首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Erythroid Krüppel-like factor (EKLF), an erythroid tissue-specific Krüppel-type zinc finger protein, binds to the β-globin gene CACCC box and is essential for β-globin gene expression. EKLF does not activate the γ gene, the CACCC sequence of which differs from that of the β gene. To test whether the CACCC box sequence difference is the primary determinant of the selective activation of the β gene by EKLF, the CACCC boxes of β and γ genes were swapped and the resulting promoter activities were assayed by transient transfections in CV-1 cells. EKLF activated the β promoter carrying a γ CACCC box at a level comparable to that at which it activated the wild-type β promoter, whereas EKLF failed to activate a γ promoter carrying the β CACCC box, despite the presence of the optimal EKLF binding site. Similar results were obtained in K562 cells. The possibility that overexpressed EKLF superactivated the β promoter carrying the γ CACCC box, or that EKLF activated the mutated β promoter through the intact distal CACCC box, was excluded. To test whether the position of the CACCC box in the β or γ promoter determined EKLF specificity, the proximal β CACCC box sequence was created at the position of the β promoter (−140) which corresponds to the position of the CACCC box on the γ promoter. Similarly, the β CACCC box was created in the position of the γ promoter (−90) corresponding to the position of the CACCC box in the β promoter. EKLF retained weak activation potential on the β−140CAC promoter, whereas EKLF failed to activate the γ−90βCAC promoter even though that promoter contained an optimal EKLF binding site at the optimal position. Taken together, our findings indicate that the specificity of the activation of the β promoter by EKLF is determined by the overall structure of the β promoter rather than solely by the sequence of the β gene CACCC box.  相似文献   

2.
In mammals, the complex tissue- and developmental-specific expression of genes within the β-globin cluster is known to be subject to control by the gene promoters, by a locus control region (LCR) located upstream of the cluster, and by sequence elements located across the intergenic regions. Despite extensive investigation, however, the complement of sequences that is required for normal regulation of chromatin structure and gene expression within the cluster is not fully defined. To further elucidate regulation of the adult β-globin genes, we investigate the effects of two deletions engineered within the endogenous murine β-globin locus. First, we find that deletion of the β2-globin gene promoter, while eliminating β2-globin gene expression, results in no additional effects on chromatin structure or gene expression within the cluster. Notably, our observations are not consistent with competition among the β-globin genes for LCR activity. Second, we characterize a novel enhancer located 3′ of the β2-globin gene, but find that deletion of this sequence has no effect whatsoever on gene expression or chromatin structure. This observation highlights the difficulty in assigning function to enhancer sequences identified by the chromatin “landscape” or even by functional assays.  相似文献   

3.
The utility of mining DNA sequence data to understand the structure and expression of cereal prolamin genes is demonstrated by the identification of a new class of wheat prolamins. This previously unrecognized wheat prolamin class, given the name δ-gliadins, is the most direct ortholog of barley γ3-hordeins. Phylogenetic analysis shows that the orthologous δ-gliadins and γ3-hordeins form a distinct prolamin branch that existed separate from the γ-gliadins and γ-hordeins in an ancestral Triticeae prior to the branching of wheat and barley. The expressed δ-gliadins are encoded by a single gene in each of the hexaploid wheat genomes. This single δ-gliadin/γ3-hordein ortholog may be a general feature of the Triticeae tribe since examination of ESTs from three barley cultivars also confirms a single γ3-hordein gene. Analysis of ESTs and cDNAs shows that the genes are expressed in at least five hexaploid wheat cultivars in addition to diploids Triticum monococcum and Aegilops tauschii. The latter two sequences also allow assignment of the δ-gliadin genes to the A and D genomes, respectively, with the third sequence type assumed to be from the B genome. Two wheat cultivars for which there are sufficient ESTs show different patterns of expression, i.e., with cv Chinese Spring expressing the genes from the A and B genomes, while cv Recital has ESTs from the A and D genomes. Genomic sequences of Chinese Spring show that the D genome gene is inactivated by tandem premature stop codons. A fourth δ-gliadin sequence occurs in the D genome of both Chinese Spring and Ae. tauschii, but no ESTs match this sequence and limited genomic sequences indicates a pseudogene containing frame shifts and premature stop codons. Sequencing of BACs covering a 3 Mb region from Ae. tauschii locates the δ-gliadin gene to the complex Gli-1 plus Glu-3 region on chromosome 1.  相似文献   

4.
Properties of Lactose Plasmid pLY101 in Lactobacillus casei   总被引:3,自引:0,他引:3       下载免费PDF全文
A starter strain, Lactobacillus casei C257, was found to carry a lactose plasmid, pLY101. Restriction mapping showed that pLY101 DNA was 68.2 kilobases long. Since a non-lactose-utilizing variant of C257, MSK248, lost phospho-β-galactosidase (P-β-gal) activity and pLY101 DNA had a sequence(s) homologous to the streptococcal fragment including a P-β-gal gene, pLY101 is likely to encode a P-β-gal gene required for lactose metabolism in C257. MSK248 grew in galactose medium at a rate identical to that of C257 and retained phosphoenolpyruvate-dependent phosphotransferase system activity for lactose similar to that of C257. Therefore, the C257 chromosome appears to encode a complete set of genes for the lactose-phosphotransferase system and the predominant galactose metabolic pathway in C257. pLY101 DNA had a sequence homologous to a lactobacillus insertion sequence, ISL1, which mapped more than 12 kilobases from the sequence homologous to the streptococcal P-β-gal fragment.  相似文献   

5.
We investigated the mechanisms by which protein kinase C (PKC) regulates the expression of the α2(I) collagen gene in normal dermal fibroblasts. Reduction of PKC-α activity by treatment with Gö697-6 or by overexpression of a dominant negative (DN) mutant form decreased α2(I) collagen gene expression. This decrease required a sequence element in the collagen promoter that contains Sp1/Sp3 binding sites. Reduction of PKC-δ activity by rottlerin or overexpression of DN PKC-δ also decreased α2(I) collagen gene expression. This effect required a separate sequence element containing Sp1/Sp3-binding sites and an Ets-binding site. In both cases, point mutations within the response elements abrogated the response to PKC inhibition. Forced overexpression of Sp1 rescued the PKC inhibitor-mediated reduction in collagen protein expression. A DNA affinity precipitation assay revealed that inhibition of PKC-δ by rottlerin increased the binding activity of endogenous Fli1 and decreased that of Ets1. On the other hand, TGF-β1, which increased the expression of PKC-δ, had the opposite effect, increasing the binding activity of Ets1 and decreasing that of Fli1. Our results suggest that PKC-δ is involved in the regulation of the α2(I) collagen gene in the presence or absence of TGF-β. Alteration of the balance of Ets1 and Fli1 may be a novel mechanism regulating α2(I) collagen expression.  相似文献   

6.
The effect of primer specificity for studying the diversity of ammonia-oxidizing betaproteobacteria (βAOB) was evaluated. βAOB represent a group of phylogenetically related organisms for which the 16S rRNA gene approach is especially suitable. We used experimental comparisons of primer performance with water samples, together with an in silico analysis of published sequences and a literature review of clone libraries made with four specific PCR primers for the βAOB 16S rRNA gene. With four aquatic samples, the primers NitA/NitB produced the highest frequency of ammonia-oxidizing-bacterium-like sequences compared to clone libraries with products amplified with the primer combinations βAMOf/βAMOr, βAMOf/Nso1255g, and NitA/Nso1225g. Both the experimental examination of ammonia-oxidizing-bacterium-specific 16S rRNA gene primers and the literature search showed that neither specificity nor sensitivity of primer combinations can be evaluated reliably only by sequence comparison. Apparently, the combination of sequence comparison and experimental data is the best approach to detect possible biases of PCR primers. Although this study focused on βAOB, the results presented here more generally exemplify the importance of primer selection and potential primer bias when analyzing microbial communities in environmental samples.  相似文献   

7.
8.
9.
Aspergillus nidulans possessed an α-glucosidase with strong transglycosylation activity. The enzyme, designated α-glucosidase B (AgdB), was purified and characterized. AgdB was a heterodimeric protein comprising 74- and 55-kDa subunits and catalyzed hydrolysis of maltose along with formation of isomaltose and panose. Approximately 50% of maltose was converted to isomaltose, panose, and other minor transglycosylation products by AgdB, even at low maltose concentrations. The agdB gene was cloned and sequenced. The gene comprised 3,055 bp, interrupted by three short introns, and encoded a polypeptide of 955 amino acids. The deduced amino acid sequence contained the chemically determined N-terminal and internal amino acid sequences of the 74- and 55-kDa subunits. This implies that AgdB is synthesized as a single polypeptide precursor. AgdB showed low but overall sequence homology to α-glucosidases of glycosyl hydrolase family 31. However, AgdB was phylogenetically distinct from any other α-glucosidases. We propose here that AgdB is a novel α-glucosidase with unusually strong transglycosylation activity.  相似文献   

10.
11.
Bean (Phaseolus vulgaris L.) seeds contain a putative plant defense protein that inhibits insect and mammalian but not plant α-amylases. We recently (J Moreno, MJ Chrispeels [1989] Proc Natl Acad Sci USA 86:7885-7889) presented strong circumstantial evidence that this α-amylase inhibitor (αAI) is encoded by an already-identified lectin gene whose product is referred to as lectin-like-protein (LLP). We have now made a chimeric gene consisting of the coding sequence of the lectin gene that encodes LLP and the 5′ and 3′ flanking sequences of the lectin gene that encodes phytohemagglutinin-L. When this chimeric gene was expressed in transgenic tobacco (Nicotiana tabacum), we observed in the seeds a series of polypeptides (Mr 10,000-18,000) that cross-react with antibodies to the bean α-amylase inhibitor. Most of these polypeptides bind to a pig pancreas α-amylase affinity column. An extract of the seeds of the transformed tobacco plants inhibits pig pancreas α-amylase activity as well as the α-amylase present in the midgut of Tenebrio molitor. We suggest that introduction of this lectin gene (to be called αai) into other leguminous plants may be a strategy to protect the seeds from the seed-eating larvae of Coleoptera.  相似文献   

12.
Heterotrimeric G proteins are an important class of eukaryotic signaling molecules that have been identified as central elements in the pheromone response pathways of many fungi. In the fungal pathogen Candida albicans, the STE18 gene (ORF19.6551.1) encodes a potential γ subunit of a heterotrimeric G protein; this protein contains the C-terminal CAAX box characteristic of γ subunits and has sequence similarity to γ subunits implicated in the mating pathways of a variety of fungi. Disruption of this gene was shown to cause sterility of MTLa mating cells and to block pheromone-induced gene expression and shmoo formation; deletion of just the CAAX box residues is sufficient to inactivate Ste18 function in the mating process. Intriguingly, ectopic expression behind the strong ACT1 promoter of either the Gα or the Gβ subunit of the heterotrimeric G protein is able to suppress the mating defect caused by deletion of the Gγ subunit and restore both pheromone-induced gene expression and morphology changes.  相似文献   

13.
14.
The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the αA-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the αD-globin gene). The αD-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O2 affinity in the presence of allosteric effectors such as organic phosphates and Cl ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O2 affinity stems primarily from changes in the O2 association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the αD-globin gene that is shared with the embryonic α-like globin gene.  相似文献   

15.
16.
Cellular α-tubulin can bear various carboxy-terminal sequences: full-length tubulin arising from gene neosynthesis is tyrosinated, and two truncated variants, corresponding to detyrosinated and Δ2 α‑tubulin, result from the sequential cleavage of one or two C-terminal residues, respectively. Here, by using a novel antibody named 3EG that is highly specific to the –EEEG C-terminal sequence, we demonstrate the occurrence in neuronal tissues of a new αΔ3‑tubulin variant corresponding to α1A/B‑tubulin deleted of its last three residues (EEY). αΔ3‑tubulin has a specific distribution pattern: its quantity in the brain is similar to that of αΔ2-tubulin around birth but is much lower in adult tissue. This truncated α1A/B-tubulin variant can be generated from αΔ2-tubulin by the deglutamylases CCP1, CCP4, CCP5, and CCP6 but not by CCP2 and CCP3. Moreover, using 3EG antibody, we identify a C‑terminally truncated β-tubulin form with the same –EEEG C-terminal sequence. Using mass spectrometry, we demonstrate that β2A/B-tubulin is modified by truncation of the four C-terminal residues (EDEA). We show that this newly identified βΔ4-tubulin is ubiquitously present in cells and tissues and that its level is constant throughout the cell cycle. These new C-terminally truncated α- and β-tubulin variants, both ending with –EEEG sequence, are expected to regulate microtubule physiology. Of interest, the αΔ3-tubulin seems to be related to dynamic microtubules, resembling tyrosinated-tubulin rather than the other truncated variants, and may have critical function(s) in neuronal development.  相似文献   

17.
18.
The virulence of Staphylococcus aureus, in both human and animal hosts, is largely influenced by the acquisition of mobile genetic elements (MGEs). Most S. aureus strains carry a variety of MGEs, including three genomic islands (νSaα, νSaβ, νSaγ) that are diverse in virulence gene content but conserved within strain lineages. Although the mobilization of pathogenicity islands, phages and plasmids has been well studied, the mobilization of genomic islands is poorly understood. We previously demonstrated the mobilization of νSaβ by the adjacent temperate bacteriophage ϕSaBov from strain RF122. In this study, we demonstrate that ϕSaBov mediates the mobilization of νSaα and νSaγ, which are located remotely from ϕSaBov, mostly to recipient strains belonging to ST151. Phage DNA sequence analysis revealed that chromosomal DNA excision events from RF122 were highly specific to MGEs, suggesting sequence-specific DNA excision and packaging events rather than generalized transduction by a temperate phage. Disruption of the int gene in ϕSaBov did not affect phage DNA excision, packaging, and integration events. However, disruption of the terL gene completely abolished phage DNA packing events, suggesting that the primary function of temperate phage in the transfer of genomic islands is to allow for phage DNA packaging by TerL and that transducing phage particles are the actual vehicle for transfer. These results extend our understanding of the important role of bacteriophage in the horizontal transfer and evolution of genomic islands in S. aureus.  相似文献   

19.
We obtained carrot (Daucus carota) cells possessing the 5′-noncoding sequence of the ORF12 gene (roIC) of TL-DNA of the Ri plasmid and a structural gene of bacterial β-glucuronidase by Agrobacterium-mediated transformation. When such cells were cultured in medium containing 2,4-dichlorophenoxyacetic acid, substantial reduction in β-glucuronidase activity was observed. Upon transferring the cells from a 2,4-D-containing medium to one devoid of 2,4-dichlorophenoxyacetic acid, enhanced expression of β-glucuronidase in somatic embryo development was recorded. Activation by gibberillic acid and suppression by abscisic acid of β-glucuronidase activities, in concord with embryogenesis, were also noted.  相似文献   

20.
Besides formate dehydrogenase N (FDH-N), which is involved in the major anaerobic respiratory pathway in the presence of nitrate, Escherichia coli synthesizes a second isoenzyme, called FDH-O, whose physiological role is to ensure rapid adaptation during a shift from aerobiosis to anaerobiosis. FDH-O is a membrane-bound enzyme complex composed of three subunits, α (FdoG), β (FdoH), and γ (FdoI), which exhibit high sequence similarity to the equivalent polypeptides of FDH-N. The topology of these three subunits has been studied by using blaM (β-lactamase) gene fusions. A collection of 47 different randomly generated Fdo-BlaM fusions, 4 site-specific fusions, and 3 sandwich fusions were isolated along the entire sequence of the three subunits. In contrast to previously reported predictions from sequence analysis, our data suggested that the αβ catalytic dimer is located in the cytoplasm, with a C-terminal anchor for β protruding into the periplasm. As expected, the γ subunit, which specifies cytochrome b, was shown to cross the cytoplasmic membrane four times, with the N and C termini exposed to the cytoplasm. Protease digestion studies of the 35S-labelled FDH-O heterotrimer in spheroplasts add further support to this model. Consistently, prior studies regarding the bioenergetic function of formate dehydrogenase provided evidence for a mechanism in which formate is oxidized in the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号