共查询到20条相似文献,搜索用时 15 毫秒
1.
In response to environmental stresses, cells need to activate an adaptive program to maximize cell progression and survival. Stress-activated protein kinases (SAPK) are key signal transduction kinases required to respond to stress. Prototypical members of SAPKs are the yeast Hog1 and mammalian p38. Upon stress, those enzymes play a critical role in mounting the adaptive responses to stress such as the regulation of metabolism and the control of gene expression. In addition, a major function of SAPKs in response to stress is to modulate cell cycle progression. In this review, we focus on the role of Hog1 and p38 in the control of cell cycle progression in response to environmental stresses. 相似文献
2.
3.
4.
5.
Regulation of apoptosis and cell cycle progression by MCL1. Differential role of proliferating cell nuclear antigen 总被引:6,自引:0,他引:6
MCL1 (ML1 myeloid cell leukemia 1), a Bcl-2 (B- cell lymphoma-leukemia 2) homologue, is known to function as an anti-apoptotic protein. Here we show in vitro and in vivo that MCL1 interacts with the cell cycle regulator, proliferating cell nuclear antigen (PCNA). This finding prompted us to investigate whether MCL1, in addition to its anti-apoptotic function, has an effect on cell cycle progression. A bromodeoxyuridine uptake assay showed that the overexpression of MCL1 significantly inhibited the cell cycle progression through the S-phase. The S-phase of the cell cycle is also known to be regulated by PCNA. A mutant of MCL1 that lacks PCNA binding (MCL1(Delta)(4A)) could not inhibit cell cycle progression as effectively as wild type MCL1. In contrast, MCL1(Delta)(4A) retained its anti-apoptotic function in HeLa cells when challenged by Etoposide. In addition, the intracellular localization of MCL1(Delta)(4A) was identical to that of wild type MCL1. An in vitro pull-down assay suggested that MCL1 is the only Bcl-2 family protein to interact with PCNA. In fact, MCL1, not other Bcl-2 family proteins, contained the PCNA-binding motif described previously. Taken together, MCL1 is a regulator of both apoptosis and cell cycle progression, and the cell cycle regulatory function of MCL1 is mediated through its interaction with PCNA. 相似文献
6.
Neha Chauhan Gongshe Han Niranjanakumari Somashekarappa Kenneth Gable Teresa Dunn Sepp D. Kohlwein 《The Journal of biological chemistry》2016,291(5):2524-2534
Sphingolipid (SL) biosynthesis is negatively regulated by the highly conserved endoplasmic reticulum-localized Orm family proteins. Defective SL synthesis in Saccharomyces cerevisiae leads to increased phosphorylation and inhibition of Orm proteins by the kinase Ypk1. Here we present evidence that the yeast morphogenesis checkpoint kinase, Swe1, regulates SL biosynthesis independent of the Ypk1 pathway. Deletion of the Swe1 kinase renders mutant cells sensitive to serine palmitoyltransferase inhibition due to impaired sphingoid long-chain base synthesis. Based on these data and previous results, we suggest that Swe1 kinase perceives alterations in SL homeostasis, activates SL synthesis, and may thus represent the missing regulatory link that controls the SL rheostat during the cell cycle. 相似文献
7.
The accumulation of unfolded proteins in the endoplasmic reticulum (ER) triggers the unfolded protein response (UPR), a stress signaling pathway. The UPR coordinates the induction of ER chaperones with decreased protein synthesis and growth arrest in G1 phase of the cell cycle. However, the molecular mechanism underlying UPR-induced G1 cell cycle arrest remains largely unknown. Here we report that activation of the UPR response by tunicamycin (TM), an ER stress inducer, leads to accumulation of p27 and G1 cell cycle arrest in melanoma cells. This accumulation of p27 is due to the inhibition on its polyubiquitination and subsequent degradation upon TM treatment. Correlated with p27 stabilization, the levels of Skp2, an E3 ligase for p27, are decreased in response to TM treatment. More importantly, knockdown of p27 greatly reduces TM-induced G1 cell cycle arrest. Taken together, these data implicate p27 as a critical mediator of ER stress-induced growth arrest. 相似文献
8.
In the budding yeast Saccharomyces cerevisiae, a cell cycle checkpoint coordinates mitosis with bud formation. Perturbations that transiently depolarize the actin cytoskeleton cause delays in bud formation, and a 'morphogenesis checkpoint' detects the actin perturbation and imposes a G2 delay through inhibition of the cyclin-dependent kinase, Cdc28p. The tyrosine kinase Swe1p, homologous to wee1 in fission yeast, is required for the checkpoint-mediated G2 delay. In this report, we show that Swe1p stability is regulated both during the normal cell cycle and in response to the checkpoint. Swe1p is stable during G1 and accumulates to a peak at the end of S phase or in early G2, when it becomes unstable and is degraded rapidly. Destabilization of Swe1p in G2 and M phase depends on the activity of Cdc28p in complexes with B-type cyclins. Several different perturbations of actin organization all prevent Swe1p degradation, leading to the persistence or further accumulation of Swe1p, and cell cycle delay in G2. 相似文献
9.
10.
《Cell cycle (Georgetown, Tex.)》2013,12(18):2856-2867
11.
12.
13.
14.
Nakamura K Sakaue H Nishizawa A Matsuki Y Gomi H Watanabe E Hiramatsua R Tamamori-Adachi M Kitajima S Noda T Ogawa W Kasuga M 《The Journal of biological chemistry》2008,283(25):17702-17711
PDK1 (3-phosphoinositide-dependent protein kinase 1) is a key mediator of signaling by phosphoinositide 3-kinase. To gain insight into the physiological importance of PDK1 in cell proliferation and cell cycle control, we established immortalized mouse embryonic fibroblasts (MEFs) from mice homozygous for a "floxed" allele of Pdk1 and from wild-type mice. Introduction of Cre recombinase by retrovirus-mediated gene transfer resulted in the depletion of PDK1 in Pdk1(lox/lox) MEFs but not in Pdk1(+/+) MEFs. The insulin-like growth factor-1-induced phosphorylation of various downstream effectors of PDK1, including Akt, glycogen synthase kinase 3, ribosomal protein S6, and p70 S6 kinase, was markedly inhibited in the PDK1-depleted (Pdk1-KO) MEFs. The rate of serum-induced cell proliferation was reduced; progression of the cell cycle from the G(0)-G(1) phase to the S phase was delayed, and cell cycle progression at G(2)-M phase was impaired in Pdk1-KO MEFs. These cells also manifested an increased level of p27(Kip1) expression and a reduced level of cyclin D1 expression during cell cycle progression. The defect in cell cycle progression from the G(0)-G(1) to the S phase in Pdk1-KO MEFs was rescued by forced expression of cyclin D1, whereas rescue of the defect in G(2)-M progression in these cells required both overexpression of cyclin D1 and depletion of p27(Kip1) by RNA interference. These data indicate that PDK1 plays an important role in cell proliferation and cell cycle progression by controlling the expression of both cyclin D1 and p27(Kip1). 相似文献
15.
Regulation of phosphoinositide levels by the phospholipid transfer protein Sec14p controls Cdc42p/p21-activated kinase-mediated cell cycle progression at cytokinesis 下载免费PDF全文
Sec14p is an essential phosphatidylcholine/phosphatidylinositol transfer protein with a well-described role in the regulation of Golgi apparatus-derived vesicular transport in yeast. Inactivation of the CDP-choline pathway for phosphatidylcholine synthesis allows cells to survive in the absence of Sec14p function through restoration of Golgi vesicular transport capability. In this study, Saccharomyces cerevisiae cells containing a SEC14 temperature-sensitive allele along with an inactivated CDP-choline pathway were transformed with a high-copy-number yeast genomic library. Genes whose increased expression inhibited cell growth in the absence of Sec14p function were identified. Increasing levels of the Rho GTPase Cdc42p and its direct effector kinases Cla4p and Ste20p prevented the growth of cells lacking Sec14p and CDP-choline pathway function. Growth suppression was accompanied by an increase in large and multiply budded cells. This effect on polarized cell growth did not appear to be due to an inability to establish cell polarity, since both the actin cytoskeleton and localization of the septin Cdc12p were unaffected by increased expression of Cdc42p, Cla4p, or Ste20p. Nuclei were present in both the mother cell and the emerging bud, consistent with Sec14p regulation of the cell cycle subsequent to anaphase but prior to cytokinesis/septum breakdown. Increased expression of phosphatidylinositol 4-kinases and phosphatidylinositol 4-phosphate 5-kinase prevented growth arrest by CDC42, CLA4, or STE20 upon inactivation of Sec14p function. Sec14p regulation of phosphoinositide levels affects cytokinesis at the level of the Cdc42p/Cla4p/Ste20p signaling cascade. 相似文献
16.
McMillan JN Theesfeld CL Harrison JC Bardes ES Lew DJ 《Molecular biology of the cell》2002,13(10):3560-3575
Swe1p, the sole Wee1-family kinase in Saccharomyces cerevisiae, is synthesized during late G1 and is then degraded as cells proceed through the cell cycle. However, Swe1p degradation is halted by the morphogenesis checkpoint, which responds to insults that perturb bud formation. The Swe1p stabilization promotes cell cycle arrest through Swe1p-mediated inhibitory phosphorylation of Cdc28p until the cells can recover from the perturbation and resume bud formation. Swe1p degradation involves the relocalization of Swe1p from the nucleus to the mother-bud neck, and neck targeting requires the Swe1p-interacting protein Hsl7p. In addition, Swe1p degradation is stimulated by its substrate, cyclin/Cdc28p, and Swe1p is thought to be a target of the ubiquitin ligase SCF(Met30) acting with the ubiquitin-conjugating enzyme Cdc34p. The basis for regulation of Swe1p degradation by the morphogenesis checkpoint remains unclear, and in order to elucidate that regulation we have dissected the Swe1p degradation pathway in more detail, yielding several novel findings. First, we show here that Met30p (and by implication SCF(Met30)) is not, in fact, required for Swe1p degradation. Second, cyclin/Cdc28p does not influence Swe1p neck targeting, but can directly phosphorylate Swe1p, suggesting that it acts downstream of neck targeting in the Swe1p degradation pathway. Third, a screen for functional but nondegradable mutants of SWE1 identified two small regions of Swe1p that are key to its degradation. One of these regions mediates interaction of Swe1p with Hsl7p, showing that the Swe1p-Hsl7p interaction is critical for Swe1p neck targeting and degradation. The other region did not appear to affect interactions with known Swe1p regulators, suggesting that other as-yet-unknown regulators exist. 相似文献
17.
Regulation of cell cycle re-entry by growth, survival and stress signalling pathways 总被引:7,自引:0,他引:7
Cook SJ Balmanno K Garner A Millar T Taverner C Todd D 《Biochemical Society transactions》2000,28(2):233-240
The mitogen-activated and stress-activated protein kinases transduce signals from plasma membrane signalling machinery into the nucleus to modulate gene expression. By regulating the genomic response to environmental cues (growth factors, stresses) these pathways determine whether a cell re-enters the cell cycle, undergoes cell cycle arrest, senescence or apoptosis. We are particularly interested in how these pathways integrate with each other, and interact with the cell cycle machinery to achieve these discrete biological responses. 相似文献
18.
19.
Robert L. Sutherland Christine S.L. Lee Romy S. Feldman Elizabeth A. Musgrove 《The Journal of steroid biochemistry and molecular biology》1992,41(3-8):315-321
The control of human breast cancer cell proliferation in vitro is known to involve complex interactions between steroid hormones, peptide hormones and growth factors. Little is known, however, of the mechanisms by which these factors, alone or in combination, control cell cycle progression and the expression of specific genes involved in cell cycle control. A pre-requisite for such studies is a cellular system in which non-proliferating or slowly proliferating cells can be maintained in a defined environment and stimulated to progress through the cell cycle by addition of hormones and growth factors. Such a system has been developed for T-47D human breast cancer cells: quiescent or slowly proliferating cells maintained in a serum-free medium can be stimulated to increase their rate of cell cycle progression upon a single addition of insulin, IGF-I, EGF, TGF or bFGF. Oestradiol alone was ineffective but caused a significant increase in % S phase cells when added in the presence of insulin. Progestins, in the presence or absence of insulin, had a biphasic effect with an initial increase in cell cycle progression followed by cell cycle arrest. Both antioestrogens and the antiprogestin, RU 486, in the absence of oestrogen or progestin, were potent inhibitors of insulin-induced proliferation. Increases in cell cycle progression were invariably accompanied by acute increases in c-fos and c-myc mRNA levels. Induction of c-myc by oestrogen and 3rogestin was inhibited by antioestrogens and RU 486, respectively. These data illustrate that the culture of breast cancer cells in a serum-free, chemically defined environment provides an excellent model in which to define the role of individual factors involved in breast cancer growth control. The biological data derived from this system provide a basis for identifying and characterizing genes involved in the control of cell cycle progression in human breast cancer. 相似文献