首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iodinated thyroglobulin stored in the thyroid follicular lumen is subjected to an internalization process and thought to be transferred into the lysosomal compartment for proteolytic cleavage and thyroid hormone release. In the present study, we have designed in vitro models to study: 1) the transfer of endocytosed thyroglobulin into lysosomes, and 2) the intracellular fate of free thyroid hormones and iodinated precursors generated by intralysosomal proteolysis of thyroglobulin. Open follicles prepared from pig thyroid tissue by collagenase treatment were used to probe the delivery of exogenous thyroglobulin to lysosomes via the differentiated apical cell membrane. Open follicles were incubated with pure [125I]thyroglobulin with or without unlabeled thyroglobulin in the presence or in the absence of chloroquine. Subcellular fractionation on a Percoll gradient showed that [125I]thyroglobulin was internalized and present in low (for the major part) and high density thyroid vesicles. In chloroquine-treated open follicles, we observed the appearance of a definite fraction of [125I]thyroglobulin in a lysosome subpopulation having the expected properties of phagolysosomes or secondary lysosomes. In contrast, in control open follicles, the amount of [125I]thyroglobulin or degradation products found in high density vesicles was lower and associated with the bulk of lysosomes, i.e., primary lysosomes. The content in thyroglobulin and degradation products of lysosomes at steady-state was analyzed by Western blot using polyclonal anti-pig thyroglobulin antibodies. Under reducing conditions, immunoreactive thyroglobulin species correspond to polypeptides with molecular weights ranging from 130,000 to less than 20,000. The presence of free thyroid hormones and iodotyrosines inside lysosomes and their intracellular fate was studied in dispersed thyroid cells labeled with [125I]iodide. Neo-iodinated [125I]thyroglobulin gave rise to free [125I]T4 which was secreted into the medium. In addition to released [125I]T4, a fraction of free [125I]T4 was identified inside the cells. Lysosomes isolated from dispersed thyroid cells did not contain significant amounts of free [125I]T4. The free intracellular [125I]T4 fraction seems to represent an intermediate 'hormonal pool' between thyroglobulin-bound T4 and secreted T4. Evidence for such a precursor-product relationship was obtained from pulse-chase experiments. In conclusion: 1) open thyroid follicles have the ability to internalize thyroglobulin by a mechanism of limited capacity and to address the endocytosed ligand to lysosomes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Lysosomes are membrane-bound organelles responsible for the transport and degradation of intracellular and extracellular cargo. The intracellular motion of lysosomes is both diffusive and active, mediated by motor proteins moving lysosomes along microtubules. We sought to determine how lysosome diameter influences lysosome transport. We used osmotic swelling to double the diameter of lysosomes, creating a population of enlarged lysosomes. This allowed us to directly examine the intracellular transport of the same organelle as a function of diameter. Lysosome transport was measured using live cell fluorescence microscopy and single particle tracking. We find, as expected, the diffusive component of intracellular transport is decreased proportional to the increased lysosome diameter. Active transport of the enlarged lysosomes is not affected by the increased lysosome diameter.  相似文献   

3.
Lysosomes are dynamic organelles, which can fuse with a variety of targets and undergo constant regeneration. They can move along microtubules in a retrograde and anterograde fashion by using motor proteins, kinesin and dynein, being main players in extracellular secretion, intracellular components degradation and recycling. Moreover, lysosomes interact with other intracellular organelles to regulate their turnover, such as ER, mitochondria and peroxisomes.The correct localization of lysosomes is relevant in several physiological processes, including appropriate antigen presentation, neurotransmission and receptors modulation in neuronal synapsis, whereas hepatic lysosomes and autophagy are master regulators of nutrient homeostasis.Alterations in lysosome function due to mutation of genes encoding lysosomal proteins, soluble hydrolases as well as membrane proteins, lead to lysosomal storage diseases (LSDs). Lysosomes containing undegraded substrates are finally stacked and therefore miss positioned inside the cell, leading to lysosomal dysfunction, which impacts a wide range of cellular functions.  相似文献   

4.
Lysosomes play a central role in the degradation of extracellular and intracellular macromolecules. These organelles contain hydrolytic enzymes capable of degrading proteins, proteoglycans, nucleic acids, and lipids. The mechanisms involved in the delivery of such intracellular compounds to the lysosome have been characterized in several recent studies. The sequestration of intracellular macromolecules for intralysosomal degradation can occur by crinophagy, hsc73-mediated carrier transport, or autophagy. The major route of delivery of cellular proteins and RNA into lysosomes is by autophagy. Furthermore, autophagy is regulated by nutrients and hormones, thus allowing the cell to adjust its degradative state to environmental changes.  相似文献   

5.
6.
Lysosomes are highly acidic cellular organelles traditionally viewed as sacs of enzymes involved in digesting extracellular or intracellular macromolecules for the regeneration of basic building blocks, cellular housekeeping, or pathogen degradation. Bound by a single lipid bilayer, lysosomes receive their substrates by fusing with endosomes or autophagosomes, or through specialized translocation mechanisms such as chaperone-mediated autophagy or microautophagy. Lysosomes degrade their substrates using up to 60 different soluble hydrolases and release their products either to the cytosol through poorly defined exporting and efflux mechanisms or to the extracellular space by fusing with the plasma membrane. However, it is becoming evident that the role of the lysosome in nutrient homeostasis goes beyond the disposal of waste or the recycling of building blocks. The lysosome is emerging as a signaling hub that can integrate and relay external and internal nutritional information to promote cellular and organismal homeostasis, as well as a major contributor to the processing of energy-dense molecules like glycogen and triglycerides. Here we describe the current knowledge of the nutrient signaling pathways governing lysosomal function, the role of the lysosome in nutrient mobilization, and how lysosomes signal other organelles, distant tissues, and even themselves to ensure energy homeostasis in spite of fluctuations in energy intake. At the same time, we highlight the value of genomics approaches to the past and future discoveries of how the lysosome simultaneously executes and controls cellular homeostasis.  相似文献   

7.
Lysosomes are organelles specialised for their role in intracellular protein degradation. A small number of cell types also use their lysosomes as regulated secretory organelles. These secretory lysosomes package additional secretory products, respond to extracellular stimuli and fuse with the plasma membrane to release their contents. Recent research has identified unique components of the secretory machinery in these cells. However, studies on conventional lysosomes in non-secretory cells reveal that even their lysosomes can fuse with the plasma membrane in response to membrane damage. What then is special about secretory lysosomes?  相似文献   

8.
Lysosomes: fusion and function   总被引:7,自引:0,他引:7  
Lysosomes are dynamic organelles that receive and degrade macromolecules from the secretory, endocytic, autophagic and phagocytic membrane-trafficking pathways. Live-cell imaging has shown that fusion with lysosomes occurs by both transient and full fusion events, and yeast genetics and mammalian cell-free systems have identified much of the protein machinery that coordinates these fusion events. Many pathogens that hijack the endocytic pathways to enter cells have evolved mechanisms to avoid being degraded by the lysosome. However, the function of lysosomes is not restricted to protein degradation: they also fuse with the plasma membrane during cell injury, as well as having more specialized secretory functions in some cell types.  相似文献   

9.
Lysosomes contain abundant ATP, which is released through lysosomal exocytosis following exposure to various stimuli. However, the molecular mechanisms underlying lysosomal ATP accumulation remain unknown. The vesicular nucleotide transporter, also known as solute carrier family 17 member 9 (SLC17A9), has been shown to function in ATP transport across secretory vesicles/granules membrane in adrenal chromaffin cells, T cells, and pancreatic cells. Here, using mammalian cell lines, we report that SLC17A9 is highly enriched in lysosomes and functions as an ATP transporter in those organelles. SLC17A9 deficiency reduced lysosome ATP accumulation and compromised lysosome function, resulting in cell death. Our data suggest that SLC17A9 activity mediates lysosomal ATP accumulation and plays an important role in lysosomal physiology and cell viability.  相似文献   

10.
uPARAP/endo180 directs lysosomal delivery and degradation of collagen IV   总被引:4,自引:0,他引:4  
Collagen turnover is crucial for tissue homeostasis and remodeling and pathological processes such as cancer invasion, but the underlying molecular mechanisms are poorly understood. A major pathway appears to be internalization and degradation by fibroblasts. We now show that the endocytic transmembrane glycoprotein urokinase plasminogen activator receptor-associated protein (uPARAP/endo180) directs collagen IV for lysosomal delivery and degradation. In wild-type fibroblasts, fluorescently labeled collagen IV was first internalized into vesicular structures with diffuse fluorescence eventually appearing uniformly within the wild-type cells after longer incubation times. In these cells, some collagen-containing vesicles were identified as lysosomes by staining for LAMP-1. In contrast, collagen IV remained extracellular and associated with fiber-like structures on uPARAP/endo180-deficient fibroblasts. Blocking lysosomal cysteine proteases with the inhibitor E64d resulted in strong accumulation of collagen IV in lysosomes in wild-type cells, but only very weak intracellular fluorescence accumulation in uPARAP/endo180-deficient fibroblasts. We conclude that uPARAP/endo180 is critical for targeted delivery of collagen IV to lysosomes for degradation implicating the receptor in normal and malignant extracellular matrix degradation. A similar localization pattern was observed for collagen V, suggesting that uPARAP/endo180 might be generally involved in collagen degradation.  相似文献   

11.
《Biophysical journal》2022,121(7):1205-1218
Lysosomes are membrane-bound organelles that serve as the endpoint for endocytosis, phagocytosis, and autophagy, degrading the molecules, pathogens, and organelles localized within them. These cellular functions require intracellular transport. We use fluorescence microscopy to characterize the motion of lysosomes as a function of intracellular region, perinuclear or periphery, and lysosome diameter. Single-particle tracking data are complemented by changepoint identification and analysis of a mathematical model for state switching. We first classify lysosomal motion as motile or stationary. We then study how lysosome location and diameter affects the proportion of time spent in each state and quantify the speed during motile periods. We find that the proportion of time spent stationary is strongly region dependent, with significantly decreased motility in the perinuclear region. Increased lysosome diameter only slightly decreases speed. Overall, these results demonstrate the importance of decomposing particle trajectories into qualitatively different behaviors before conducting population-wide statistical analysis. Our results suggest that intracellular region is an important factor to consider in studies of intracellular transport.  相似文献   

12.
Summary Changes in the lysosome structures were examined by electron microscopy during the formation of zoospores inTrebouxia potteri. Lysosomes in vegetative cells were homogeneously filled with electron-dense material. At the beginning of zoospore formation, lysosomes invaginated or evaginated to take up mitochondria, ER, or cytoplasmic ground plasma. The ingested organelles became disorganized within the lysosomes. During this disruption of these organelles, the lysosomal contents became heterogeneous, suggesting a decrease in the amount of enzymes within the lysosomes. Golgi bodies and ER seemed to be involved with the disruption of the organelles, probably supplying some substances necessary for the functioning of the lysosomes. Amount of electron-dense materials decreased and, finally, only one to three small spherical aggregates remained in the lysosomes. Then the lysosomes appeared to shrink via loss of watery substances or cutting off of electron-transparent regions. After these changes in lysosome structure, nuclei started to divide successively for formation of the zoospores. The possibility is proposed that the drastic cytoplasmic changes operated by lysosomes trigger the following morphogenetic events in the formation of zoospores.Abbreviations ER endoplasmic reticulum - TGN trans Golgi network  相似文献   

13.
Autophagy is an evolutionarily conserved lysosome-based degradation process.Atg5 plays a very important role in autophagosome formation.Here we show that Atg5 is required for biogenesis of late endosomes and lysosomes in an autophagy-independent manner.In Atg5 cells,but not in other essential autophagy genes defecting cells,recycling and retrieval of late endosomal components from hybrid organelles are impaired,causing persistent hybrid organelles and defective formation of late endosomes and lysosomes.Defective retrieval of late endosomal components from hybrid organelles resulting from impaired recruitment of a component of V1-ATPase to acidic organelles blocks the pH-dependent retrieval of late endosomal components from hybrid organelles.Lowering the intracellular pH restores late endosome/lysosome biogenesis in Atg5 cells.Our data demonstrate an unexpected role of Atg5 and shed new light on late endosome and lysosome biogenesis.  相似文献   

14.
Rat bone marrow stromal cells were cultured in vitro. At days 14-15 of culture, dense clusters of polygonal cells were formed, and they mineralized 2-3 days later. The cells resembling osteoblasts or young osteocytes were histologically observed to be embedded in mineralized or unmineralized extracellular matrices of the nodules. Next, these mineralized nodules were electron-microscopically examined. The osteoblastic cells associated with the nodules had a well-developed rough endoplasmic reticulum, an evident Golgi apparatus and some mitochondria as their intracellular organellae. Some lysosomes and microfilaments were also visible in the cytoplasms. Moreover, some cells protruded cell processes toward the neighboring cells through the extracellular matrix. The extracellular matrix consisted of numerous collagen fibrils which were striated with 60-70 nm axial periodicity and which was similar to bone tissue collagen. A large number of matrix vesicles were scattered among the collagen fibrils in the unmineralized area of the nodules. In contrast, in the mineralized area, numerous matrix vesicles at different stages of maturation and many calcified spherules were observed. That is the mineralization in this culture system was considered to be initiated in association with the matrix vesicles and to progress along the collagen fibrils. From these findings, it was confirmed by the present study that the mineralized nodules formed in this bone marrow stromal cell culture were ultrastructurally similar to bone and that the mineralization also proceeded by going through the normal calcification process. This culture system is considered to be available to study osteogenic differentiation and calcification mechanisms.  相似文献   

15.
The intracellular transport and degradation of asialoorosomucoid (AOM) in isolated rat hepatocytes was studied by means of subcellular fractionation in Nycodenz gradients. The asialoglycoprotein was labelled by covalent attachment of a radioiodinated tyramine-cellobiose adduct ( [125I]TC) which leads to labelled degradation products being trapped intracellularly and thus serving as markers for the degradative organelles. The ligand was initially (1 min) in a slowly sedimenting (small) vesicle and subsequently in larger endosomes. Acid-soluble, radioactive degradation products were first found in a relatively light lysosome whose distribution coincided in the gradient with that of the larger endosome. Later (30 min) degradation products were found in denser lysosomes which banded in the same region of the gradient as the lysosomal enzyme, beta-acetylglucosaminidase. Colchicine, monensin and leupeptin all inhibited degradation of [125I]tyramine-cellobiose asialoorosomucoid ( [125I]TC-AOM) and reduced the formation of degradation products in both the light and the dense lysosomes. In presence of monensin and colchicine no undegraded ligand was seen in the dense lysosome, suggesting that uptake in these vesicles was inhibited. Leupeptin allowed accumulation of undegraded ligand in the dense lysosome. Therefore, transfer from light to dense lysosomes is not dependent on degradation as such. In the presence of monensin two peaks of undegraded ligand were found in the gradients. It seems possible that in the monensin-sensitive endosomes, dissociation of the ligand-receptor complex is inhibited, allowing ligand to recycle with the receptors in small vesicles.  相似文献   

16.
Lysosomes form part of our innate immunity and are an important line of defence against microbes, viruses and parasites. Although it is more than 50?years since de Duve discovered lysosomes, it is only in more recent years that we are slowly unravelling the molecular mechanisms involved in the delivery of material to the lysosome. However, successful intracellular pathogens often have a better grip on the mechanisms involved in delivery to the lysosome and can manipulate membrane trafficking pathways to create an intracellular environment that is favourable for replication. By studying pathogen effector proteins that are secreted into the host's cytosol, we can learn about both pathogen-survival mechanisms and further regulatory elements involved in trafficking to the lysosome.  相似文献   

17.
Lysosomes function as a primary site for catabolism and cellular signaling. These organelles digest a variety of substrates received through endocytosis, secretion and autophagy with the help of resident acid hydrolases. Lysosomal enzymes are folded in the endoplasmic reticulum (ER) and trafficked to lysosomes via Golgi and endocytic routes. The inability of hydrolase trafficking due to mutations or mutations in its receptor or cofactor leads to cargo accumulation (storage) in lysosomes, resulting in lysosome storage disorder (LSD). In Gaucher disease (GD), the lysosomes accumulate glucosylceramide because of low β-glucocerebrosidase (β-GC) activity that causes lysosome enlargement/dysfunction. We hypothesize that improving the trafficking of mutant β-GC to lysosomes may improve the lysosome function in GD. RNAi screen using high throughput based β-GC activity assay followed by reporter trafficking assay utilizing β-GC-mCherry led to the identification of nine potential phosphatases. Depletion of these phosphatases in HeLa cells enhanced the β-GC activity by increasing the folding and trafficking of Gaucher mutants to the lysosomes. Consistently, the lysosomes in primary fibroblasts from GD patients restored their β-GC activity upon the knockdown of these phosphatases. Thus, these studies provide evidence that altering phosphatome activity is an alternative therapeutic strategy to restore the lysosome function in GD.  相似文献   

18.
Normaski optics, fluorescence and electron microscopy were employed to demonstrate the occurrence of lysosomes in capsulated, enzymatically decapsulated, and dewalled cells of a human isolate ofCryptococcus neoformans. Fluorescent studies, using acridine orange as a lysosomal indicator, revealed the presence of variously sized, spherical, reddish-orange fluorescing bodies. Electron microscopy studies demonstrated the presence of acid phosphatase (AP), a lysosome marker enzyme, in single-membrane bound organelles. Lysosomes were removed from dewalled cells and separated by differential centrifugation on ficoll gradients. That fraction indicating the highest assay for AP was centrifuged at high speed, and the resulting pellet was fixed for electron microscopy and stained by the Gomori procedure for AP. Sections of the pellets revealed AP stained vesicles of the same size range as those within intact cells.  相似文献   

19.
The role of a lysosome fraction from rabbit type II cells in surfactant dipalmitoylphosphatidylcholine (DPPC) catabolism was investigated in vivo using radiolabeled DPPC and dihexadecylphosphatidylcholine (1, 2-dihexadecyl-sn-glycero-3-phosphocholine; DEPC), a phospholipase A(1)- and A(2)-resistant analog of DPPC. Freshly isolated type II cells were gently disrupted by shearing, and lysosomes were isolated with Percoll density gradients (density range 1.0591-1.1457 g/ml). The lysosome fractions were relatively free of contaminating organelles as determined by electron microscopy and organelle marker enzymes. After intratracheal injection of rabbits with [(3)H]DPPC and [(14)C]DEPC associated with a trace amount of natural rabbit surfactant, the degradation-resistant DEPC accumulated 16-fold compared with DPPC in lysosome fractions at 15 h. Lysosomes can be isolated from freshly isolated type II cells, and lysosomes from type II cells are the primary catabolic organelle for alveolar surfactant DPPC following reuptake by type II cells in vivo.  相似文献   

20.
To investigate the intracellular localization of endothelin in cultured endothelial cells, an immunocytochemical study was carried out by the post-embedding protein A-gold technique with endothelin-specific antiserum. Gold particles were seen on the rough endoplasmic reticulum, the Golgi cisternae, the Golgi vesicles, small vesicles beneath the cell membrane, and the lysosomes. By contrast, no secretory granules were observed. These results suggest that endothelin is secreted by a constitutive pathway and that the lysosome may play an important role in regulating the biological activity of endothelin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号