共查询到20条相似文献,搜索用时 0 毫秒
1.
The role of gibberellins and cortical microtubules in determining the polarity of cell growth in the root cortex of maize (Zea mays L.) was examined. Inhibition of gibberellin biosynthesis, either naturally through mutation (d5 mutant) or by means of chemicals such as 2S,3S paclobutrazol, caused thickening of root apices and increased their starch content. Immunofluorescence microscopy of cortical microtubules, coupled with a comparison of cell widhts, lengths and shapes, indicated that the meristem and immediate post-mitotic zone were the targets of gibberellin deficiency. Cortical cells in these regions were impaired in their ability to develop highly ordered transversal arrays of cortical microtubules. Consequently, the cells became wider and shorter. Application of gibberellic acid re-established the arrangements of cortical microtubules and the polarity of cell growth characteristic for roots having normal levels of gibberellins, it also decreased the starch content. These results indicate that gibberellins are morphogenetically active substances, not only in shoots but also in roots of maize.Abbreviations CMT cortical microtubule - GA gibberellin - GA3 gibberellic acid - MT microtubule - PIG postmitotic isodiametric growthThe authors acknowledge the support to F.B. from the Royal Society (London UK). We also thank Dr. J. Lenton (University of Bristol, Long Ashton Research Station) who kindly supplied us with 2S,3S paclobutrazol and grains of the GA-deficient d5 mutant of maize. 相似文献
2.
Horizontal primary roots of Zea mays L. were photographed during the course of their gravireaction and during a preceding growth period in the vertical orientation. The displacement, by root elongation, of marker particles on the root surface was recorded. The particle-displacement rates were used to estimate the distribution of elemental elongation rates along opposite sides of the growing root apex. In the temperature range 21–25°C there was a stimulation of local elongation rates along the upper side of a gravireacting root and a reduction (and sometimes a cessation) of elongation along the lower side. Elemental elongation rates have been related to the development of root curvature, and the magnitude of the differential growth between upper and lower sides required for a particular rate of bending has also been estimated. The results complement, and are compatible with, findings relating to the distribution of certain endogenous growth regulators believed to participate in the gravireaction.Abbreviation RELEL relative elemental rate of elongation 相似文献
3.
P. E. Pilet 《Planta》1986,169(4):600-602
A large population of primary roots of Zea mays (cv. LG 11) was selected for uniform length at zero time. Their individual growth rates were measured over an 8-h period in the vertical position (in humid air, darkness). Three groups of these roots with significantly different growth rates were then chosen and their cap length was measured. It was found that slowly growing roots had long caps whereas rapidly growing roots had short caps. The production by the cap cells of basipetally transported growth inhibitors was tested (biologically by the curvature of half-decapped roots) and found to be significantly higher for longer root caps than that for shorter ones. 相似文献
4.
The role of proton excretion in the growth of apical segments of maize roots has been examined. Growth is stimulated by acidic buffers and inhibited by neutral buffers. Organic buffers such as 2[N-morpholino] ethane sulphonic acid (MES) — 2-amino-2-(hydroxymethyl)propane-1,3 diol (Tris) are more effective than phosphate buffers in inhibiting growth. Fusicoccin(FC)-induced growth is also inhibited by neutral buffers. The antiauxins 4-chlorophenoxyisobutyric acid (PCIB) and 2-(naphthylmethylthio) propionic acid (NMSP) promote growth and H+-excretion over short time periods; this growth is also inhibited by neutral buffers. We conclude that growth of maize roots requires proton extrusion and that regulation of root growth by indol-3yl-acetic acid (IAA) may be mediated by control of this proton extrusion.Abbreviations IAA indol-3yl-acetic acid - ABA abscisic acid - FC fusicoccin - PCIB 4-chlorophenoxy-isobutyric acid - MES 2(N-morpholino)ethane sulphonic acid - Tris 2-amino-2-(hydroxymethyl) propane-1,3-diol - NMSP 2-(naphthylmethylthio)propionic acid 相似文献
5.
A method using optical microfibers permitted localized exposure of the cap or the elongating part of growing maize (Zea mays L.) roots to white light. When the cap was illuminated, a strong and very rapid inhibition of the elongation rate of the roots was found. When the light microbeam was directed at the elongating region, the roots continued to grow at the same rate as before the illumination. 相似文献
6.
The level of endogenous Indol-3-yl-acetic acid (IAA) measured by gas chromatography-mass spectrometry in the elongating zone of intact primary roots of Zea mays showed a good linear correlation with the growth rate of these roots. When they were treated with IAA, their relative elongation decreased; this indicates a supraoptimal content of endogenous IAA. However, the growth of some of the relatively rapidly extending roots was enhanced by such treatment. Interactions between endogenous and applied IAA in the control of root growth are discussed.Abbreviations GC-MS
gas chromatography-mass spectrometry
- IAA
Indol-3-yl-acetic acid 相似文献
7.
In order to determine the role of the epidermis and cortex in gravitropic curvature of seedling roots of maize (Zea mays L. cv. Merit), the cortex on the two opposite flanks was removed from the meristem through the growing zone; gravitropic curvature was measured with the roots oriented horizontally with the cut flanks either on the upper and lower side, or on the lateral sides as a wound control. Curvature was slower in both these treatments (53° in 5 h) than in intact roots (82°), but there was no difference between the two orientations in extent and rate of curvature, nor in the latent time, showing that epidermis and cortex were not the site of action of the growth-regulating signal. The amount of cortex removed made no difference in the extent of curvature. Curvature was eliminated when the endodermis was damaged, raising the possibility that the endodermis or the stele-cortex interface controls gravitropic curvature in roots. The elongation rate of roots from which just the epidermis had been peeled was reduced by 0.01 mM auxin (indole-3-acetic acid) from 0.42 to 0.27 mm h-1, contradicting the hypothesis that only the epidermis responds to changes in auxin activity during gravistimulation. These observations indicate that gravitropic curvature in maize roots is not driven by differential cortical cell enlargement, and that movement of growth regulator(s) from the tip to the elongating zone is unlikely to occur in the cortex.Abbreviations df
degrees of freedom
- IAA
indole-3-acetic acid 相似文献
8.
We have earlier published observations showing that endogenous alterations in growth rate during gravitropism in maize roots (Zea mays L.) are unaffected by the orientation of cuts which remove epidermal and cortical tissue in the growing zone (Björkman and Cleland, 1988, Planta 176, 513–518). We concluded that the epidermis and cortex are not essential for transporting a growth-regulating signal in gravitropism or straight growth, nor for regulating the rate of tissue expansion. This conclusion has been challenged by Yang et al. (1990, Planta 180, 530–536), who contend that a shallow girdle around the entire perimeter of the root blocks gravitropic curvature and that this inhibition is the result of a requirement for epidermal cells to transport the growth-regulating signal. In this paper we demonstrate that the entire epidermis can be removed without blocking gravitropic curvature and show that the position of narrow girdles does not affect the location of curvature. We therefore conclude that the epidermis is not required for transport of a growth-regulating substance from the root cap to the growing zone, nor does it regulate the growth rate of the elongating zone of roots. 相似文献
9.
The endogenous indol-3yl-acetic acid (IAA) of detipped apical segments from roots of maize (cv ORLA) was greatly reduced by an exodiffusion technique which depended upon the preferential acropetal transport of the phytohormone into buffered agar. When IAA was applied to the basal cut ends of freshly prepared root segments only growth inhibitions were demonstrable but after the endogenous auxin concentration had been reduced by the exodiffusion technique it became possible to stimulate growth by IAA application. The implications of the interaction between exogenous and endogenous IAA in the control of root segment growth are discussed with special reference to the role of endogenous IAA in the regulation of root growth and geotropism.Abbreviations IAA
indol-3yl-acetic acid
- GC-MS
gas chromatography-mass spectrometry 相似文献
10.
[5-3H]Indol-3yl-acetic acid (IAA) applied to the shoot apices of intact 6-day-old maize (Zea mays L.) plants moved into the primary root and accumulated at the root apex. IAA from the shoot could partially satisfy the requirement of the primary root for IAA for growth.Abbreviation IAA
indol-3yl-acetic acid 相似文献
11.
Summary Using a vibrating probe technique, four distinct electric patterns around growing cress roots were observed. The growth rate of the root with a particular one of them was apparently faster than that with the others. No direct correlation between the intensity of electric field and the root growth rate could be found. When gravistimulation was applied to the root, the electric pattern changed to be suitable for elongation of the gravitropic curvature. It is probable that change in electric pattern is related to growth of the root under a given environment. 相似文献
12.
There is general agreement that during root gravitropism some sort of growth-modifying signal moves from the cap to the elongation zone and that this signal ultimately induces the curvature that leads to reorientation of the root. However, there is disagreement regarding both the nature of the signal and the pathway of its movement from the root cap to the elongation zone. We examined the pathway of movement by testing gravitropism in primary roots of maize (Zea mays L.) from which narrow (0.5 mm) rings of epidermal and cortical tissue were surgically removed from various positions within the elongation zone. When roots were girdled in the apical part of the elongation zone gravitropic curvature occurred apical to the girdle but not basal to the girdle. Filling the girdle with agar allowed curvature basal to the girdle to occur. Shallow girdles, in which only two or three cell layers (epidermis plus one or two cortical cell layers) were removed, prevented or greatly delayed gravitropic curvature basal to the girdle. The results indicate that the gravitropic signal moves basipetally through the outermost cell layers, perhaps through the epidermis itself. 相似文献
13.
Immunofluorescence labeling of cortical microtubules (MTs) was used to investigate the relationship between MT arrangement and changes in growth rate of the upper and lower sides of horizontally placed roots of maize (Zea mays L. cv. Merit). Cap cells and cells of the elongation zone of roots grown vertically in light or darkness showed MT arrangements that were transverse (perpendicular) to the growth direction. Microtubules of cells basal to the elongation zone typically showed oblique orientation. Two hours after horizontal reorientation, cap cells of gravicompetent, light-grown and curving roots contained MTs parallel to the gravity vector. The MT arrangement on the upper side of the elongation zone remained transverse but the MTs of the outer four to five layers of cortical cells along the lower side of the elongation zone showed reorientation parallel to the axis of the root. The MTs of the lower epidermis retained their transverse orientation. Dark-grown roots did not curve and did not show reorientation of MTs in cells of the root cap or elongation zone. The data indicate that MT depolymerization and reorientation is correlated with reduction in growth rate, and that MT reorientation is one of the steps of growth control of graviresponding roots.Abbreviations MT microtubule - QC quiescent centerThis work was supported by National Science Foundation grant IBN-9118094. 相似文献
14.
The effect of indole-3-acetic acid (IAA) on the elongation rates of 2 mm corn (Zea mays L.) root segments induced by citrate-phosphate buffer (or unbuffered) solutions of pH 4.0 and 7.0 was studied. At pH 7.0, auxin initially reduced the elongation rate in both buffered and unbuffered solutions. Only in buffer at pH 7.0 was auxin at a concentration of 0.1 M found to promote the elongation rate though briefly. THis promoted rate represented only ca. 20% of the rate achieved with only buffer at pH 4.0. Auxin in pH 4.0 buffered and unbuffered solutions only served to reduce the elongation rates of root segments. Some comparative experiments were done using 2 mm corn coleoptile segments. Auxin (pH 6.8) promoted the elongation rate of coleoptile segments to a level equal or greater than the maximal H ion-induced rate. The two responses of root segments to auxin are compared to auxin action in coleoptile growth. 相似文献
15.
Shoot and root growth of hydroponic maize (Zea mays L.) as influenced by K deficiency 总被引:1,自引:0,他引:1
Potassium (K) has major biophysical and biochemical functions in plant physiology. However, plant responses to K deficiency
at the whole plant level are not always clearly related to these well-known functions of K at the cellular level. The objective
of this study was to investigate the morphological response of maize to increasing K deficiency and test to what extent this
morphological response can be interpreted in the light of the simple model proposed by Leigh and Wyn Jones, suggesting that
biophysical functions are affected first. Maize was grown in a greenhouse under hydroponic conditions. For half of the plants,
K was removed from the nutrient solution from the 4th visible leaf stage. The K content in the starved plants dropped from
100 to 30 mM, and was not fully compensated by an increase in other cations. Leaf elongation rates were reduced on K-deprived
plants, whereas axile root elongation rates were slightly increased between 45°C days and 75°C days after starvation, and
reduced thereafter. During the first part of the starvation period, i.e. under moderate K deficiency (K concentration above
40 mM), all measured variables suggest that the whole plant response may be interpreted as the consequence of the reduced
leaf growth, probably due to insufficient turgor pressure or cell-wall extensibility. This general pattern of response is
in agreement with the model of Leigh and Wyn Jones. However, during the second part of the starvation period, i.e. under more
severe K deficiency (K concentration below 40 mM), malfunction of additional physiological processes (mostly related to biochemical
functions like photosynthetic processes) must be considered to explain the plant morphological response. 相似文献
16.
Roots of Zea mays were maintained in a vertical orhorizontal position and the local elongation rate and H+ fluxes were measured using Sephadex beads containing a pH indicator. When the roots were kept horizontally, the growth of the lower side was strongly inhibited and that of the upper side slightly stimulated as compared with vertical roots. The H+ extrusion, which was greatest in the elongation zone, was strongly inhibited on the lower side and slightly stimulated on the upper side as compared with vertical roots. 相似文献
17.
Primary roots of six plant species were placed horizontally either in humid air or under water, and their growth and gravitropic responses were examined. In air, all the roots showed a normal gravitropic curvature. Under water without aeration, roots of rice (Oryza sativa L.), oat (Avena sativa L.), azuki bean (Vigna angularis Ohwi et Ohashi), and cress (Lepidium sativum L.) curved downward at almost same rate as in air, whereas the curvature of roots of maize (Zea mays L.) and pea (Pisum sativum L.) was strongly suppressed. Submergence did not cause a decrease in growth rate of these roots. When roots of maize and pea were placed horizontally under water without aeration and then rotated in three dimensions on a clinostat in air, they showed a significant curvature, suggesting that the step suppressed by submergence is not graviperception but the subsequent signal transmission or differential growth process. Constant bubbling of air through the water partly restored the gravitropic curvature of maize roots and completely restored that of pea roots. The curvature of pea roots was also partly restored by the addition of an inhibitor of ethylene biosynthesis, aminooxyacetic acid. In air, ethylene suppressed the gravitropic curvature of roots of maize and pea. Furthermore, the level of ethylene in the intercellular space of the roots was increased by submergence. These results suggest that the accumulation of ethylene in the tissue is at least partly involved in suppression of transmission of the gravity signal or of differential growth in maize and pea roots under conditions of submergence.Abbreviations AOA
aminooxyacetic acid
- 3-D
three-dimensional
Dedicated to Professor Andreas Sievers on the occasion of his retirementWe thank Professor H. Suge and Drs. H. Takahashi and H. Kataoka, Tohoku University and Dr. T. Suzuki, Yamagata University, for helpful suggestions. The present study was supported in part by a Grant for Basic Research in Space Station Utilization from the Institute of Space and Astronautical Science, Japan. 相似文献
18.
Using a combination of electron-microscopic and immunocytochemical techniques the behaviour of the microtubular cytoskeleton has been followed throughout microsporogenesis in Lilium henryi Thunb. Cells treated with colchicine at specific stages and then permitted to develop to near maturity were used to investigate any participation by microtubules in the regulation of pollen wall patterning. The microtubular cytoskeleton assumes four principal forms during the meiotic process; in pre-meiosis it resembles that characteristic of meristematic somatic cells, during meiotic prophase it becomes associated with a nuclear envelope and, perhaps, with the chromosomes and, as the nuclear and cell divisions commence, it takes the form of a normal spindle apparatus. In the young microspores, microtubules assume a radial organisation extending from sites at the nuclear envelope to the inner face of the plasma membrane. No firm evidence was found linking any one of these forms of cytoskeleton with the generation of patterning on the cell surface. Experiments with colchicine revealed that the drug would readily dislocate the colpus, but did not affect the general reticulate patterning. The radial cytoskeleton was present during the deposition of the early primexine, but evidence from these and other studies (J.M. Sheldon and H.G. Dickinson 1983, J. Cell. Sci. 63, 191–208; H.G. Dickinson and J.M. Sheldon, 1984, Planta 161, 86–90) indicates patterning to be imprinted upon the plasma membrane prior to the appearance of this type of cytoskeleton. These results are discussed in terms of a recent model proposed to explain pattern generation on the surface of Lilium pollen grains, based on the self-assembly of patterning determinants within the plasma membrane.Abbreviation MTOC
microtubule-organising centre 相似文献
19.
The effect of externally applied indoleacetic acid (IAA) and abscisic acid (ABA) on the growth of roots of Zea mays L. was measured. Donor blocks of agar with IAA or ABA were placed laterally on the roots and root curvature was measured. When IAA was applied to vertical roots, a curvature directed toward the donor block was observed. This curvature corresponded to a growth inhibition at the side of the root where the donor was applied. When IAA was applied to horizontal roots from the upper side, normal geotropic downward bending was delayed or totally inhibited. The extent of retardation and the inhibition of curvature were found to depend on the concentration of IAA in the donor block. ABA neither induced curvature in vertical roots nor inhibited geotropic curvature in horizontal roots; thus the growth of roots was not inhibited by ABA. However, when, instead of donor blocks, root tips or coleoptile tips were placed onto vertical roots, a curvature of the roots was observed.Abbreviations ABA
abscisic acid
- IAA
3-indoleacetic acid 相似文献
20.
Gravitropism in roots has been proposed to depend on a downward redistribution of calcium across the root cap. However, because of the many calcium-binding sites in the apoplast, redistribution might not result in a physiologically effective change in the apoplasmic calcium activity. To test whether there is such a change, we measured the effect of gravistimulation on the calcium activity of statocyte cell walls with calcium-specific microelectrodes. Such a measurement must be made on a tissue with gravity sensing cells at the surface. To obtain such a tissue, decapped maize roots (Zea mays L. cv. Golden Cross Bantam) were grown for 31 h to regenerate gravitropic sensitivity, but not root caps. The calcium activity in the apoplasm surrounding the gravity-sensing cells could then be measured. The initial pCa was 2.60 ± 0.28 (approx 2.5 mM). The calcium activity on the upper side of the root tip remained constant for 10 min after gravistimulation, then decreased 1.7-fold. On the lower side, after a similar lag the calcium activity increased 1.6-fold. Control roots, which were decapped but measured before recovering gravisensitivity (19 h), showed no change in calcium activity. To test whether this gradient is necessary for gravitropic curvature, we eliminated the calcium activity gradient during gravitropism by applying a mobile calcium-binding site (di-nitro-BAPTA; 1,2-bis(2-amino-5-nitro-phenoxy)ethane-N,N,N,N-tetraacetic acid) to the root cap; this treatment eliminated gravicurvature. A calcium gradient may be formed by proton-induced calcium desorption if there is a proton gradient. Preventing the formation of apoplastic pH gradients, using 10 and 50 mM 2-(N-morpholino)ethanesulfonic acid (Mes) buffer or 10 mM fusicoccin to stimulate proton excretion maximally, did not inhibit curvature; therefore the calcium gradient is not a secondary effect of a proton gradient. We have found a distinct and rapid differential in the apoplasmic calcium activity between the upper and lower sides of gravistimulated maize root tips which is necessary for gravitropism.Abbreviations BAPTA
1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid
- FC
fusicoccin
- Mes
2-(N-morpholino)ethanesulfonic acid
The authors thank Phyllis Woolwine for drawing Fig. 1, Dr. Sarbjit Virk for assistance with total calcium measurements, Dr. Paul Sampson for statistical advice, and Michael Newton for developing the EM algorithm to analyze the time-series data. This work was supported by NASA grant NAGW-1394 and by a NASA Research Associateship to T.B. through NASA grant NAGW-70. 相似文献