator functions of Gli2 and Gli3 have been shown to be required for motoneuron development and correct neural patterning in the ventral spinal cord. However, the role of Gli2 and Gli3 in ventral hindbrain development is unclear. In this paper, we have examined DV patterning of the hindbrain of Shh(-/-), Gli2(-/-) and Gli3(-/-) embryos, and found that the respective role of Gli2 and Gli3 is not only different between the hindbrain and spinal cord, but also at distinct rostrocaudal levels of the hindbrain. Remarkably, the anterior hindbrain of Gli2(-/-) embryos displays ventral patterning defects as severe as those observed in Shh(-/-) embryos suggesting that, unlike in the spinal cord and posterior hindbrain, Gli3 cannot compensate for the loss of Gli2 activator function in Shh-dependent ventral patterning of the anterior hindbrain. Loss of Gli3 also results in a distinct patterning defect in the anterior hindbrain, including dorsal expansion of Nkx6.1 expression. Furthermore, we demonstrate that ventral patterning of rhombomere 4 is less affected by loss of Gli2 function revealing a different requirement for Gli proteins in this rhombomere. Taken together, these observations indicate that Gli2 and Gli3 perform rhombomere-specific function during DV patterning of the hindbrain.  相似文献   

9.
10.
Ultraviolet‐B (UV‐B) stress activates MAP kinases (MAPKs) MPK3 and MPK6 in Arabidopsis. MAPK activity must be tightly controlled in order to ensure an appropriate cellular outcome. MAPK phosphatases (MKPs) effectively control MAPKs by dephosphorylation of phosphothreonine and phosphotyrosine in their activation loops. Arabidopsis MKP1 is an important regulator of MPK3 and MPK6, and mkp1 knockout mutants are hypersensitive to UV‐B stress, which is associated with reduced inactivation of MPK3 and MPK6. Here, we demonstrate that MPK3 and MPK6 are hyperactivated in response to UV‐B in plants that are deficient in photorepair, suggesting that UV‐damaged DNA is a trigger of MAPK signaling. This is not due to a block in replication, as, in contrast to atr, the mkp1 mutant is not hypersensitive to the replication‐inhibiting drug hydroxyurea, hydroxyurea does not activate MPK3 and MPK6, and atr is not impaired in MPK3 and MPK6 activation in response to UV‐B. We further show that mkp1 leaves and roots are UV‐B hypersensitive, whereas atr is mainly affected at the root level. Tolerance to UV‐B stress has been previously associated with stem cell removal and CYCB1;1 accumulation. Although UV‐B‐induced stem cell death and CYCB1;1 expression are not altered in mkp1 roots, CYCB1;1 expression is reduced in mkp1 leaves. We conclude that the MKP1 and ATR pathways operate in parallel, with primary roles for ATR in roots and MKP1 in leaves.  相似文献   

11.
Pulmonary collectins, surfactant protein A (SP-A) and surfactant protein D (SP-D), play important roles in the innate immunity of the lung. Mycobacterium avium is one of the well-known opportunistic pathogens that can replicate within macrophages. We examined the effects of pulmonary collectins in host defense against M. avium infection achieved via direct interaction between bacteria and collectins. Although both pulmonary collectins bound to M. avium in a Ca(2+)-dependent manner, these collectins revealed distinct ligand-binding specificity and biological activities. SP-A and SP-D bound to a methoxy group containing lipid and lipoarabinomannan, respectively. Binding of SP-D but not SP-A resulted in agglutination of M. avium. A chimeric protein with the carbohydrate recognition domain of SP-D, which chimera revealed a bouquet-like arrangement similar to SP-A, also agglutinated M. avium. The ligand specificity of the carbohydrate recognition domain of SP-D seems to be necessary for agglutination activity. The binding of SP-A strongly inhibited the growth of M. avium in culture media. Although pulmonary collectins did not increase membrane permeability of M. avium, they attenuated the metabolic rate of the bacteria. Observations under a scanning electron microscope revealed that SP-A almost completely covers bacterial surfaces, whereas SP-D binds to certain areas like scattered dots. These observations suggest that a distinct binding pattern of collectins correlates with the difference of their biological activities. Furthermore, the number of bacteria phagocytosed by macrophages was significantly increased in the presence of SP-D. These data indicate that pulmonary collectins play critical roles in host defense against M. avium.  相似文献   

12.
Ptc1p, a type 2C protein phosphatase, is required for a late step in cortical endoplasmic reticulum (cER) inheritance in Saccharomyces cerevisiae. In ptc1Δ cells, ER tubules migrate from the mother cell and contact the bud tip, yet fail to spread around the bud cortex. This defect results from the failure to inactivate a bud tip–associated pool of the cell wall integrity mitogen-activated protein kinase, Slt2p. Here we report that the polarisome complex affects cER inheritance through its effects on Slt2p, with different components playing distinct roles: Spa2p and Pea2p are required for Slt2p retention at the bud tip, whereas Bni1p, Bud6p, and Sph1p affect the level of Slt2p activation. Depolymerization of actin relieves the ptc1Δ cER inheritance defect, suggesting that in this mutant the ER becomes trapped on the cytoskeleton. Loss of Sec3p also blocks ER inheritance, and, as in ptc1Δ cells, this block is accompanied by activation of Slt2p and is reversed by depolymerization of actin. Our results point to a common mechanism for the regulation of ER inheritance in which Slt2p activity at the bud tip controls the association of the ER with the actin-based cytoskeleton.  相似文献   

13.
This review surveys some recent trends in the study of the developmental interactions between epithelial and mesenchymal cells. The influence of such interactions on cell differentiation is considered with reference to kidney development, limb bud development, chondrogenesis and osteogenesis, and tooth development. Effects on epithelial morphogenesis are discussed, using salivary gland development as an example. The roles of humoral factors (hormones or growth factors) are considered, and the evidence for the participation of cell adhesion molecules is examined.  相似文献   

14.
During infection of humans and animals, pathogenic mycobacteria manipulate the host cell causing severe diseases such as tuberculosis and leprosy. To understand the basis of mycobacterial pathogenicity, it is crucial to identify the molecular virulence mechanisms. In this study, we address the contribution of ESX-1 and ESX-5--two homologous type VII secretion systems of mycobacteria that secrete distinct sets of immune modulators--during the macrophage infection cycle. Using wild-type, ESX-1- and ESX-5-deficient mycobacterial strains, we demonstrate that these secretion systems differentially affect subcellular localization and macrophage cell responses. We show that in contrast to ESX-1, the effector proteins secreted by ESX-5 are not required for the translocation of Mycobacterium tuberculosis or Mycobacterium marinum to the cytosol of host cells. However, the M. marinum ESX-5 mutant does not induce inflammasome activation and IL-1β activation. The ESX-5 system also induces a caspase-independent cell death after translocation has taken place. Importantly, by means of inhibitory agents and small interfering RNA experiments, we reveal that cathepsin B is involved in both the induction of cell death and inflammasome activation upon infection with wild-type mycobacteria. These results reveal distinct roles for two different type VII secretion systems during infection and shed light on how virulent mycobacteria manipulate the host cell in various ways to replicate and spread.  相似文献   

15.
Left-right (LR) asymmetry is regulated by early asymmetric signals within the embryo. Even though the role of the bone morphogenetic protein (BMP) pathway in this process has been reported extensively in various model organisms, opposing models for the mechanism by which BMP signaling operates still prevail. Here we show that in zebrafish embryos there are two distinct phases during LR patterning in which BMP signaling is required. Using transgenic lines that ectopically express either noggin3 or bmp2b, we show a requirement for BMP signaling during early segmentation to repress southpaw expression in the right lateral plate mesoderm and regulate both visceral and heart laterality. A second phase was identified during late segmentation, when BMP signaling is required in the left lateral plate mesoderm to regulate left-sided gene expression and heart laterality. Using morpholino knock down experiments, we identified Bmp4 as the ligand responsible for both phases of BMP signaling. In addition, we detected bmp4 expression in Kupffer's vesicle and show that restricted knock down of bmp4 in this structure results in LR patterning defects. The identification of these two distinct and opposing activities of BMP signaling provides new insight into how BMP signaling can regulate LR patterning.  相似文献   

16.
17.
《The Journal of cell biology》1996,134(5):1197-1207
Filopodial motility is critical for many biological processes, particularly for axon guidance. This motility is based on altering the F-actin-based cytoskeleton, but the mechanisms of how this occurs and the actin-associated proteins that function in this process remain unclear. We investigated two of these proteins found in filopodia, talin and vinculin, by inactivating them in subregions of chick dorsal root ganglia neuronal growth cones and by observing subsequent behavior by video-enhanced microscopy and quantitative morphometry. Microscale chromophore-assisted laser inactivation of talin resulted in the temporary cessation of filopodial extension and retraction. Inactivation of vinculin caused an increased incidence of filopodial bending and buckling within the laser spot but had no effect on extension or retraction. These findings show that talin acts in filopodial motility and may couple both extension and retraction to actin dynamics. They also suggest that vinculin is not required for filopodial extension and retraction but plays a role in the structural integrity of filopodia.  相似文献   

18.
SWI/SNF ATP-dependent chromatin-remodeling complexes containing either Brahma-related gene 1 (Brg1) or Brahma (Brm) play important roles in mammalian development. In this study we examined the roles of Brg1 and Brm in smooth muscle development, in vivo, through generation and analysis of mice harboring a smooth muscle-specific knockout of Brg1 on wild-type and Brm null backgrounds. Knockout of Brg1 from smooth muscle in Brg1(flox/flox) mice expressing Cre recombinase under the control of the smooth muscle myosin heavy-chain promoter resulted in cardiopulmonary defects, including patent ductus arteriosus, in 30 to 40% of the mice. Surviving knockout mice exhibited decreased expression of smooth muscle-specific contractile proteins in the gastrointestinal tract, impaired contractility, shortened intestines, disorganized smooth muscle cells, and an increase in apoptosis of intestinal smooth muscle cells. Although Brm knockout mice had normal intestinal structure and function, knockout of Brg1 on a Brm null background exacerbated the effects of knockout of Brg1 alone, resulting in an increase in neonatal lethality. These data show that Brg1 and Brm play critical roles in regulating development of smooth muscle and that Brg1 has specific functions within vascular and gastrointestinal smooth muscle that cannot be performed by Brm.  相似文献   

19.
We have isolated two adenylyl cyclase genes, designated ACA and ACG, from Dictyostelium. The proposed structure for ACA resembles that proposed for mammalian adenylyl cyclases: two large hydrophilic domains and two sets of six transmembrane spans. ACG has a novel structure, reminiscent of the membrane-bound guanylyl cyclases. An aca- mutant, created by gene disruption, has little detectable adenylyl cyclase activity and fails to aggregate, demonstrating that cAMP is required for cell-cell communication. cAMP is not required for motility, chemotaxis, growth, and cell division, which are unaffected. Constitutive expression in aca- cells of either ACA or ACG, which is normally expressed only during germination, restores aggregation and the ability to complete the developmental program. ACA expression restores receptor and guanine nucleotide-regulated adenylyl cyclase activity, while activity in cells expressing ACG is insensitive to these regulators. Although they lack ACA, which has a transporter-like structure, the cells expressing ACG secrete cAMP constitutively.  相似文献   

20.
Skeletal muscle contains two populations of mitochondria that appear to be differentially affected by disease and exercise training. It remains unclear how these mitochondrial subpopulations contribute to fiber type-related and/or training-induced changes in fatty acid oxidation and regulation of carnitine palmitoyltransferase-1 (CPT1), the enzyme that controls mitochondrial fatty acid uptake in skeletal muscle. To this end, we found that fatty acid oxidation rates were 8.9-fold higher in subsarcolemmal mitochondria (SS) and 5.3-fold higher in intermyofibrillar mitochondria (IMF) that were isolated from red gastrocnemius (RG) compared with white gastrocnemius (WG) muscle, respectively. Malonyl-CoA (10 µM), a potent inhibitor of CPT1, completely abolished fatty acid oxidation in SS and IMF mitochondria from WG, whereas oxidation rates in the corresponding fractions from RG were inhibited only 89% and 60%, respectively. Endurance training also elicited mitochondrial adaptations that resulted in enhanced fatty acid oxidation capacity. Ten weeks of treadmill running differentially increased palmitate oxidation rates 100% and 46% in SS and IMF mitochondria, respectively. In SS mitochondria, elevated fatty acid oxidation rates were accompanied by a 48% increase in citrate synthase activity but no change in CPT1 activity. Nonlinear regression analyses of mitochondrial fatty acid oxidation rates in the presence of 0–100 µM malonyl-CoA indicated that IC50 values were neither dependent on mitochondrial subpopulation nor affected by exercise training. However, in IMF mitochondria, training reduced the Hill coefficient (P < 0.05), suggesting altered CPT1 kinetics. These results demonstrate that endurance exercise provokes subpopulation-specific changes in mitochondrial function that are characterized by enhanced fatty acid oxidation and modified CPT1-malonyl-CoA dynamics. endurance exercise training; CPT-1; fiber type; rat; mitochondrial subpopulations  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号