首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
W Colon  J W Kelly 《Biochemistry》1992,31(36):8654-8660
Amyloid diseases are caused by the self-assembly of a given protein into an insoluble cross-beta-sheet quaternary structural form which is pathogenic. An understanding of the biochemical mechanism of amyloid fibril formation should prove useful in understanding amyloid disease. Toward this end, a procedure for the conversion of the amyloidogenic protein transthyretin into amyloid fibrils under conditions which mimic the acidic environment of a lysosome has been developed. Association of a structured transthyretin denaturation intermediate is sufficient for amyloid fibril formation in vitro. The rate of fibril formation is pH dependent with significant rates being observed at pHs accessible within the lysosome (3.6-4.8). Far-UV CD spectroscopic studies suggest that transthyretin retains its secondary structural features at pHs where fibrils are formed. Near-UV CD studies demonstrate that transthyretin has retained the majority of its tertiary structure during fibril formation as well. Near-UV CD analysis in combination with glutaraldehyde cross-linking studies suggests that a pH-mediated tetramer to monomer transition is operative in the pH range where fibril formation occurs. The rate of fibril formation decreases markedly at pHs below pH 3.6, consistent with denaturation to a monomeric TTR intermediate which has lost its native tertiary structure and capability to form fibrils. It is difficult to specify with certainty which quaternary structural form of transthyretin is the amyloidogenic intermediate at this time. These difficulties arise because the maximal rate of fibril formation occurs at pH 3.6 where tetramer, traces of dimer, and significant amounts of monomer are observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
H A Lashuel  C Wurth  L Woo  J W Kelly 《Biochemistry》1999,38(41):13560-13573
The L55P transthyretin (TTR) familial amyloid polyneuropathy-associated variant is distinct from the other TTR variants studied to date and the wild-type protein in that the L55P tetramer can dissociate to the monomeric amyloidogenic intermediate and form fibril precursors under physiological conditions (pH 7.0, 37 degrees C). The activation barrier associated with L55P-TTR tetramer dissociation is lower than the barrier for wild-type transthyretin dissociation, which does not form fibrils under physiological conditions. The L55P-TTR tetramer is also very sensitive to acidic conditions, readily dissociating to form the monomeric amyloidogenic intermediate between pH 5.5-5.0 where the wild-type TTR adopts a nonamyloidogenic tetrameric structure. The formation of the L55P monomeric amyloidogenic intermediate involves subtle tertiary structural changes within the beta-sheet rich subunit as discerned from Trp fluorescence, circular dichroism analysis, and ANS binding studies. The assembly of the L55P-TTR amyloidogenic intermediate at physiological pH (pH 7.5) affords protofilaments that elongate with time. TEM studies suggest that the entropic barrier associated with filament assembly (amyloid fibril formation) is high in vitro, amyloid being defined by the laterally assembled four filament structure observed by Blake upon isolation of "fibrils" from the eye of a FAP patient. The L55P-TTR protofilaments formed in vitro bind Congo red and thioflavin T (albeit more weakly than the fibrils produced at acidic pH), suggesting that the structure observed probably represents an amyloid precursor. The structural continuum from misfolded monomer through protofilaments, filaments, and ultimately fibrils must be considered as a possible source of pathology associated with these diseases.  相似文献   

3.
M J Saraiva 《FEBS letters》2001,498(2-3):201-203
Over 70 transthyretin (TTR) mutations have been associated with hereditary amyloidoses, which are all autosomal dominant disorders with adult age of onset. TTR is the main constituent of amyloid that deposits preferentially in peripheral nerve giving rise to familial amyloid polyneuropathy (FAP), or in the heart leading to familial amyloid cardiomyopathy. Since the beginning of this decade the central question of these types of amyloidoses has been why TTR is an amyloidogenic protein with clinically heterogeneous pathogenic consequences. As a result of amino acid substitutions, conformational changes occur in the molecule, leading to weaker subunit interactions of the tetrameric structure as revealed by X-ray studies of some amyloidogenic mutants. Modified soluble tetramers exposing cryptic epitopes seem to circulate in FAP patients as evidenced by antibody probes recognizing specifically TTR amyloid fibrils, but what triggers dissociation into monomeric and oligomeric intermediates of amyloid fibrils is largely unknown. Avoiding tetramer dissociation and disrupting amyloid fibrils are possible avenues of therapeutic intervention based on current molecular knowledge of TTR amyloidogenesis and fibril structure.  相似文献   

4.
Transthyretin (TTR) is an amyloidogenic protein involved in many mental diseases. The peptide derived from TTR (105-115) has been widely studied as a model peptide for understanding the mechanism of amyloid fibril formation. However, the detailed arrangement of this peptide in amyloid fibril is still unclear. We have studied the amyloid fibril formation process of TTR (105-115) by introducing a pair of FRET probes into the peptide with a dansyl group at the N-terminal and a tryptophan residue at the C-terminal. Our experiment demonstrated that the strands of TTR (105-115) in the same beta-sheet may be parallel and the mating sheets may be anti-parallel to each other in the amyloid fibril. The kinetics followed by FRET and EM indicated for a possible intermediate state and the distance between sheets became shorter when the intermediate amyloid fibril turns into a more matured form.  相似文献   

5.
The presence of beta-sheets in the core of amyloid fibrils raised questions as to whether or not beta-sheet-containing proteins, such as transthyretin, are predisposed to form such fibrils. However, we show here that the molecular structure of amyloid fibrils differs more generally from the beta-sheets in native proteins. This difference is evident from the amide I region of the infrared spectrum and relates to the distribution of the phi/psi dihedral angles within the Ramachandran plot, the average number of strands per sheet, and possibly, the beta-sheet twist. These data imply that amyloid fibril formation from native beta-sheet proteins can involve a substantial structural reorganization.  相似文献   

6.
Amyloid fibril formation is widely accepted as a critical step in all types of amyloidosis. Amyloid fibrils derived from different amyloidogenic proteins share structural elements including beta-sheet secondary structure and similar tertiary structure. While some amyloidogenic proteins are rich in beta-sheet in their soluble form, others, like Alzheimer beta-amyloid peptide (Abeta) or serum amyloid A, must undergo significant structural transition to acquire a high beta-sheet content. We postulate that Abeta and other amyloidogenic proteins undergo a transition to beta-sheet as a result of aging-related chemical modifications of aspartyl residues to the form of succinimide or isoaspartyl methyl ester. We hypothesize that spontaneous cyclization of aspartate residues in amyloidogenic proteins can serve as a nucleation event in amyloidogenesis. To test this hypothesis, we synthesized a series of designed peptides having the sequence VTVKVXAVKVTV, where X represents aspartic acid or its derivatives. Studies using circular dichroism showed that neutralization of the aspartate residue through the formation of a methyl ester or an amide, or replacement of aspartate with glutamate led to an increased beta-sheet content at neutral and basic pH. A higher content of beta-sheet structure correlated with increased propensity for fibril formation and decreased solubility at neutral pH.  相似文献   

7.
Human islet amyloid polypeptide (hIAPP) accumulates as pancreatic amyloid in type 2 diabetes and readily forms fibrils in vitro. Investigations into the mechanism of hIAPP fibril formation have focused largely on residues 20 to 29, which are considered to comprise a primary amyloidogenic domain. In rodents, proline substitutions within this region and the subsequent beta-sheet disruption, prevents fibril formation. An additional amyloidogenic fragment within the C-terminal sequence, residues 30 to 37, has been identified recently. We have extended these observations by examining a series of overlapping peptide fragments from the human and rodent sequences. Using protein spectroscopy (CD/FTIR), electron microscopy and X-ray diffraction, a previously unrecognised amyloidogenic domain was localised within residues 8 to 20. Synthetic peptides corresponding to this region exhibited a transition from random coil to beta-sheet conformation and assembled into fibrils having a typical amyloid-like morphology. The comparable rat 8-20 sequence, which contains a single His18Arg substitution, was also capable of assembling into amyloid-like fibrils. Examination of peptide fragments corresponding to residues 1 to 13 revealed that the immediate N-terminal region is likely to have only a modulating influence on fibril formation or conformational conversion. The contributions of charged residues as they relate to the amyloid-forming 8-20 sequence were also investigated using IAPP fragments and by assessing the effects of pH and counterions. The identification of these principal amyloidogenic sequences and the effects of associated factors provide details on the IAPP aggregation pathway and structure of the peptide in its fibrillar state.  相似文献   

8.
A range of disorders such as Alzheimer's disease and type II diabetes have been linked to protein misfolding and aggregation. Transthyretin is an amyloidogenic protein which is involved in familial amyloid polyneuropathy, the most common form of systemic amyloid disease. A peptide fragment of this protein, TTR105-115, has been shown to form well-defined amyloid fibrils in vitro. In this study, the stability of amyloid fibrils towards high hydrostatic pressure has been investigated by Fourier transform infrared spectroscopy. Information on the morphology of the species exposed to high hydrostatic pressure was obtained by atomic force microscopy. The species formed early in the aggregation process were found to be dissociated by relatively low hydrostatic pressure (220 MPa), whereas mature fibrils are pressure insensitive up to 1.3 GPa. The pressure stability of the mature fibrils is consistent with a fibril structure in which there is an extensive hydrogen bond network in a tightly packed environment from which water is excluded. The fact that early aggregates can be dissociated by low pressure suggests, however, that hydrophobic and electrostatic interactions are the dominant factors stabilizing the species formed in the early stages of fibril formation.  相似文献   

9.
A 23-residue peptide termed BH(9-10) was designed based on a beta-hairpin segment of the single-layer beta-sheet region of Borrelia OspA protein. The peptide contains a large number of charged amino acid residues, and it does not follow the amphipathic pattern that is commonly found in natural beta-sheets. In aqueous solution, the peptide was highly soluble and flexible, with a propensity to form a non-native beta-turn. Trifluoroethanol (TFE) stabilized a native-like beta-turn in BH(9-10). TFE also decreased the level of solubility of the peptide, resulting in peptide precipitation. The precipitation process accompanied a conformational conversion to a beta-sheet structure, as judged with circular dichroism spectroscopy. The precipitate was found to be fibrils similar to those associated with human amyloid diseases. The fibrillization kinetics depended on peptide and TFE concentrations, and had a nucleation step followed by an assembly step. The fibrillization was reversible, and the dissociation reaction involved two phases. TFE appears to induce the fibrils by stabilizing a beta-sheet conformation of the peptide that optimally satisfies hydrogen bonding and electrostatic complementarity. This TFE-induced fibrillization is quite unusual, because most amyloidogenic peptides form fibrils in aqueous solution and TFE disrupts these fibrils. Nevertheless, the BH(9-10) fibrils have similar structure to other fibrils, supporting the emerging idea that polypeptides possess an intrinsic ability to form amyloid-like fibrils. The high level of solubility of BH(9-10), the ability to precisely control fibril formation and dissociation, and the high-resolution structure of the same sequence in the beta-hairpin conformation in the OspA protein provide a tractable experimental system for studying the fibril formation mechanism.  相似文献   

10.
Zhang Q  Kelly JW 《Biochemistry》2003,42(29):8756-8761
Conservative mutation of transthyretin's surface residues can predispose an individual to familial amyloidosis by dramatically changing the energetics of misfolding. Senile systemic amyloidosis (SSA), however, cannot be explained in this fashion because wild-type (WT) transthyretin (TTR) misfolds and misassembles into amyloid. Since various modifications of the SH functionality of Cys10 have been reported in humans, we sought to understand the extent to which these modifications alter the stability and amyloidosis of WT TTR as a possible explanation for SSA. Homotetrameric Cys10 TTR variants, including TTR-Cys, TTR-GSH, TTR-CysGly, and S-sulfonated TTR, were chemically synthesized starting with WT TTR. The TTR-Cys, TTR-GSH, and TTR-CysGly isoforms are more amyloidogenic than WT at the higher end of the acidic pH range (pH 4.4-5.0), and they are similarly destabilized relative to WT TTR toward urea denaturation. They exhibit rates of urea-mediated tetramer dissociation (pH 7) and MeOH-facilitated fibril formation similar to those of WT TTR. Under mildly acidic conditions (pH 4.8), the amyloidogenesis rates of the mixed disulfide TTR variants are much faster than the WT rate. S-Sulfonated TTR is less amyloidogenic and forms fibrils more slowly than WT under acidic conditions, yet it exhibits a stability and rates of tetramer dissociation similar to those of WT TTR when subjected to urea denaturation. Conversion of the Cys10 SH group to a mixed disulfide with the amino acid Cys, the CysGly peptide, or glutathione increases amyloidogenicity and the amyloidogenesis rate above pH 4.6, conditions under which TTR probably forms fibrils in humans. Hence, these modifications may play an important role in human amyloidosis.  相似文献   

11.
The self-assembly in films dried from aqueous solutions of a modified amyloid beta peptide fragment is studied. We focus on sequence Abeta(16-20), KLVFF, extended by two alanines at the N-terminus to give AAKLVFF. Self-assembly into twisted ribbon fibrils is observed, as confirmed by transmission electron microscopy (TEM). Dynamic light scattering reveals the semi-flexible nature of the AAKLVFF fibrils, while polarized optical microscopy shows that the peptide fibrils crystallize after an aqueous solution of AAKLVFF is matured over 5 days. The secondary structure of the fibrils is studied by FT-IR, circular dichroism and X-ray diffraction (XRD), which provide evidence for beta-sheet structure in the fibril. From high resolution TEM it is concluded that the average width of an AAKLVFF fibril is (63+/-18) nm, indicating that these fibrils comprise beta-sheets with multiple repeats of the unit cell, determined by XRD to have b and c dimensions 1.9 and 4.4 nm with an a axis 0.96 nm, corresponding to twice the peptide backbone spacing in the antiparallel beta-sheet.  相似文献   

12.
Amyloid fibrils are associated with several disease states, but their structures have yet to be fully defined. Here we use site-directed spin labeling to explain some of the specific interactions that are formed between subunits when the protein transthyretin (TTR) assembles into amyloid fibrils, which are associated with both spontaneous and familial amyloid diseases in humans. The results suggest that fibrils are formed when a major conformational change displaces the terminal beta-strand from the edge of a beta-sheet in the native structure, exposing the penultimate strand. The newly exposed strand then allows a novel beta-sheet interaction to form between the TTR subunits. This interaction and another previously identified subunit association lead to a plausible model for the specific sequence of beta-strands in one of the indefinitely repeating beta-sheets of TTR amyloid, which is formed by a head-to-head, tail-to-tail arrangement of subunits.  相似文献   

13.
Rational design of potent human transthyretin amyloid disease inhibitors   总被引:4,自引:0,他引:4  
The human amyloid disorders, familial amyloid polyneuropathy, familial amyloid cardiomyopathy and senile systemic amyloidosis, are caused by insoluble transthyretin (TTR) fibrils, which deposit in the peripheral nerves and heart tissue. Several nonsteroidal anti-inflammatory drugs and structurally similar compounds have been found to strongly inhibit the formation of TTR amyloid fibrils in vitro. These include flufenamic acid, diclofenac, flurbiprofen, and resveratrol. Crystal structures of the protein-drug complexes have been determined to allow detailed analyses of the protein-drug interactions that stabilize the native tetrameric conformation of TTR and inhibit the formation of amyloidogenic TTR. Using a structure-based drug design approach ortho-trifluormethylphenyl anthranilic acid and N-(meta-trifluoromethylphenyl) phenoxazine 4, 6-dicarboxylic acid have been discovered to be very potent and specific TTR fibril formation inhibitors. This research provides a rationale for a chemotherapeutic approach for the treatment of TTR-associated amyloid diseases.  相似文献   

14.
Transthyretin amyloidosis represents a spectrum of clinical syndromes that, in all cases except senile systemic amyloidosis, are dependent on the mutation present in the transthyretin (TTR) protein. Although the role of amyloid deposits in the pathogenesis of the disease is not clear, preventing their formation or promoting their disaggregation is necessary to control the development of clinical symptoms. The design of therapies aiming at preventing amyloid formation or promoting its dissociation requires detailed knowledge of the fibrils' molecular structure and a complete view about the factors responsible for protein aggregation. This review is focused on the structural studies, performed on amyloid fibrils and amyloidogenic TTR variants, aiming at understanding the aggregation mechanism as well as the atomic structure of the fibril assembly. Based on the available information possible therapies are also surveyed.  相似文献   

15.
Transthyretin amyloidosis represents a spectrum of clinical syndromes that, in all cases except senile systemic amyloidosis, are dependent on the mutation present in the transthyretin (TTR) protein. Although the role of amyloid deposits in the pathogenesis of the disease is not clear, preventing their formation or promoting their disaggregation is necessary to control the development of clinical symptoms. The design of therapies aiming at preventing amyloid formation or promoting its dissociation requires detailed knowledge of the fibrils' molecular structure and a complete view about the factors responsible for protein aggregation. This review is focused on the structural studies, performed on amyloid fibrils and amyloidogenic TTR variants, aiming at understanding the aggregation mechanism as well as the atomic structure of the fibril assembly. Based on the available information possible therapies are also surveyed.  相似文献   

16.
Transthyretin (TTR) is a human disease-associated amyloidogenic protein that has been implicated in senile systemic amyloidosis (SSA) and familial amyloidotic polyneuropathy (FAP). FAP typically results in severe and early-onset disease, and the only therapy established so far is liver transplantation; thus, developing new strategies for treating FAP is of paramount interest. Clusterin has recently been proposed to play a role as an extracellular molecular chaperone, affecting the fibril formation of amyloidogenic proteins. The ability of clusterin to influence amyloid fibril formation prompted us to investigate whether clusterin is capable of inhibiting TTR amyloidosis. Here, we report that clusterin strongly interacts with wild-type TTR and TTR variants V30M and L55P under acidic conditions, and blocks the amyloid fibril formation of TTR variants. In particular, the amyloid fibril formation of V30M TTR in the presence of clusterin is reduced to level similar to wild-type TTR. We also demonstrated that clusterin is an effective inhibitor of L55P TTR amyloidosis, the most aggressive form of TTR diseases. The mechanism by which clusterin inhibits TTR amyloidosis appears to be through stabilization of TTR tetrameric structure. These findings suggest the possibility of using clusterin as a therapeutic agent for TTR amyloidosis.  相似文献   

17.
Amyloid fibril formation and deposition is a common feature of a wide range of fatal diseases including spongiform encephalopathies, Alzheimer's disease, and familial amyloidotic polyneuropathies (FAP), among many others. In certain forms of FAP, the amyloid fibrils are mostly constituted by variants of transthyretin (TTR), a homotetrameric plasma protein. Recently, we showed that transthyretin in solution may undergo dissociation to a non-native monomer, even under close to physiological conditions of temperature, pH, ionic strength, and protein concentration. We also showed that this non-native monomer is a compact structure, does not behave as a molten globule, and may lead to the formation of partially unfolded monomeric species and high molecular mass soluble aggregates (Quintas, A., Saraiva, M. J. M., and Brito, R. M. M. (1999) J. Biol. Chem. 274, 32943-32949). Here, based on aging experiments of tetrameric TTR and chemically induced protein unfolding experiments of the non-native monomeric forms, we show that tetramer dissociation and partial unfolding of the monomer precedes amyloid fibril formation. We also show that TTR variants with the least thermodynamically stable non-native monomer produce the largest amount of partially unfolded monomeric species and soluble aggregates under conditions that are close to physiological. Additionally, the soluble aggregates formed by the amyloidogenic TTR variants showed morphological and thioflavin-T fluorescence properties characteristic of amyloid. These results allowed us to conclude that amyloid fibril formation by some TTR variants might be triggered by tetramer dissociation to a compact non-native monomer with low conformational stability, which originates partially unfolded monomeric species with a high tendency for ordered aggregation into amyloid fibrils. Thus, partial unfolding and conformational fluctuations of molecular species with marginal thermodynamic stability may play a crucial role on amyloid formation in vivo.  相似文献   

18.
The homotetramer of transthyretin (TTR) dissociates into a monomeric amyloidogenic intermediate that self-assembles into amyloid fibrils at low pH. We have performed molecular dynamics simulations of monomeric TTR at neutral and low pH at physiological (310 K) and very elevated temperature (498 K). In the low-pH simulations at both temperatures, one of the two beta-sheets (strands CBEF) becomes disrupted, and alpha-sheet structure forms in the other sheet (strands DAGH). alpha-sheet is formed by alternating alphaL and alphaR residues, and it was first proposed by Pauling and Corey. Overall, the simulations are in agreement with the available experimental observations, including solid-state NMR results for a TTR-peptide amyloid. In addition, they provide a unique explanation for the results of hydrogen exchange experiments of the amyloidogenic intermediate-results that are difficult to explain with beta-structure. We propose that alpha-sheet may represent a key pathological conformation during amyloidogenesis.  相似文献   

19.
Most of the disease causing proteins such as beta amyloid, amylin, and huntingtin protein, which are natively disordered, readily form fibrils consisting of beta-sheet polymers. Though all amyloid fibrils are made up of beta-sheet polymers, not all peptides with predominant beta-sheet content in the native state develop into amyloid fibrils. We hypothesize that stable amyloid like fibril formation may require mixture of different conformational states in the peptide. We have tested this hypothesis on amyloid forming peptide namely HCl(Ile)(5)NH(CH(2)CH(2)O)(3)CH(3) (I). We show peptide I, has propensity to form self-assembled structures of beta-sheets in aqueous solutions. When incubated over a period of time in aqueous buffer, I self assembled into beta sheet like structures with diameters ranging from 30 to 60 A that bind with amyloidophilic dyes like Congo red and Thioflavin T. Interestingly peptide I developed into unstable fibrils after prolonged aging at higher concentration in contrast with the general mature fibril-forming propensity of various amyloid petides known to date.  相似文献   

20.
Hurshman AR  White JT  Powers ET  Kelly JW 《Biochemistry》2004,43(23):7365-7381
The deposition of fibrils and amorphous aggregates of transthyretin (TTR) in patient tissues is a hallmark of TTR amyloid disease, but the molecular details of amyloidogenesis are poorly understood. Tetramer dissociation is typically rate-limiting for TTR amyloid fibril formation, so we have used a monomeric variant of TTR (M-TTR) to study the mechanism of aggregation. Amyloid formation is often considered to be a nucleation-dependent process, where fibril growth requires the formation of an oligomeric nucleus that is the highest energy species on the pathway. According to this model, the rate of fibril formation should be accelerated by the addition of preformed aggregates or "seeds", which effectively bypasses the nucleation step. Herein, we demonstrate that M-TTR amyloidogenesis at low pH is a complex, multistep reaction whose kinetic behavior is incompatible with the expectations for a nucleation-dependent polymerization. M-TTR aggregation is not accelerated by seeding, and the dependence of the reaction timecourse is first-order on the M-TTR concentration, consistent either with a dimeric nucleus or with a nonnucleated process where each step is bimolecular and essentially irreversible. These studies suggest that amyloid formation by M-TTR under partially denaturing conditions is a downhill polymerization, in which the highest energy species is the native monomer. Our results emphasize the importance of therapeutic strategies that stabilize the TTR tetramer and may help to explain why more than eighty TTR variants are disease-associated. The differences between amyloid formation by M-TTR and other amyloidogenic peptides (such as amyloid beta-peptide and islet amyloid polypeptide) demonstrate that these polypeptides do not share a common aggregation mechanism, at least under the conditions examined thus far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号