首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The partitioning behaviour of a drug (capsaicin)-responsive NADH oxidase (tNOX) activity released from HeLa ceIls by low pH treatment followed by heat and proteinase K was determined. When partitioned in a standard 6.4% PEG 3350/6.4% dextran T-500 two-phase system, the bulk of the tNOX activity was in the dextran-rich lower phase. The activity was inhibited by and bound to the triazine dye, Cibacron blue. Affinity partition, where the Cibacron blue was coupled to amino PEG 5000 and added to the first two-phase separation step, resulted in the partitioning of activity to the upper PEG phase. A second partition with PEG-salts resulted in the release of the tNOX from the Cibacron blue–amino PEG enriched phase into the salt-enriched lower phase. The phase-purified protein exhibited anomalous behavior and tended to multimerize in sodium dodecyl sulphate (SDS) prior to SDS-polyacrylamide gel electrophoresis (PAGE). Multimerization appeared to be enhanced by PEG. The multimerization was enhanced with the reduced protein in the presence of detergent prior to SDS–PAGE. In addition, the activity was precipitated by PEG 8000 at concentrations between 6 and 30% by weight. In the presence of or after exposure to PEG 3350 or PEG 8000, the protein could not be detected by Western blot analysis after SDS–PAGE suggesting that the protein failed to enter the gel even though other HeLa cell surface proteins were unaffected. The anomalous multimerization behavior has thus far precluded the use of phase partition as a practical purification step for the oxidase.  相似文献   

2.
Cell-surface-located, drug-responsive and tumor-associated NADH oxidase (tNOX) proteins were purified and characterized from HeLa cells. The proteins isolated exhibited NADH oxidase activity inhibited by capsaicin and were resistant to heating and to protease digestion. The activity was purified 200- to 500-fold to provide apparently homogeneous gel bands for N-terminal sequencing using three different protocols. All three protocols involved heat (50 degrees C) and proteinase K treatment. Recovery of the total NADH oxidase activity was 86% and inhibition by capsaicin was 60 to 80%. After 450-fold purification, a 52-kDa component was obtained as a single gel band that retained the capsaicin-inhibited NADH oxidase activity. Amino acid composition and partial amino acid sequences were obtained. The partial amino acid sequences were used to generate peptide antisera. Both the peptide antisera and polyclonal antisera to the 52-kDa component immunoprecipitated capsaicin-inhibited NADH oxidase activity and reacted with 52-, 34-, and 17-kDa components on Western blots from different steps of the purification. The tNOX protein exhibited immunological cross-reactivity and amino acid sequence identity with tNOX cloned from a HeLa cDNA library using a monoclonal antibody to tNOX from sera of cancer patients. The results provide a direct sequence link between tNOX of the HeLa cell surface and the cloned tNOX representative of patient sera. The tNOX form from the surface of HeLa cells yielded N-terminal sequence consistent with a coidentity of the cell surface and serum forms of the two activities.  相似文献   

3.
This report describes a novel ECTO-NOX protein with an oscillating activity having a period length of ca. 26 min encountered with buffy coat fractions and sera of aged individuals (70–100 years) that generates superoxide as measured by the reduction of ferricytochrome c. The oscillating, age-related reduction of ferricytochrome c is sensitive to superoxide dismutase, is inhibited by coenzyme Q and is reduced or absent from sera of younger individuals (20–40 years). An oscillating activity with a regular period length is a defining characteristic of ECTO-NOX proteins (a group of cell surface oxidases with enzymatic activities that oscillate). The period length of ca. 26 min is longer than the period length of 24 min for the usual constitutive (CNOX) ECTO-NOX proteins of the cell surface and sera which neither generate superoxide nor reduce ferricytochrome c. The aging-related ECTO-NOX protein (arNOX) provides a mechanism to transmit cell surface oxidative changes to surrounding cells and circulating lipoproteins potentially important to atherogenesis. Additionally, the findings provide a rational basis for the use of dietary coenzyme Q to retard aging-related arterial lesions.  相似文献   

4.
Currently there is only a modest level knowledge of the glycosylation status of immortalised cell lines that are commonly used in cancer biology as well as their binding affinities to different glycan structures. Through use of glycan and lectin microarray technology, this study has endeavoured to define the different bindings of cell surface carbohydrate structures to glycan-binding lectins. The screening of breast cancer MDA-MB435 cells, cervical cancer HeLa cells and colon cancer Caco-2, HCT116 and HCT116-FM6 cells was conducted to determine their differential bindings to a variety of glycan and lectin structures printed on the array slides. An inverse relationship between the number of glycan structures recognised and the variety of cell surface glycosylation was observed. Of the cell lines tested, it was found that four bound to sialylated structures in initial screening. Secondary screening in the presence of a neuraminidase inhibitor (4-deoxy-4-guanidino-Neu5Ac2en) significantly reduced sialic acid binding. The array technology has proven to be useful in determining the glycosylation signatures of various cell-lines as well as their glycan binding preferences. The findings of this study provide the groundwork for further investigation into the numerous glycan-lectin interactions that are exhibited by immortalised cell lines.  相似文献   

5.
The ultrastructural localization of NADH oxidase, a possible enzyme in the increased oxidative activity of polymorphonuclear leukocytes (PMN) during phagocytosis, was studied. A new cytochemical technique for the localization of H2O2, a product of NADH oxidase activity, was developed. Cerous ions, in the presence of peroxide, form an electron-dense precipitate. Resting and phagocytically stimulated PMN were exposed to cerous ions at pH 7.5 to demonstrate sites of NADH-dependent, cyanide-insensitive H2O2 production. Resting PMN exhibites slight activity on the plasma membrane; phagocytizing PMN had extensive deposits of reaction product localized within the phagosome and on the plasma membrane. Peroxide involvement was demonstrated by the inhibitory effect of catalase on cerium precipitation; the surface localization of the enzyme responsible was confirmed by using nonpenetrating inhibitors of enzymatic activity. A correlative study was performed with an NADH-dependent, tetrazolium-reduction system. As with cerium, formazan deposition on the surface of the cell was NADH dependent, cyanide insensitive, and stimulated by phagocytosis. Superoxide dismutase did not inhibit tetrazolium reduction, as observed cytochemically, indicating direct enzymatic dye reduction without superoxide interposition. These findings, combined with oxygen consumption studies on resting and stimulated PMN in the presence or absence of NADH, indicate that NADH oxidase is a surface enzyme in human PMN. It is internalized during phagocytosis and retains its peroxide-generating capacity within the phagocytic vacuole.  相似文献   

6.
NADH oxidase in blue-green algae   总被引:8,自引:0,他引:8  
  相似文献   

7.
The FAD-containing NADH oxidase from Streptococcus faecalis 10C1, which catalyzes the four-electron reduction of O2----2H2O, has been purified by an improved procedure for analyses of its structural and redox properties. The enzyme is apparently a dimer of two identical subunits, each containing 1 mol of FAD. Dithionite reduction of the enzyme proceeds in two distinct phases corresponding to approximately 0.5 and 1.1 eq/FAD, respectively. Thiol assays of the NADH oxidase, reduced anaerobically with 1 eq of NADH/FAD prior to denaturation, are consistent with the presence of a single redox-active cysteinyl residue/subunit. Analysis of the cysteinyl peptides of the oxidase, identified in tryptic digests of the enzyme labeled metabolically with [35S]cysteine, reveals a sequence which is closely related to the redox-active cysteinyl peptide sequence recently determined for the streptococcal flavoprotein NADH peroxidase. A second cysteinyl peptide sequence, when aligned with residues 3-17 of the peroxidase NH2-terminal sequence, reveals identity in 7 of 15 positions and satisfies several of the criteria described for ADP-binding structures. Additional probes of the structural and redox properties of the NADH oxidase, including visible circular dichroism spectroscopy and sensitivity to inactivation by hydrogen peroxide, provide further evidence for a fundamental structural connection between flavin-dependent NADH oxidase and peroxidase functions.  相似文献   

8.
Neutral surface aminopeptidase activity of human tumor cell lines   总被引:1,自引:0,他引:1  
Seven human tumor cell lines were studied for their neutral surface aminopeptidase (AP) activity. The activity was shown to exist on all cell lines to varying degrees. The neutral AP activity of the cell lines had similar Km values and were affected by the same inhibitors as those reported for AP's of peripheral blood lymphocytes (PBL, Refs. 1 and 2). However, a difference was seen in the Vmax values of the various cell lines. These values were shown to correlate (r = 0.767, P less than 0.05) with cell surface area.  相似文献   

9.
《Cell differentiation》1985,16(1):13-20
Three monoclonal antibodies 5.1.H, 8.7.D and 13.7.A raised against semi-purified Tera 1 membrane fractions recognize distinct onco-foetal antigens which are developmentally regulated on cells such as Tera 2 clone 13 and appear to be restricted in their expression to undifferentiated ectoblastic cells and certain organized cystic structures mimicking the foetal intestine. These antigens, absent from normal adult tissues, differ markedly from glycosidic stage-specific antigens such as 75.12 which, while functioning as embryonal carcinoma differentiation markers, are also expressed on certain adult tissues. No evidence for a role of fucosyltransferases in regulating either 75.12 or SSEA-1 antigen expression on embryonal carcinoma cells or for the presence of lectin-like structures recognizing these antigens on such cells was found.  相似文献   

10.
An NADH oxidase activity of animal and plant plasma membrane is described that is stimulated by hormones and growth factors. In plasma membranes of cancer cells and tissues, the activity appears to be constitutively activated and no longer hormone responsive. With drugs that inhibit the activity, cells are unable to grow although growth inhibition may be more related to a failure of the cells to enlarge than to a direct inhibition of mitosis. The hormone-stimulated activity in plasma membranes of plants and the constitutively activated NADH oxidase in tumor cell plasma membranes is inhibited by thiol reagents whereas the basal activity is not. These findings point to a thiol involvement in the action of the activated form of the oxidase. NADH oxidase oxidation by Golgi apparatus of rat liver is inhibited by brefeldin A plus GDP. Brefeldin A is a macrolide antibiotic inhibitor of membrane trafficking. A model is presented where the NADH oxidase functions as a thiol-disulfide oxidoreductase activity involved in the formation and breakage of disulfide bonds. The thiol-disulfide interchange is postulated as being associated with physical membrane displacement as encountered in cell enlargement or in vesicle budding. The model, although speculative, does provide a basis for further experimentation to probe a potential function for this enzyme system which, under certain conditions, exhibits a hormone- and growth factor-stimulated oxidation of NADH.  相似文献   

11.
Our laboratories have described a novel class of ectoproteins at the cell surface with both NADH or hydroquinone oxidase (NOX) and protein disulfide-thiol interchange activities (ECTO-NOX proteins). The two activities exhibited by these proteins alternate to generate characteristic patterns of oscillations where the period length is independent of temperature. The period length for the constitutive ECTO-NOX is 24 min. Here we describe a distinctive age-related ECTO-NOX (arNOX) whose activity is blocked by coenzyme Q10. arNOX occurs exclusively in aged cells and tissues. The period length of the oscillations is 26 min. Rather than reducing 1/2 O2 to H2O, electrons are transferred to O2 to form superoxide. Superoxide formation was demonstrated by superoxide dismutase-sensitive reduction of ferricytochrome c and by reduction of a superoxide-specific tetrazolium salt. Quinone inhibition was given by coenzymes Q8, 9 and Q10 but not by Q0, Q2, Q4, Q6 or 7. The arNOX provides a mechanism to propagate reactive oxygen species generated at the cell surface to surrounding cells and circulating lipoproteins of importance to atherogenesis. Inhibition of arNOX by dietary coenzyme Q10 provides a rational basis for dietary coenzyme 10 use to retard aging-related arterial lesions.  相似文献   

12.
We have described a drug-responsive form of a cell surface NADH oxidase (hydroquinone oxidase) of cancer cells (tNOX) that exhibits unusual characteristics including resistance to proteases, resistance to cyanogen bromide digestion, and an ability to form amyloid filaments closely resembling those of spongiform encephalopathies and all of which are characteristics of PrP(sc) (PrP(res)), the presumed infective and proteinase K resistant particle of the scrapie prion. The tNOX protein from the HeLa cell surface copurified with authentic glyceraldehyde-3-phosphate dehydrogenase (muscle form) (GAPDH). Surprisingly, the tNOX-associated muscle GAPDH also was proteinase K resistant. In this paper, we show that combination of authentic rabbit muscle GAPDH with tNOX renders the GAPDH resistant to proteinase K digestion. This property, that of converting the normal form of a protein into a likeness of itself, is one of the defining characteristics of the group of proteins designated as prions.  相似文献   

13.
14.
We have previously reported the use of monoclonal antibodies to identify a 140-kD cell surface glycoprotein in mammalian cells that is specifically involved in fibronectin-mediated cell adhesion. We now report the purification of this molecule using immunoaffinity chromatography and the subsequent generation of polyclonal antibodies that selectively immunoprecipitate 140-kD putative fibronectin receptor glycoprotein (gp140) extracted from rodent or human cells; these antibodies also specifically block fibronectin-mediated cell adhesion but not adhesion mediated by other factors in serum. Expression of gp140-like molecules was detected on the surfaces of several adherent human cell lines (HDF, WISH, and EFC) but not on erythrocytes; however, gp140 was also detected on a nonadherent human lymphoid line (DAUDI). Analysis of gp140 on nonreducing SDS gels revealed two closely migrating bands. Protease digestion and peptide mapping suggests that the two bands are closely related polypeptides.  相似文献   

15.
Four cell lines of tomato, Lycopersicon esculentum Mill. cv VFNT-Cherry, were selected for their ability to grow in the presence of up to 6 millimolar CdCl2. The intracellular Cd concentration in these cells was at least 2.3 times higher than in the medium. Growth in media containing higher concentrations of Cd was accompanied by increased production of Cd-binding phytochelatins and a trend toward accumulation of higher molecular weight phytochelatins. At least 90% of the Cd in the most tolerant cells was associated with Cd-phytochelatin complexes. Cell lines maintained an increased tolerance of Cd in the absence of continuous selection pressure.  相似文献   

16.
Nicotinamide adenine dinucleotide (NADH) oxidase from Streptococcus pyogenes (SpNox) is a flavoprotein harboring one molecule of noncovalently bound flavin adenine dinucleotide. It catalyzes the oxidation of NADH by reducing molecular O2 to H2O directly through a four-electron reduction. In this study, we selected the lysine residues on the surface of SpNox and mutated them into arginine residues to study the effect on the enzyme activity. A single-point mutation (K184R) at the surface of SpNox enhanced NADH oxidase activity by approximately 50 % and improved thermostability with 46.6 % longer half life at 30 °C. Further insights into the function of residue K184 were obtained by substituting it with other nonpolar, polar, positively charged, and negatively charged residues. To elucidate the role of this residue, computer-assisted molecular modeling and substrate docking were performed. The results demonstrate that even a single mutation at the surface of the enzyme induces changes in the interaction at the active site and affects the activity and stability. Additionally, the data also suggest that the K184R mutant can be used as an effective biocatalyst for NAD+ regeneration in l-rare sugar production.  相似文献   

17.
18.
19.
The ultrastructural localization of D-amino acid oxidase (DAO) was studied cytochemically by detecting sites of hydrogen peroxide production in human polymorphonuclear leukocytes (PMNs). Reaction product, which forms when cerous ions react with H2O2 to form an electron-dense precipitate, was demonstrated on the cell surface and within the phagosomes of phagocytically stimulated cells when D-amino acids were provided as substrate. Resting cells showed only slight activity. The competitive inhibitor D,L-2-hydroxybutyrate greatly reduced the D-amino acid-stimulated reaction while KCN did not. The cell surface reaction was abolished by nonpenetrating inhibitors of enzyme activity while that within the phagosome was not eliminated. Dense accumulations of reaction product were formed in cells which phagocytosed Staphylococcus aureus in the absence of exogenous substrate. No reaction product formed with Proteus vulgaris while an intermediate amount formed when Escherichia coli were phagocytosed. Variation in the amount of reaction product with the different bacteria correlated with the levels of D-amino acids in the bacterial cell walls which are available for the DAO of PMNs. An alternative approach utilizing ferricyanide as an electron acceptor was also used. This technique verified the results obtained with the cerium reaction, i.e., the DAO is located in the cell surface and is internalized during phagocytosis and is capable of H2O2 production within the phagosome. The present finding that DAO is localized on the cell surface further supports the concept that the plasma membrane is involved in peroxide formation in PMNs.  相似文献   

20.
Three cell surface protein-specific methods were used to radiolabel the major glycoproteins of four human bladder carcinoma cell lines: The well-differentiated lines RT112 and TR4 and more anaplastic lines T24 and EJ. Five acidic glycoproteins iodinated in all lines by the lactoperoxidase/125I method were designated CP-175/5.8-6.0 (apparent molecular weight X 10(-3)/pl of iodoprotein), GP-155/5.0-5.3, GP-145/4.9-5.2, GP-130/4.8-5.5 and GP-110/4.9-5.3. Another iodinated glycoprotein, GP-200/5.5-6.0, was prominently labelled in RT112 and RT4 but was not detected in T24 or EJ. GP-200 as well as GP-175, GP-155 and GP-145 were not detected by the galactose oxidase/NaB(3H)4 method and were poorly labelled by the neuraminidase-galactose oxidase/NaB(3H)4 and NaIO4/NaB(3H)4 labelling methods. The major sialogalactoproteins identified in the four lines by the neuraminidase-galactose oxidase/NaB(3H)4 and NaIO4/NaB(3H)4 methods were GP-130, and a duplet of GP-90 and GP-80 which were poorly iodinated by lactoperoxidase/125I. The galactose oxidase/NaB(3H)4 reaction was increased by between 4- and 10-fold and many additional glycoproteins were labelled after neuraminidase treatment, indicating that the cell surface galactose and N-acetylgalactosamine residues of glycoproteins are highly sialylated. In cell lines RT112 and RT4 there was prominent labelling of very high molecular weight sialogalactoconjugates that was not present in extracts of T24 and EJ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号