首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficiency of ionizing photon radiation for inducing mutations, chromosome aberrations, neoplastic cell transformation, and cell killing depends on the photon energy. We investigated the induction and rejoining of DNA double-strand breaks (DSBs) as possible contributors for the varying efficiencies of different photon energies. A specialized pulsed-field gel electrophoresis assay based on Southern hybridization of single Mbp genomic restriction fragments was employed to assess DSB induction and rejoining by quantifying the restriction fragment band. Unrejoined and misrejoined DSBs were determined in dose fractionation protocols using doses per fraction of 2.2 and 4.4 Gy for CK characteristic X rays, 4 and 8 Gy for 29 kVp X rays, and 5, 10 and 20 Gy for 60Co gamma rays. DSB induction by CK characteristic X rays was about twofold higher than for 60Co gamma rays, whereas 29 kVp X rays showed only marginally elevated levels of induced DSBs compared with 60Co gamma rays (a factor of 1.15). Compared with these modest variations in DSB induction, the variations in the levels of unrejoined and misrejoined DSBs were more significant. Our results suggest that differences in the fidelity of DSB rejoining together with the different efficiencies for induction of DSBs can explain the varying biological effectiveness of different photon energies.  相似文献   

2.
Summary Chromosome aberrations were induced in cultured human cells by proton beams of 31, 12, and 8 MeV. The frequencies of isocromatid breaks and dicentrics have been analysed as a function of proton energy and dose. Both effects are largely dependent on proton energy; isochromatid breaks increase linearly with the dose, whereas dicentrics show a definite parabolic behaviour. The experimental data were fitted to the analytic formY = KD n andY = D +D 2 and the best fitted values of the parameters are reported and discussed. The values of RBE for the isochromatid breaks are in the ratio 1.7: 1.3: 1 for 8, 12, and 31 MeV respectively.In the case of the dicentrics the RBE values are dose-dependent function of the typeCD –n . The three distributions of dicentrics among the cells do not fit a Poisson distribution.Supported by a grant of CNR no 790067996 of the Finalized Project Tumour Growth Control201D; Consiglio Nazionale delle Ricerche, Italy  相似文献   

3.
《Cell》2023,186(9):1985-2001.e19
  1. Download : Download high-res image (129KB)
  2. Download : Download full-size image
  相似文献   

4.
Experiments using the alkaline comet assay, which measures all single-strand breaks regardless of their origin, were performed to evaluate the biological effectiveness of photons with different energies in causing these breaks. The aim was to measure human lymphocytes directly for DNA damage and subsequent repair kinetics induced by mammography 29 kV X rays relative to 220 kV X rays, 137Cs gamma rays and 60Co gamma rays. The level of DNA damage, predominantly due to single-strand breaks, was computed as the Olive tail moment or percentage DNA in the tail for different air kerma doses (0.5, 0.75, 1, 1.5, 2 and 3 Gy). Fifty cells were analyzed per slide with a semiautomatic imaging system. Data from five independent experiments were transformed to natural logarithms and fitted using a multiple linear regression analysis. Irradiations with the different photon energies were performed simultaneously for each experiment to minimize interexperimental variation. Blood from only one male and one female was used. The interexperimental variation and the influence of donor gender were negligible. In addition, repair kinetics and residual DNA damage after exposure to a dose of 3 Gy were evaluated in three independent experiments for different repair times (10, 20, 30 and 60 min). Data for the fraction of remaining damage were fitted to the simple function F(d) = A/(t + A), where F(d) is the fraction of remaining damage, t is the time allowed for repair, and A (the only fit parameter) is the repair half-time. It was found that the comet assay data did not indicate any difference in the initial radiation damage produced by 29 kV X rays relative to the reference radiation types, 220 kV X rays and the gamma rays of 137Cs and 60Co, either for the total dose range or in the low-dose range. These results are, with some restrictions, consistent with physical examinations and predictions concerning, for example, the assessment of the possible difference in effectiveness in causing strand breaks between mammography X rays and conventional (150-250 kV) X rays, indicating that differences in biological effects must arise through downstream processing of the damage.  相似文献   

5.
To elucidate the genetic influence of low-dose ionizing radiation at the chromosome level, we exposed human lymphoblastoid TK6-20C cells to 10 cGy of X rays. The TK mutation frequency was 5.7 +/- 1.3 x 10(-6) at the background level and 6.9 +/- 2.8 x 10(-6) after X irradiation. Although this small increase was not statistically significant (P = 0.40), we applied multilocus analysis using 4 TK locus markers and 12 microsatellite loci spanning chromosome 17 for TK mutants exhibiting loss of heterozygosity (LOH). The analysis demonstrated a clear effect of low-dose ionizing radiation. We observed radiation-specific patterns in the extent of hemizygous LOH in 14 TK mutants among the 92 mutants analyzed. The deleted regions in these patterns were larger than they were in the control mutants, where those restricted to the TK locus. Surprisingly, the radiation-specific LOH patterns were not observed among the 110 nonirradiated TK mutants in this study. They were identified previously in TK6 cells exposed to 2 Gy of X rays. We consider these hemizygous LOH mutants to be a result of end-joining repair of X-ray-induced DNA double-strand breaks.  相似文献   

6.
7.
Radial positions of centromeres of human chromosomes X, 1, and 19 were determined in the nuclei of primary fibroblasts before and after removal of 60%-80% of chromatin. It has been demonstrated that the specific radial positions of these centromeres (more central for the chromosome 19 centromere and more peripheral for the centromeres of chromosomes 1 and X) remain unchanged in chromatin-depleted nuclei. Additional digestion of nuclear RNA did not influence this specific distribution. These results strongly suggest that the characteristic organization of interphase chromosomes is supported by the proteinous nuclear matrix and is not maintained by simple repulsing of negatively charged chromosomes.  相似文献   

8.
This paper describes the irradiation of thin samples of blood with 8.7 MeV protons and 23.5 MeV helium-3 ions in the track segment mode. Chromosome aberrations in human lymphocytes have been scored. The relationship between dicentric yield and dose in Gy was Y = 0.044 D + 0.058 D2 for protons and Y = 0.394 D for helium ions. These results are compared with data from other laboratories using protons and an attempt is made to reconcile differences. An unexpected observation was that the ratio of the linear coefficients for helium ions and protons was about 9 whereas the ratio of the l.e.t. values was 4.5. This disagrees with current theory which predicts that the linear coefficients should be proportional to l.e.t. Possible sources of error in our experiments are discussed but do not adequately account for the discrepancies.  相似文献   

9.
Solar particle events (SPEs) present a major radiation-related risk for manned exploratory missions in deep space. Within a short period the astronauts may absorb doses that engender acute effects, in addition to the risk of late effects, such as the induction of cancer. Using primary human cells, we studied clonogenic survival and the induction of neoplastic transformation after exposure to a worst case scenario SPE. We simulated such an SPE with monoenergetic protons (50, 100, 1000 MeV) delivered at a dose rate of 1.65 cGy min?1 in a dose range from 0 to 3 Gy. For comparison, we exposed the cells to a high dose rate of 33.3 cGy min?1. X rays (100 kVp, 8 mA, 1.7 mm Al filter) were used as a reference radiation. Overall, we observed a significant sparing effect of the SPE dose rate on cell survival. High-dose-rate protons were also more efficient in induction of transformation in the dose range below 30 cGy. However, as dose accumulated at high dose rate, the transformation levels declined, while at the SPE dose rate, the number of transformants continued to increase up to about 1 Gy. These findings suggest that considering dose-rate effects may be important in evaluating the biological effects of exposure to space radiation. Our analyses of the data based on particle fluence showed that lethality and transforming potential per particle clearly increased with increasing linear energy transfer (LET) and thus with the decreasing energy of protons. Further, we found that the biological response was determined not only by LET but also type of radiation, e.g. particles and photons. This suggests that using γ or X rays may not be ideal for assessing risk associated with SPE exposures.  相似文献   

10.
During space travel, astronauts will be exposed to protons and heavy charged particles. Since the proton flux is high compared to HZE particles, on average, it is assumed that a cell will be hit by a proton before it is hit by an HZE ion. Although the effects of individual ion species on human cells have been investigated extensively, little is known about the effects of exposure to mixed beam irradiation. To address this, we exposed human epithelial cells to protons followed by HZE particles and analyzed chromosomal damage using the multicolor banding in situ hybridization (mBAND) procedure. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of intra-chromosomal aberrations (inversions and deletions within a single painted chromosome) as well as inter-chromosomal aberrations (translocation to unpainted chromosomes). Our results indicated that chromosome aberration frequencies from exposures to protons followed by Fe ions did not simply decrease as the interval between the two exposures increased, but peak when the interval was 30 min.  相似文献   

11.
Epidemiological studies suggest radiation exposure as a cause of meiotic non-disjunction in humans, but experimental evidence with cytological proof has been lacking. Our results indicate that mitotic nondisjunction of lymphocyte chromosomes can also be induced by exposure to a low dose of radiation. Abnormal segregation can be induced not only when the cells are irradiated but also when nonirradiated cells are incubated with irradiated cell-free plasma or serum. The X and no. 21 chromosomes appear particularly susceptible to nondisjunction.  相似文献   

12.
A short-term assay utilizing a human/mouse monochromosomal hybrid cell line R3-5, to detect chemically induced aneuploidy in mammalian cells is described. A single human chromosome transferred into mouse cells was used as a cytogenetic marker to quantitate abnormal chromosome segregation following chemical treatment. The human chromosome present in the mouse cells can be readily identified by differential staining procedures. The frequency of cells containing 0 or 2 human chromosomes in the progeny of chemically treated monochromosomal hybrid cells provided a direct measure of aneuploidy. We tested the sensitivity of the proposed system with 3 model chemicals (colcemid, cyclophosphamide and benomyl) known to induce numerical or structural changes in chromosomes. The frequency of an abnormal segregation of the human chromosome was found to be dose dependent and consistently higher than controls. This system has the capability to detect gain as well as loss of a chromosome resulting from nondisjunction or other mechanisms leading to aneuploidy.  相似文献   

13.
14.
The sensitivity of human eyes to ionizing particles and the mechanism of their detection were studied. The experimental data obtained by protons with very different intensity of Cherenkov radiation in the vitreous humour (460 and 1850 MeV) showed that Cherenkov radiation plays an essential role in the visual sensation.  相似文献   

15.
It is assumed that late replicating allocyclic segments of human autosomes consist mainly of heterochromatin and might
  1. 1)
    originate in euchromatin at an early embryonic state  相似文献   

16.
Mouse fibroblast LM cells have been heated at 44 degrees C for different periods. Potassium content of the cells was measured at certain intervals during the postheating period at 37 degrees C for up to 24 hr. The level of K+ decreased gradually in time starting within some hours after the heat treatment. The rate of K+ loss as well as the ultimate level reached was heat-dose dependent. When the potassium content of the cell population was determined 16 hr after the heat treatment, a correlation was observed between the concentration of potassium and the level of cell survival. When X irradiation was applied immediately after hyperthermia, radiosensitization on the level of cell survival was obtained as expected, the extent being dependent on the severity of heat treatments. No added K+ loss was observed, however, when hyperthermia was combined with radiation. It is suggested that plasma membrane related functions are disturbed by the heat treatment. This points to membranes as possible candidates for primary targets in the case of cell inactivation by heat alone, and not with respect to the radiosensitization by hyperthermia.  相似文献   

17.
18.
In previous studies we have shown that low doses of radiation from incorporated tritiated thymidine can make human lymphocytes less susceptible to the genetic damage manifested as chromatid breakage induced by a subsequent high dose of X rays. We have also shown that this adaptive response to ionizing radiation can be induced by very low doses of X rays (0.01 Gy; i.e., 1 rad) delivered during S phase of the cell cycle. To see if a low dose of X rays could induce this response in cells at other phases of the cell cycle, human lymphocytes were irradiated with 0.01 or 0.05 Gy before stimulation by phytohemagglutinin (G0) or with 0.01 Gy at various times after stimulation (G1), followed by 1.5 Gy (150 rad) at G2 phase. Although G0 lymphocytes failed to exhibit an adaptive response, G1 cells irradiated as early as 4 h after stimulation did show the response. Experiments were also carried out to determine how long the adaptive response induced by 0.01 Gy could persist. A 0.01-Gy dose was delivered to lymphocytes in the first S phase, followed by 1.5 Gy in the same or subsequent cell cycles. Lymphocytes receiving a 1.5-Gy dose at 40, 48, or 66 h after stimulation exhibited an adaptive response, whereas those receiving a 1.5-Gy dose at 90 or 114 h did not. Duplicate cultures containing bromodeoxyuridine showed that at 40 h all the lymphocytes were in their first cell cycle after stimulation, at 48 h half of the lymphocytes were in their first cell cycle and half in their second, and at 66 h 80% of the lymphocytes were in their third cell cycle. Thus the adaptive response persists for at least three cell cycles after it is induced by 0.01 Gy of X rays. In other experiments, the time necessary for maximal expression of the adaptive response was determined by delivering 0.01 Gy at hourly intervals 1-6 h before the 1.5-Gy dose. While a 4-h interval was enough for expression of the adaptive response, shorter intervals were not.  相似文献   

19.
Although DNA DSBs are known to be important in producing the damaging effects of ionizing radiation in cells, bistranded clustered DNA damages-two or more oxidized bases, abasic sites or strand breaks on opposing DNA strands within a few helical turns-are postulated to be difficult to repair and thus to be critical radiation-induced lesions. Gamma rays can induce clustered damages in DNA in solution, and high-energy iron ions produce DSBs and oxidized pyrimidine clusters in human cells, but it was not known whether sparsely ionizing radiation can produce clustered damages in mammalian cells. We show here that X rays induce abasic clusters, oxidized pyrimidine clusters, and oxidized purine clusters in DNA in human cells. Non-DSB clustered damages comprise about 70% of the complex lesions produced in cells. The relative levels of specific cluster classes depend on the environment of the DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号