首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A large number of researches have led to a substantial growth of knowledge about exercise and oxidative stress. Initial investigations reported that physical exercise generates free radical-mediated damages to cells; however, in recent years, studies have shown that regular exercise can upregulate endogenous antioxidants and reduce oxidative damage. Yet, strenuous exercise perturbs the antioxidant system by increasing the reactive oxygen species (ROS) content. These alterations in the cellular environment seem to occur in an exercise type-dependent manner. The source of ROS generation during exercise is debatable, but now it is well established that both contracting and relaxing skeletal muscles generate reactive oxygen species and reactive nitrogen species. In particular, exercises of higher intensity and longer duration can cause oxidative damage to lipids, proteins, and nucleotides in myocytes. In this review, we summarize the ROS effects and interplay of antioxidants in skeletal muscle during physical exercise. Additionally, we discuss how ROS-mediated signaling influences physical exercise in antioxidant system.  相似文献   

2.
It is shown that the testosterone content in skeletal muscles of female albino rats is 2-fold decreased, while the estradiol content-1.5-fold increased and progesteron content showed no changes after systematic physical exercises. The pharmacokinetic investigations showed that androgen half-life in the organism decreased from 8 to 5 h under physical exercises. The amount of androgen receptors in cytosol of skeletal muscles increases from 1.34 +/- 0.08 to 1.71 +/- 0.10 fmol/mg per 1 mg of protein. Kd is 0.40 +/- 0.03 and 0.48 +/- 0.08 nM, respectively. Sensitivity of the organism to hormonal signal play an important role in the metabolism regulation in skeletal muscles along with the hormonal content change during the organism adaptation to physical exercises.  相似文献   

3.
The in vivo experiments established that isobutyl methyl xanthine inhibits phosphodiesterase activity and activates adenylate cyclase in the skeletal muscles and myocardium. The preparation prevents phosphodiesterase activity from increasing due to physical exercises. Against a background of the latter it activates adenylate cyclase and prevents the cAMP level from declining in skeletal muscles. In the myocardium this effect of isobutyl methyl xanthine is less pronounced.  相似文献   

4.
It is established that the content of tropomyosin in skeletal muscles of rats increases due to the action of the systematic physical exercises of the speed-force direction. Suprareduction of tropomyosin in remote periods of rest after a single load is a biochemical basis of this process.  相似文献   

5.
This study was designed to examine if diphenyl diselenide (PhSe)2, an organoselenium compound, attenuates oxidative stress caused by acute physical exercise in skeletal muscle and lungs of mice. Swiss mice were pre‐treated with (PhSe)2 (5 mg kg‐1 day‐1) for 7 days. At the 7th day, the animals were submitted to acute physical exercise which consisted of continuous swimming for 20 min. The animals were euthanized 1 and 24 h after the exercise test. The levels of thiobarbituric acid reactive species (TBARS), non‐protein thiols (NPSH) and ascorbic acid and the activity of catalase (CAT) were measured in the lungs and skeletal muscle of mice. Glycogen content was determined in the skeletal muscle of mice. Parameters in plasma (urea and creatinine) were determined. The results demonstrated an increase in TBARS levels induced by acute physical exercise in the skeletal muscle and lungs of mice. Animals submitted to exercise showed an increase in non‐enzymatic antioxidant defenses (NPSH and ascorbic acid) in the skeletal muscle. In lungs of mice, activity of CAT was increased. (PhSe)2 protected against the increase in TBARS levels and ameliorated antioxidant defenses in the skeletal muscle and lungs of mice submitted to physical exercise. These results indicate that acute physical exercise caused a tissue‐specific oxidative stress in the skeletal muscle and lungs of mice. (PhSe)2 protected against oxidative damage induced by acute physical exercise in mice. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
An increase of condensed chromatin was found in the nuclei of the muscle fibers of rat skeletal muscle after secondary exhastive physical exercises. Some nuclei of the muscle fibers with a part of the sarcoplasm separated from the muscle fibers. Satellite cells formed from the separated parts of the muscle fibers.  相似文献   

7.
Reactive oxygen species (ROS) are important signaling molecules with regulatory functions, and in young and adult organisms, the formation of ROS is increased during skeletal muscle contractions. However, ROS can be deleterious to cells when not sufficiently counterbalanced by the antioxidant system. Aging is associated with accumulation of oxidative damage to lipids, DNA, and proteins. Given the pro-oxidant effect of skeletal muscle contractions, this effect of age could be a result of excessive ROS formation. We evaluated the effect of acute exercise on changes in blood redox state across the leg of young (23±1 years) and older (66±2 years) sedentary humans by measuring the whole blood concentration of the reduced (GSH) and oxidized (GSSG) forms of the antioxidant glutathione. To assess the role of physical activity, lifelong physically active older subjects (62±2 years) were included. Exercise increased the venous concentration of GSSG in an intensity-dependent manner in young sedentary subjects, suggesting an exercise-induced increase in ROS formation. In contrast, venous GSSG levels remained unaltered during exercise in the older sedentary and active groups despite a higher skeletal muscle expression of the superoxide-generating enzyme NADPH oxidase. Arterial concentration of GSH and expression of antioxidant enzymes in skeletal muscle of older active subjects were increased. The potential impairment in exercise-induced ROS formation may be an important mechanism underlying skeletal muscle and vascular dysfunction with sedentary aging. Lifelong physical activity upregulates antioxidant systems, which may be one of the mechanisms underlying the lack of exercise-induced increase in GSSG.  相似文献   

8.
Regular physical exercise seems to have protective effects against diseases that involve inflammatory processes since it induces an increase in the systemic levels of cytokines with anti-inflammatory and antioxidant properties and also acts by reducing estrogen levels. Evidence has suggested that the symptoms associated with endometriosis result from a local inflammatory peritoneal reaction caused by ectopic endometrial implants. Thus, the objective of the present review was to assess the relationship between physical exercise and the prevalence and/or improvement of the symptoms associated with endometriosis. To this end, data available in PubMed (1985–2012) were surveyed using the terms “endometriosis and physical exercises”, “endometriosis and life style and physical exercises” in the English language literature. Only 6 of the 935 articles detected were included in the study. These studies tried establish a possible relationship between the practice of physical exercise and the prevalence of endometriosis. The data available are inconclusive regarding the benefits of physical exercise as a risk factor for the disease and no data exist about the potential impact of exercise on the course of the endometriosis. In addition, randomized studies are necessary.  相似文献   

9.
The imbalance between the reactive oxygen (ROS) and nitrogen (RNS) species production and their handling by the antioxidant machinery (low molecular weight antioxidant molecules and antioxidant enzymes), also known as oxidative stress, is a condition caused by physiological and pathological processes. Moreover, oxidative stress may be due to an overproduction of free radicals during physical exercise. Excess of radical species leads to the modification of molecules, such as proteins – the most susceptible to oxidative modification – lipids and DNA. With regard to the oxidation of proteins, carbonylation is an oxidative modification that has been widely described. Several studies have detected changes in the total amount of protein carbonyls following different types of physical exercise, but only few of these identified the specific amino acidic residues targets of such oxidation. In this respect, proteomic approaches allow to identify the proteins susceptible to carbonylation and in many cases, it is also possible to identify the specific protein carbonylation sites. This review focuses on the role of protein oxidation, and specifically carbonyl formation, for plasma and skeletal muscle proteins, following different types of physical exercise performed at different intensities. Furthermore, we focused on the proteomic strategies used to identify the specific protein targets of carbonylation. Overall, our analysis suggests that regular physical activity promotes a protection against protein carbonylation, due to the activation of the antioxidant defence or of the turnover of protein carbonyls. However, we can conclude that from the comprehensive bibliography analysed, there is no clearly defined specific physiological role about this post-translational modification of proteins.  相似文献   

10.
Energy allocation theory predicts that a lactating female should alter the energetic demands of its organ systems in a manner that maximizes nutrient allocation to reproduction while reducing nutrient use for tasks that are not vital to immediate survival. We posit that organ‐specific plasticity in the function of mitochondria plays a key role in mediating these energetic trade‐offs. The goal of this project was to evaluate mitochondrial changes that occur in response to lactation in two of the most energetically demanding organs in the body of a rodent, the liver and skeletal muscle. This work was conducted in wild‐derived house mice (Mus musculus) kept in seminatural enclosures that allow the mice to maintain a natural social structure and move within a home range size typical of wild mice. Tissues were collected from females at peak lactation and from age‐matched nonreproductive females. Mitochondrial respiration, oxidative damage, antioxidant, PGC‐1α, and uncoupling protein levels were compared between lactating and nonreproductive females. Our findings suggest that both liver and skeletal muscle downregulate specific antioxidant proteins during lactation. The liver, but not skeletal muscle, of lactating females displayed higher oxidative damage than nonreproductive females. The liver mass of lactating females increased, but the liver displayed no change in mitochondrial respiratory control ratio. Skeletal muscle mass and mitochondrial respiratory control ratio were not different between groups. However, the respiratory function of skeletal muscle did vary among lactating females as a function of stage of concurrent pregnancy, litter size, and mass of the mammary glands. The observed changes are predicted to increase the efficiency of skeletal muscle mitochondria, reducing the substrate demands of skeletal muscle during lactation. Differences between our results and prior studies highlight the role that an animals’ social and physical environment could play in how it adapts to the energetic demands of reproduction.  相似文献   

11.
Skeletal muscle oxidative capacity, antioxidant enzymes, and exercise training   总被引:10,自引:0,他引:10  
The purposes of this study were to determine whether exercise training induces increases in skeletal muscle antioxidant enzymes and to further characterize the relationship between oxidative capacity and antioxidant enzyme levels in skeletal muscle. Male Sprague-Dawley rats were exercise trained (ET) on a treadmill 2 h/day at 32 m/min (8% incline) 5 days/wk or were cage confined (sedentary control, S) for 12 wk. In both S and ET rats, catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPX) activities were directly correlated with the percentages of oxidative fibers in the six skeletal muscle samples studied. Muscles of ET rats had increased oxidative capacity and increased GPX activity compared with the same muscles of S rats. However, SOD activities were not different between ET and S rats, but CAT activities were lower in skeletal muscles of ET rats than in S rats. Exposure to 60 min of ischemia and 60 min of reperfusion (I/R) resulted in decreased GPX and increased CAT activities but had little or no effect on SOD activities in muscles from both S and ET rats. The I/R-induced increase in CAT activity was greater in muscles of ET than in muscles of S rats. Xanthine oxidase (XO), xanthine dehydrogenase (XD), and XO + XD activities after I/R were not related to muscle oxidative capacity and were similar in muscles of ET and S rats. It is concluded that although antioxidant enzyme activities are related to skeletal muscle oxidative capacity, the effects of exercise training on antioxidant enzymes in skeletal muscle cannot be predicted by measured changes in oxidative capacity.  相似文献   

12.
The association between physical exercise and oxidative damage in the skeletal musculature has been the focus of many studies in literature, but the balance between superoxide dismutase and catalase activities and its relation to oxidative damage is not well established. Thus, the aim of the present study was to investigate the association between regular treadmill physical exercise, oxidative damage and antioxidant defenses in skeletal muscle of rats. Fifteen male Wistar rats (8-12 months) were randomly separated into two groups (trained n=9 and untrained n=6). Trained rats were treadmill-trained for 12 weeks in progressive exercise (velocity, time, and inclination). Training program consisted in a progressive exercise (10 m/min without inclination for 10 min/day). After 1 week the speed, time and inclination were gradually increased until 17 m/min at 10% for 50 min/day. After the training period animals were killed, and gastrocnemius and quadriceps were surgically removed to the determination of biochemical parameters. Lipid peroxidation, protein oxidative damage, catalase, superoxide dismutase and citrate synthase activities, and muscular glycogen content were measured in the isolated muscles. We demonstrated that there is a different modulation of CAT and SOD in skeletal muscle in trained rats when compared to untrained rats (increased SOD/CAT ratio). TBARS levels were significantly decreased and, in contrast, a significant increase in protein carbonylation was observed. These results suggest a non-described adaptation of skeletal muscle against exercise-induced oxidative stress.  相似文献   

13.
Nrf2可调节多种抗氧化酶的表达,Nrf2的缺失可能影响机体的运动能力,而低氧可提高机体的抗氧化能力并改善运动能力。为了考察低氧运动对Nrf2基因敲除大鼠运动能力和氧化应激的影响,本研究分别在常氧和低氧环境(12%氧浓度)中对野生型大鼠和Nrf2敲除大鼠进行4周的跑台运动。研究显示,低氧运动可提高野生型大鼠的跑台运动力竭时间,Nrf2敲除可缩短大鼠的力竭时间;低氧运动可上调大鼠的Nrf2 m RNA表达量;Nrf2敲除明显抑制HIF-1α蛋白表达,而低氧运动可上调野生型和Nrf2敲除大鼠的HIF-1α蛋白表达;Nrf2敲除大鼠的骨骼肌ROS水平明显升高,并且低氧均可降低野生型和Nrf2敲除大鼠骨骼肌ROS水平。低氧运动可上调Nrf2敲除大鼠的CAT和GSH-PX蛋白表达。苏木精和伊红(HE)染色显示,Nrf2敲除大鼠在力竭跑台运动完成后出现更严重的骨骼肌病理改变,而低氧运动可减轻骨骼肌损伤。本研究认为,Nrf2敲除导致了大鼠骨骼肌中抗氧化酶的抑制及ROS的过量累积,从而造成了骨骼肌损伤并降低了运动能力。此外,低氧可通过上调Nrf2的表达,进而激活HIF-1α及抗氧化酶活性,从而提高运动能力,并防止骨骼肌损伤。  相似文献   

14.
The paper submits the results of studies on the combined effect of a single external (3 Gy) and chronic internal (90Sr, 11.1 X 10(5) Bq/kg/day) X-irradiation and physical exercises of different kind and intensity on some indices of nonspecific protection and immunity of albino mongrel rats and mice. Moderate physical exercises preceding irradiation diminish radiation injury to the parameters under study while intensive exercises and stress may aggravate the damages.  相似文献   

15.
The objective of the present experiment was to study free radical protein oxidation and lipid peroxidation in the liver of 1.5-month-old and 12-month-old rats with drug-induced hypothyroidism caused by exercises. The results of the present study suggest that intensive exercises are accompanied by an increase of intensity of free radical processes in the liver. Hypothyroidism and exercises do not greatly affect free radical processes in the liver of 12-month-old rats but result in additional stimulation of free radical oxidation in subcellular liver fractions of 1.5-month-old rats. An increase of free radical processes in the liver of 1.5-month-old rats with hypothyroidism caused by exercises is associated neither with changes in the first level antioxidant defense system enzymes function, nor with modulation of hepatocytes subcellular sensitivity to prooxidants. Such change is due largely to an increase of free radical production in the liver cells.  相似文献   

16.
Journal of Physiology and Biochemistry - Weight-bearing training, as one of resistance exercises, is beneficial to bone health. Myostatin (MSTN) is a negative regulator of skeletal muscle growth...  相似文献   

17.
Physiological mechanisms of muscle activity have been studied in 14 athletes and 15 untrained students during cyclic physical exercises of various intensities, including the individual maximum. The principle of system quantization of behavior has been used to find opposite changes in the spectra of the tachograms of athletes and physically untrained students after the completion of the same physical exercises. It has been shown that, after cyclic physical load in trained and untrained subjects, opposite changes in the effectiveness of their testing activity occur.  相似文献   

18.
19.
The study aimed at optimizing the functional state (FS) of anxious six- to eight-year-old children showed that integrated use of physical exercises of a mainly aerobic character, relaxation training, respiratory exercises, and functional music is more effective in the long-term aspect than selective use of these means. Only physical exercises exert a marked influence in the FS of six- to eight-year-old anxious children under a stressful informational load. The use of other means of optimizing the FS appears to be less effective. The high effectiveness of physical exercises is determined by adaptive changes in the mechanisms of FS regulation in anxious children. Apparently, long-term adaptation to an adequate muscular activity ensures improved functioning of, and a better interaction between, the activating and inactivating structures of the modulating brain system located at different levels of the CNS, in particular, in the frontal cortical areas. It is emphasized that the peculiarities of the influence of different means of regulation of the FS on the body of anxious elementary school children are, largely determined by the immaturity of the frontothalamic regulatory system and the specifics of the functional organization of the limbic brain structures.  相似文献   

20.
The paper deals with possibility to regulate in a proper direction the acid-base state in race horse blood administering carbostimulin at rest and under physical exercises. The preparation is shown to favour an increase in alkaline blood reserves in race hours at rest and to prevent acidotic changes caused by physical exercises. The results obtained show a promising use of carbostimulin for the directed correction of the acid-base state of blood in race horses aimed at increasing the efficiency of the training process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号