首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene encoding ribosomal proteins S12 and probably S7 as well as protein synthesis elongation factors Tu (EF-Tu) and G (EF-G) of Spirulina platensis have been identified and cloned. Gene expression was determined for ribosomal protein S12 by genetic complementation of the appropriate Escherichia coli mutant, whereas for the EF-Tu gene it was determined by production of the protein in E. coli minicells. On the basis of these experiments we suggest the following gene order in the S. platensis chromosome: S12, S7, EF-G, EF-Tu.  相似文献   

2.
The prokaryotic ribosomal operon, str, contains open reading frames for the two elongation factors, elongation factor G (EF-G) and elongation factor Tu (EF-Tu), and ribosomal proteins S7 and S12. The DNA sequence and predicted amino acid sequence for S7 from Chlamydia trachomatis are presented and compared with homologues from other prokaryotes. Also, the relationship of the S7 gene to the open reading frames for ribosomal protein S12 and EF-G is described. Significant amino acid homology is also noted when the amino-terminal sequence of chlamydial EF-G is compared with the cytoplasmic tetracycline resistance factors, tetM and tetO, from streptococci and Campylobacter jejuni. Related findings and possible resistance mechanisms for the newly recognized tetracycline-resistant clinical isolates of C. trachomatis are discussed.  相似文献   

3.
Summary A 5.3 kb DNA segment containing the str operon (ca. 4.5 kb) of the cyanobacterium Spirulina platensis has been sequenced. The str operon includes the structural genes rpsL (ribosomal protein S12), rpsG (ribosomal protein S7), fus (translation elngation factor EF-G) and tuf (translation elongation factor EF-Tu). From the nucleotide sequence of this operon, the primary structures of the four gene products have been derived and compared with the available corresponding structures from eubacteria, archaebacteria and chloroplasts. Extensive homologies were found in almost all cases and in the order S12>EF-Tu>EF-G>S7; the largest homologies were generally found between the cyanobacterial proteins and the corresponding chloroplast gene products. Overall codon usage in S. platensis was found to be rather unbiased.  相似文献   

4.
5.
The complete amino acid sequences of ribosomal proteins S11 from the Gram-positive eubacterium Bacillus stearothermophilus and of S19 from the archaebacterium Halobacterium marismortui have been determined. A search for homologous sequences of these proteins revealed that they belong to the ribosomal protein S11 family. Homologous proteins have previously been sequenced from Escherichia coli as well as from chloroplast, yeast and mammalian ribosomes. A pairwise comparison of the amino acid sequences showed that Bacillus protein S11 shares 68% identical residues with S11 from Escherichia coli and a slightly lower homology (52%) with the homologous chloroplast protein. The halophilic protein S19 is more related to the eukaryotic (45–49%) than to the eubacterial counterparts (35%)  相似文献   

6.
The gene fus (for EF-G) of the hyperthermophilic bacterium Aquifex pyrophilus was cloned and sequenced. Unlike the other bacteria, which display the streptomycin-operon arrangement of EF genes (5-rps12-rps7 fus-tuf-3), the Aquifex fus gene (700 codons) is not preceded by the two small ribosomal subunit genes although it is still followed by a tuf gene (for EF-Tu). The opposite strand upstream from the EF-G coding locus revealed an open reading frame (ORF) encoding a polypeptide having 52.5% identity with an E. coli protein (the pdxJ gene product) involved in pyridoxine condensation. The Aquifex EF-G was aligned with available homologs representative of Deinococci, high G + C Gram positives, Proteobacteria, cyanobacteria, and several Archaea. Outgroup-rooted phylogenies were constructed from both the amino acid and the DNA sequences using first and second codon positions in the alignments except sites containing synonymous changes. Both datasets and alternative tree-making methods gave a consistent topology, with Aquifex and Thermotoga maritima (a hyperthermophile) as the first and the second deepest offshoots, respectively. However, the robustness of the inferred phylogenies is not impressive. The branching of Aquifex more deeply than Thennotoga and the branching of Thermotoga more deeply than the other taxa examined are given at bootstrap values between 65 and 70% in the fus-based phylogenies, while the EF-G(2)-based phylogenies do not provide a statistically significant level of support ( 50% bootstrap confirmation) for the emergence of Thermotoga between Aquifex and the successive offshoot (Thermus genus). At present, therefore, the placement of Aquifex at the root of the bacterial tree, albeit reproducible, can be asserted only with reservation, while the emergence of Thermotoga between the Aquificales and the Deinococci remains (statistically) indeterminate. Correspondence to: P. Cammarano di Roma  相似文献   

7.
Summary The str operon of Escherichia coli contains genes for ribosomal proteins S12 and S7 and for elongation factors EF-G and EF-Tu (Jaskunas et al. 1975). We have subcloned various segments of DNA from this operon onto multicopy plasmids. We found that cells carrying a recombinant plasmid which lacks the major promoter for the str operon but contains the 5 portion of the EF-Tu gene synthesize a novel protein which we have identified as a truncated EF-Tu molecule. Moreover, cells carrying plasmids with an intact EF-Tu gene synthesize the elongation factor at a 3-to 5-fold higher rate than haploid cells. Thus the EF-Tu gene can be expressed in the absence of the major promoter for the str operon. This expression is not due to read-through from plasmid promoters, but it is dependent on the presence of the distal portion of the EF-G gene on the plasmids. These results indicate that there is a secondary promoter for EF-Tu expression, apparently located within the structural gene for elongation factor EF-G.  相似文献   

8.
Summary The gene (fus) coding for elongation factor G (EF-G) of the extremely thermophilic eubacteriumThermotoga maritima was identified and sequenced. The EF-G coding sequence (2046 bp) was found to lie in an operon-like structure between the ribosomal protein S7 gene (rpsG) and the elongation factor Tu (EF-Tu) gene (tuf). TherpsG, fus, andtuf genes follow each other immediately in that order, which corresponds to the order of the homologous genes in thestr operon ofEscherichia coli. The derived amino acid sequence of the EF-G protein (682 residues) was aligned with the homologous sequences of other eubacteria, eukaryotes (hamster), and archaebacteria (Methanococcus vannielii). Unrooted phylogenetic dendrogram, obtained both from the amino acid and the nucleotide sequence alignments, using a variety of methods, lend further support to the notion that the (present) root of the (eu)bacterial tree lies betweenThermotoga and the other bacterial lineages.  相似文献   

9.
10.
A partial sequence of a cloned 3.2 Md BamHI fragment from tobacco chloroplast DNA revealed the occurrence of a putative gene for ribosomal protein. The putative gene is located on the left margin of the large single-copy region in the chloroplast DNA. The coding region contains 276 bp (92 codons). The amino acid sequence deduced from the DNA sequence shows 55% homology with that of E. coli S19 (91 amino acid residues).  相似文献   

11.
We characterize a DNA segment of the Euglena gracilis chloroplast DNA fragment Eco . N by nucleotide sequencing and S1 nuclease analysis. We show that this region, which is upstream of the previously sequenced tuf A gene, contains the genes for the ribosomal proteins S12 and S7. The gene arrangement is 5'-rps 12-80 bp spacer-rps 7-174 bp spacer-tuf A, somewhat similar to the str operon of E. coli. The chloroplast S12 and S7 proteins contain 124 and 155 aminoacids, respectively, and are to 68% and 38% homologous with the corresponding E. coli proteins. The region is transcribed into a distronic mRNA of about 1.1 to 1.2 kb. The rps 12 and rps 7 genes, contrary to the tuf A gene, are not split.  相似文献   

12.
Two chloroplast genes were sequenced from an exsymbiotic strain of a eukaryotic, Chlorella-like green alga. The genes for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL) and the ribosomal protein S14 (rps14) were oriented in the same direction and were separated by 402 bp. The rbcLs of the exsymbiont and a free living Chlorella ellipsoidea were compared with other reported rbcL sequences. The rbcL gene of the exsymbiont is closely related to that of free-living Chlorella ellipsoidea. This is the first published report of an rps 14 gene sequence from an alga.  相似文献   

13.
In this study, we describe the partial genomic organization of ribosomal protein S7 gene isolated from the mosquito Anopheles stephensi. Initially a 558 bp partial cDNA sequence was amplified as precursor mRNA sequence containing 223 bp long intron. 5' and 3' end sequences were recovered using end specific rapid amplification of cDNA ends (RACE) polymerase chain reaction. The full-length cDNA sequence was 914 nucleotide long with an open reading frame capable of encoding 192 amino acid long protein with calculated molecular mass of 22174 Da and a pI point of 9.94. Protein homology search revealed 〉75% identity to other insect's S7 ribosomal proteins. Analysis of sequence alignment revealed several highly conserved domains, one of which is related to nuclear localization signal (NLS) region of human rpS7. Interestingly, intron nucleotide sequence comparison with A. gambiae showed a lesser degree of conservation as compared to coding and untranslated regions. Like this, early studies on the genomic organization and cDNA/ Expressed sequence tag analysis (EST) could help in genome annotation ofA. stephensi, and would be likely to be sequenced in the future.  相似文献   

14.
A 2.9 kbp region from within the inverted repeat of Nicotiana chloroplast DNA hybridized with a chloroplast DNA fragment from Euglena containing the complete rps12 gene coding for ribosomal protein S12. Nucleotide sequencing within this region revealed the existance of two rps12 coding stretches interrupted by 540 bp having class II intron structure. Joining and decoding the exon regions produced a sequence of 85 amino acids colinear and 81% homologous to the S12 protein of Euglena chloroplasts and E. coli, starting from amino acid residue 38 to the stop codon. Immediately upstream of codon 38, conserved intron sequences were located. However, the 5' 37 codon of Nicotiana chloroplast rps12 could not be identified by electron microscopy of RNA-DNA hybrids within a DNA region extending 4000 bp upstream of codon 38, nor by computer search of a completely sequenced region extending for more than 9000 bp upstream of this codon. In E. coli, alteration in rps12 codons 42 or 87 causes streptomycin resistance. However, the nucleotide sequence of the identified rps12 exons in two Nicotiana chloroplast mutants resistant to streptomycin were found to be identical to that of wild type.  相似文献   

15.
We determined the complete nucleotide sequence of the chloroplast genome of Selaginella uncinata, a lycophyte belonging to the basal lineage of the vascular plants. The circular double-stranded DNA is 144,170 bp, with an inverted repeat of 25,578 bp separated by a large single copy region (LSC) of 77,706 bp and a small single copy region (SSC) of 40,886 bp. We assigned 81 protein-coding genes including four pseudogenes, four rRNA genes and only 12 tRNA genes. Four genes, rps15, rps16, rpl32 and ycf10, found in most chloroplast genomes in land plants were not present in S. uncinata. While gene order and arrangement of the chloroplast genome of another lycophyte, Hupertzia lucidula, are almost the same as those of bryophytes, those of S. uncinata differ considerably from the typical structure of bryophytes with respect to the presence of a unique 20 kb inversion within the LSC, transposition of two segments from the LSC to the SSC and many gene losses. Thus, the organization of the S. uncinata chloroplast genome provides a new insight into the evolution of lycophytes, which were separated from euphyllophytes approximately 400 million years ago. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Summary The chloroplast gene for the epsilon subunit (atpE) of the CF1/CF0 ATPase in the green alga Chlamydomonas reinhardtii has been localized and sequenced. In contrast to higher plants, the atpE gene does not lie at the 3 end of the beta subunit (atpB) gene in the chloroplast genome of C. reinhardtii, but is located at a position 92 kb away in the other single copy region. The uninterrupted open reading frame for the atpE gene is 423 bp, and the epsilon subunit exhibits 43% derived amino acid homology to that from spinach. Codon usage for the atpE gene follows the restricted pattern seen in other C. reinhardtii chloroplast genes.The genes for the CF0 subunits I (atpF) and IV (atpI) of the ATPase complex have also been mapped on the chloroplast genome of C. reinhardtii. The six chloroplast ATPase genes in C. reinhardtii are dispersed individually between the two single copy regions of the chloroplast genome, an organization strikingly different from the highly conserved arrangement in two operon-like units seen in chloroplast genomes of higher plants.Abbreviations bp base pairs - CF1 chloroplast coupling factor 1 - CF0 chloroplast coupling factor 0 - F1 coupling factor 1 - F0 coupling factor 0 - kb kilobase pairs  相似文献   

17.
Hybrid 70S ribosomes were produced by combining Anacystis nidulans and Escherichia coli 30S and 50S subunits. Both the A. nidulans 30S-E. coli 50S and E. coli 30S- A. nidulans 50S hybrids were functional in synthesizing protein when tested in a standard in vitro amino acid incorporating system. Both 70S hybrids were inhibited by streptomycin but the degree of inhibition was dependent upon the source of the 30S subunit. The ability to form functional 70S ribosomes from subunits of blue-green algae and bacteria is further evidence of the procaryotic nature of blue-greens and of the functional homology of the two protein synthesizing systems.  相似文献   

18.
We have purified a chloroplast elongation factor Tu (EF-Tu) from tobacco (Nicotiana tabacum) and determined its N-terminal amino acid sequence. Two distinct cDNAs encoding EF-Tu were isolated from a leaf cDNA library of N. sylvestris (the female progenitor of N. tabacum) using an oligonucleotide probe based on the EF-Tu protein sequence. The cDNA sequence and genomic Southern analyses revealed that tobacco chloroplast EF-Tu is encoded by two distinct genes in the nuclear genome of N. sylvestris. We designated the corresponding gene products EF-Tu A and B. The mature polypeptides of EF-Tu A and B are 408 amino acids long and share 95.3% amino acid identity. They show 75–78% amino acid identity with cyanobacterial and chloroplast-encoded EF-Tu species.  相似文献   

19.
20.
E. coli ribosomal DNA has been used to probe maize mitochondrial DNA. It hybridizes primarily with chloroplast ribosomal DNA sequences and with fungal and bacterial sequences which may contaminate the mtDNA preparations. It also hybridizes to the chloroplast 16S ribosomal RNA gene sequence present in the mitochondrial genome (1) as well as to the mitochondrial 18S ribosomal RNA gene sequence. Weak sequence homology was detected between E. coli rDNA and the mitochondrial 26S ribosomal RNA gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号